Technische Universität München 17 Prof. J. Esparza / Dr. M. Blondin

18.10.2016

Automata and Formal Languages — Homework 1

Due 21.10.2016

Exercise 1.1

Consider the language $L \subseteq \{a, b\}^*$ given by the regular expression $a^*b^*a^*a$.

- (a) Give an NFA- ε that accepts L.
- (b) Give an NFA that accepts L.
- (c) Give a DFA that accepts L.

Exercise 1.2

Let $L = \{w \in \{a, b\}^* : w \text{ does not contain any occurrence of } aa\}.$

- (a) Give a DFA that accepts L.
- (b) Give a regular expression for L.
- (c) Prove that the regular expression given in (b) is correct, i.e. that its language is indeed L.

Exercise 1.3

Consider the two following NFAs A and B working over alphabet $\{a, b\}$:

- (a) Describe L(A) and L(B) in English.
- (b) Give regular expressions for L(A) and L(B).
- (c) Determinize A and B, i.e. convert A and B to DFAs accepting the same languages.

Exercise 1.4

Let A and B be DFAs over some alphabet Σ .

- (a) Describe DFAs C and D such that $L(C) = L(A) \cup L(B)$ and $L(D) = L(A) \cap L(D)$.
- (b) Prove that C is correct, i.e. that indeed $L(C) = L(A) \cup L(B)$.
- (c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain your answer.

Exercise 1.5

The reverse of a word $w \in \Sigma^*$ is defined as $w^R = \varepsilon$ if $w = \varepsilon$ and $w^R = a_n a_{n-1} \cdots a_1$ if $w = a_1 a_2 \cdots a_n$. The reverse of a language $L \subseteq \Sigma^*$ is defined as $L^R = \{w^R : w \in L\}$.

Let A be an NFA. Describe an NFA B such that $L(B) = L(A)^R$.

Exercise 1.6

The *shuffle* of two languages $A, B \subseteq \Sigma^*$ is defined as

 $A \sqcup B = \{ w \in \Sigma^* : \exists a_1, \dots, a_n, b_1, \dots, b_n \in \Sigma^* \text{ s.t. } a_1 \cdots a_n \in A \text{ and} \\b_1 \cdots b_n \in B \text{ and} \\w = a_1 b_1 \cdots a_n b_n \} .$

Let A and B be DFAs. Describe an NFA C such that $L(C) = L(A) \sqcup L(B)$.

Solution 1.1

Solution 1.2

(b) $r = (a + \varepsilon)(b^* + ba)^*$ or $r' = (b^* + ab)^*(a + \varepsilon)$

(c)
$$L(r) \subseteq L$$
:

Let $w \in L(r)$. By definition of r, $w = u_1 u_2 \cdots u_n$ for some $n \in \mathbb{N}$, $u_1 \in \{\varepsilon, a\}$ and $u_2, \ldots, u_n \in \{b^*, ba\}$. Assume r contains an occurrence of aa. Since none of the u_i contains aa, there must exist some $i \ge 0$ such that u_i ends with a and u_{i+1} starts with a. The only possible case for u_{i+1} is $u_{i+1} = a$, hence i + 1 = 1 and i = 0 which is a contradiction.

$L \subseteq L(r)$:

Let $w \in L$. There exist $n \in \mathbb{N}$ and $i, j_1, j_2, \ldots, j_n, k \in \mathbb{N}$ such that

- $w = b^i a b^{j_1} a b^{j_2} \cdots a b^{j_n} a b^k$,
- $i, k \ge 0$,
- $j_1, j_2, \ldots, j_n > 0.$

If i = 0, we way derive w as follows:

If i > 0, we way derive w as follows:

Solution 1.3

A) (a) L(A) = {w ∈ {a,b}* : w contains ab or a} = {w ∈ {a,b}* : w contains a},
(b) (a+b)*(ab+a)(a+b)* or (a+b)*a(a+b)* or b*a(a+b)*,

B) (a) $L(B) = \{w \in \{a, b\}^* : |w| > 1 \text{ and } w \text{ starts and ends with the same letter} \}$ (b) $a(a+b)^*a + b(a+b)^*b$

Solution 1.4

(a) Let $A = (Q_A, \Sigma, \delta_A, q_0, F_A)$ and $B = (Q_B, \Sigma, \delta_B, q'_0, F_B)$. We define C and D as follows:

$$C = (Q_A \times Q_B, \Sigma, \delta', (q_0, q'_0), F_C)$$
$$D = (Q_A \times Q_B, \Sigma, \delta', (q_0, q'_0), F_D)$$

where $\delta'((p,q),a) = (\delta_A(p,a), \delta_B(q,a))$ and

$$F_C = \{ (p,q) \in Q_A \times Q_B : p \in F_A \lor q \in F_B \}$$
$$F_D = \{ (p,q) \in Q_A \times Q_B : p \in F_A \land q \in F_B \}$$

(b) It suffices to prove that

$$(p,q) \xrightarrow{w}_{C} (p',q') \iff p \xrightarrow{w}_{A} p' \text{ and } q \xrightarrow{w}_{B} q'$$
.

We proceed by induction on |w|. If |w| = 0, then $w = \varepsilon$ and the claim trivially holds. Assume that |w| > 0 and suppose that the claim holds for every word of length |w| - 1. Let $w = a_1 a_2 \cdots a_n$. We have,

$$\begin{array}{ll} (p,q) \xrightarrow{w}_{C} (p',q') \iff \delta'((p,q),a_1) = (p'',q'') & \text{and } (p'',q'') \xrightarrow{a_2 \cdots a_n}_{C} (p',q') \\ \iff \delta'((p,q),a_1) = (p'',q'') & \text{and } p'' \xrightarrow{a_2 \cdots a_n}_{A} p' \text{ and } q'' \xrightarrow{a_2 \cdots a_n}_{B} q' \text{ (by ind. hyp.)} \\ \iff \delta_A(p,a_1) = p'' \text{ and } \delta_B(q,a_1) = q'' & \text{and } p'' \xrightarrow{a_2 \cdots a_n}_{A} p' \text{ and } q'' \xrightarrow{a_2 \cdots a_n}_{B} q' \text{ (by def. of } C) \\ \iff p \xrightarrow{a_1 a_2 \cdots a_n}_{A} p' \text{ and } q \xrightarrow{a_1 a_2 \cdots a_n}_{B} q' \\ \iff p \xrightarrow{w}_A p' \text{ and } q \xrightarrow{w}_B q' \text{ .} & \Box \end{array}$$

(c) Intersection sometimes require the $|Q_A| \cdot |Q_B|$ states from the product construction [1, Thm. 11], however it is possible to do better with union. Since multiple initial states are allowed in this course, we can simply build the following NFA:

$$C = (Q_A \cup Q_B, \Sigma, \delta_A \cup \delta_B, Q_0 \cup Q'_0, F_A \cup F_B)$$

If we were restricted to a single initial state, we could build the following NFA:

$$C = (q_{\text{init}} \cup Q_A \cup Q_B, \Sigma, \delta', q_{\text{init}}, F_A \cup F_B)$$

where

$$\delta'(q,a) = \begin{cases} \delta_A(q_0,a) \cup \delta_B(q'_0,a) & \text{if } q = q_{\text{init}}, \\ \delta_A(q,a) & \text{if } q \in Q_A, \\ \delta_B(q,a) & \text{if } q \in Q_B. \end{cases}$$

The last construction would even be simpler if $\varepsilon\text{-transitions}$ were allowed:

Solution 1.5

We simply flip transitions of A and swap initial and final states. More formally, let $A = (Q, \Sigma, \delta_A, Q_0, F)$. We define B as $B = (Q, \Sigma, \delta_B, F, Q_0)$ where $\delta_B(p, a) = \{q \in Q : p \in \delta_A(q, a)\}$.

Solution 1.6

We give an NFA C that simulates A and B by "non deterministically guessing" in which automaton each letter must be read.

Let $A = (Q_A, \Sigma, \delta_A, q_0, F_A)$ and $B = (Q_B, \Sigma, \delta_B, q'_0, F_B)$. We let $C = (Q_A \times Q_B, \Sigma, \delta_C, (q_0, q'_0), F_A \times F_B)$ where $\delta_C((p, q), a) = \{(p', q) : p' \in \delta_A(p, a)\} \cup \{(p, q') : q' \in \delta_B(q, a)\}$.

References

 Markus Holzer and Martin Kutrib. State complexity of basic operations on nondeterministic finite automata. In Proc. 7th International Conference on Implementation and Application of Automata (CIAA), pages 148– 157, 2002.