
Technische Universität München Winter term 2016/17
I7
Prof. J. Esparza / Dr. M. Blondin 18.10.2016

Automata and Formal Languages — Homework 1

Due 21.10.2016

Exercise 1.1

Consider the language L ⊆ {a, b}∗ given by the regular expression a∗b∗a∗a.

(a) Give an NFA-ε that accepts L.

(b) Give an NFA that accepts L.

(c) Give a DFA that accepts L.

Exercise 1.2

Let L = {w ∈ {a, b}∗ : w does not contain any occurrence of aa}.

(a) Give a DFA that accepts L.

(b) Give a regular expression for L.

(c) Prove that the regular expression given in (b) is correct, i.e. that its language is indeed L.

Exercise 1.3

Consider the two following NFAs A and B working over alphabet {a, b}:

p q r

a, b

a

a

b

a, b

p

q

r

s

a

b

a, b

a, b

a

b

(a) Describe L(A) and L(B) in English.

(b) Give regular expressions for L(A) and L(B).

(c) Determinize A and B, i.e. convert A and B to DFAs accepting the same languages.

Exercise 1.4

Let A and B be DFAs over some alphabet Σ.

(a) Describe DFAs C and D such that L(C) = L(A) ∪ L(B) and L(D) = L(A) ∩ L(D).

(b) Prove that C is correct, i.e. that indeed L(C) = L(A) ∪ L(B).

(c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain
your answer.

Exercise 1.5

The reverse of a word w ∈ Σ∗ is defined as wR = ε if w = ε and wR = anan−1 · · · a1 if w = a1a2 · · · an. The
reverse of a language L ⊆ Σ∗ is defined as LR = {wR : w ∈ L}.

Let A be an NFA. Describe an NFA B such that L(B) = L(A)R.

Exercise 1.6

The shuffle of two languages A,B ⊆ Σ∗ is defined as

A�B = {w ∈ Σ∗ : ∃a1, . . . , an, b1, . . . , bn ∈ Σ∗ s.t. a1 · · · an ∈ A and
b1 · · · bn ∈ B and
w = a1b1 · · · anbn } .

Let A and B be DFAs. Describe an NFA C such that L(C) = L(A)� L(B).

Solution 1.1

(a)

a

ε

b

a

a

(b)

a

b

b

a

a

a

(c)

a

b

a

b

b

a

a

b

a, b

Solution 1.2

(a)

b
a

b

a

a, b

(b) r = (a+ ε)(b∗ + ba)
∗

or r′ = (b∗ + ab)
∗
(a+ ε)

(c) L(r) ⊆ L:

Let w ∈ L(r). By definition of r, w = u1u2 · · ·un for some n ∈ N, u1 ∈ {ε, a} and u2, . . . , un ∈ {b∗, ba}.
Assume r contains an occurrence of aa. Since none of the ui contains aa, there must exist some i ≥ 0 such
that ui ends with a and ui+1 starts with a. The only possible case for ui+1 is ui+1 = a, hence i + 1 = 1
and i = 0 which is a contradiction.

L ⊆ L(r):

Let w ∈ L. There exist n ∈ N and i, j1, j2, . . . jn, k ∈ N such that

• w = biabj1abj2 · · · abjnabk,

• i, k ≥ 0,

• j1, j2, . . . , jn > 0.

If i = 0, we way derive w as follows:

a b∗ ba · · · b∗ ba b∗

a bj1−1 ba · · · bjn−1 ba bk

If i > 0, we way derive w as follows:

ε b∗ ba b∗ ba · · · b∗ ba b∗

bi−1 ba bj1−1 ba · · · bjn−1 ba bk

Solution 1.3

A) (a) L(A) = {w ∈ {a, b}∗ : w contains ab or a} = {w ∈ {a, b}∗ : w contains a},
(b) (a+ b)∗(ab+ a)(a+ b)∗ or (a+ b)∗a(a+ b)∗ or b∗a(a+ b)∗,

(c)

p p, q, r p, r

b

a

a

b

a, b

B) (a) L(B) = {w ∈ {a, b}∗ : |w| > 1 and w starts and ends with the same letter}
(b) a(a+ b)∗a+ b(a+ b)∗b

(c)

p

q

r

q, s

r, s

a

b

b

a

a

b

b

a

a

b

Solution 1.4

(a) Let A = (QA,Σ, δA, q0, FA) and B = (QB ,Σ, δB , q
′
0, FB). We define C and D as follows:

C = (QA ×QB ,Σ, δ
′, (q0, q

′
0), FC)

D = (QA ×QB ,Σ, δ
′, (q0, q

′
0), FD)

where δ′((p, q), a) = (δA(p, a), δB(q, a)) and

FC = {(p, q) ∈ QA ×QB : p ∈ FA ∨ q ∈ FB}

FD = {(p, q) ∈ QA ×QB : p ∈ FA ∧ q ∈ FB}

(b) It suffices to prove that

(p, q)
w−→C (p′, q′) ⇐⇒ p

w−→A p′ and q
w−→B q′ .

We proceed by induction on |w|. If |w| = 0, then w = ε and the claim trivially holds. Assume that |w| > 0
and suppose that the claim holds for every word of length |w| − 1. Let w = a1a2 · · · an. We have,

(p, q)
w−→C (p′, q′) ⇐⇒ δ′((p, q), a1) = (p′′, q′′) and (p′′, q′′)

a2···an−−−−→C (p′, q′)

⇐⇒ δ′((p, q), a1) = (p′′, q′′) and p′′
a2···an−−−−→A p′ and q′′

a2···an−−−−→B q′ (by ind. hyp.)

⇐⇒ δA(p, a1) = p′′ and δB(q, a1) = q′′ and p′′
a2···an−−−−→A p′ and q′′

a2···an−−−−→B q′ (by def. of C)

⇐⇒ p
a1a2···an−−−−−−→A p′ and q

a1a2···an−−−−−−→B q′

⇐⇒ p
w−→A p′ and q

w−→B q′ .

(c) Intersection sometimes require the |QA| · |QB | states from the product construction [1, Thm. 11], however
it is possible to do better with union. Since multiple initial states are allowed in this course, we can simply
build the following NFA:

C = (QA ∪QB ,Σ, δA ∪ δB , Q0 ∪Q′0, FA ∪ FB) .

If we were restricted to a single initial state, we could build the following NFA:

C = (qinit ∪QA ∪QB ,Σ, δ
′, qinit, FA ∪ FB)

where

δ′(q, a) =


δA(q0, a) ∪ δB(q′0, a) if q = qinit,

δA(q, a) if q ∈ QA,

δB(q, a) if q ∈ QB .

The last construction would even be simpler if ε-transitions were allowed:

qinit

A

B

q0

q′0

ε

ε

Solution 1.5

We simply flip transitions of A and swap initial and final states. More formally, let A = (Q,Σ, δA, Q0, F). We
define B as B = (Q,Σ, δB , F,Q0) where δB(p, a) = {q ∈ Q : p ∈ δA(q, a)}.

Solution 1.6

We give an NFA C that simulates A and B by “non deterministically guessing” in which automaton each letter
must be read.

Let A = (QA,Σ, δA, q0, FA) and B = (QB ,Σ, δB , q
′
0, FB). We let C = (QA×QB ,Σ, δC , (q0, q

′
0), FA×FB) where

δC((p, q), a) = {(p′, q) : p′ ∈ δA(p, a)} ∪ {(p, q′) : q′ ∈ δB(q, a)} .

References

[1] Markus Holzer and Martin Kutrib. State complexity of basic operations on nondeterministic finite automata.
In Proc. 7th International Conference on Implementation and Application of Automata (CIAA), pages 148–
157, 2002.

