Automata and Formal Languages - Homework 1

Due 21.10.2016

Exercise 1.1

Consider the language $L \subseteq\{a, b\}^{*}$ given by the regular expression $a^{*} b^{*} a^{*} a$.
(a) Give an NFA- ε that accepts L.
(b) Give an NFA that accepts L.
(c) Give a DFA that accepts L.

Exercise 1.2

Let $L=\left\{w \in\{a, b\}^{*}: w\right.$ does not contain any occurrence of $\left.a a\right\}$.
(a) Give a DFA that accepts L.
(b) Give a regular expression for L.
(c) Prove that the regular expression given in (b) is correct, i.e. that its language is indeed L.

Exercise 1.3

Consider the two following NFAs A and B working over alphabet $\{a, b\}$:

(a) Describe $L(A)$ and $L(B)$ in English.
(b) Give regular expressions for $L(A)$ and $L(B)$.
(c) Determinize A and B, i.e. convert A and B to DFAs accepting the same languages.

Exercise 1.4

Let A and B be DFAs over some alphabet Σ.
(a) Describe DFAs C and D such that $L(C)=L(A) \cup L(B)$ and $L(D)=L(A) \cap L(D)$.
(b) Prove that C is correct, i.e. that indeed $L(C)=L(A) \cup L(B)$.
(c) If A and B were NFAs, could you construct NFAs with fewer states for union and intersection? Explain your answer.

Exercise 1.5

The reverse of a word $w \in \Sigma^{*}$ is defined as $w^{R}=\varepsilon$ if $w=\varepsilon$ and $w^{R}=a_{n} a_{n-1} \cdots a_{1}$ if $w=a_{1} a_{2} \cdots a_{n}$. The reverse of a language $L \subseteq \Sigma^{*}$ is defined as $L^{R}=\left\{w^{R}: w \in L\right\}$.

Let A be an NFA. Describe an NFA B such that $L(B)=L(A)^{R}$.

Exercise 1.6

The shuffle of two languages $A, B \subseteq \Sigma^{*}$ is defined as

$$
\begin{aligned}
A \sqcup B=\left\{w \in \Sigma^{*}: \exists a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \Sigma^{*}\right. \text { s.t. } & a_{1} \cdots a_{n} \in A \text { and } \\
& b_{1} \cdots b_{n} \in B \text { and } \\
& \left.w=a_{1} b_{1} \cdots a_{n} b_{n}\right\} .
\end{aligned}
$$

Let A and B be DFAs. Describe an NFA C such that $L(C)=L(A) \amalg L(B)$.

Solution 1.1

(a)

(b)

(c)

Solution 1.2

(a)

(b) $r=(a+\varepsilon)\left(b^{*}+b a\right)^{*}$ or $r^{\prime}=\left(b^{*}+a b\right)^{*}(a+\varepsilon)$
(c) $L(r) \subseteq L$:

Let $w \in L(r)$. By definition of $r, w=u_{1} u_{2} \cdots u_{n}$ for some $n \in \mathbb{N}, u_{1} \in\{\varepsilon, a\}$ and $u_{2}, \ldots, u_{n} \in\left\{b^{*}, b a\right\}$. Assume r contains an occurrence of $a a$. Since none of the u_{i} contains $a a$, there must exist some $i \geq 0$ such that u_{i} ends with a and u_{i+1} starts with a. The only possible case for u_{i+1} is $u_{i+1}=a$, hence $i+1=1$ and $i=0$ which is a contradiction.
$\underline{L \subseteq L(r):}$
Let $w \in L$. There exist $n \in \mathbb{N}$ and $i, j_{1}, j_{2}, \ldots j_{n}, k \in \mathbb{N}$ such that

- $w=b^{i} a b^{j_{1}} a b^{j_{2}} \cdots a b^{j_{n}} a b^{k}$,
- $i, k \geq 0$,
- $j_{1}, j_{2}, \ldots, j_{n}>0$.

If $i=0$, we way derive w as follows:

$$
\begin{array}{l|llllll}
a & b^{*} & b a & \cdots & b^{*} & b a & b^{*} \\
\hline a & b^{j_{1}-1} & b a & \cdots & b^{j_{n}-1} & b a & b^{k}
\end{array}
$$

If $i>0$, we way derive w as follows:

$$
\begin{array}{l|llllllll}
\varepsilon & b^{*} & b a & b^{*} & b a & \cdots & b^{*} & b a & b^{*} \\
\hline & b^{i-1} & b a & b^{j_{1}-1} & b a & \cdots & b^{j_{n}-1} & b a & b^{k}
\end{array}
$$

Solution 1.3

A) (a) $L(A)=\left\{w \in\{a, b\}^{*}: w\right.$ contains $a b$ or $\left.a\right\}=\left\{w \in\{a, b\}^{*}: w\right.$ contains $\left.a\right\}$,
(b) $(a+b)^{*}(a b+a)(a+b)^{*}$ or $(a+b)^{*} a(a+b) *$ or $b^{*} a(a+b)^{*}$,
(c)

B) (a) $L(B)=\left\{w \in\{a, b\}^{*}:|w|>1\right.$ and w starts and ends with the same letter $\}$
(b) $a(a+b)^{*} a+b(a+b)^{*} b$

Solution 1.4

(a) Let $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{0}^{\prime}, F_{B}\right)$. We define C and D as follows:

$$
\begin{aligned}
& C=\left(Q_{A} \times Q_{B}, \Sigma, \delta^{\prime},\left(q_{0}, q_{0}^{\prime}\right), F_{C}\right) \\
& D=\left(Q_{A} \times Q_{B}, \Sigma, \delta^{\prime},\left(q_{0}, q_{0}^{\prime}\right), F_{D}\right)
\end{aligned}
$$

where $\delta^{\prime}((p, q), a)=\left(\delta_{A}(p, a), \delta_{B}(q, a)\right)$ and

$$
\begin{aligned}
& F_{C}=\left\{(p, q) \in Q_{A} \times Q_{B}: p \in F_{A} \vee q \in F_{B}\right\} \\
& F_{D}=\left\{(p, q) \in Q_{A} \times Q_{B}: p \in F_{A} \wedge q \in F_{B}\right\}
\end{aligned}
$$

(b) It suffices to prove that

$$
(p, q) \xrightarrow{w}_{C}\left(p^{\prime}, q^{\prime}\right) \Longleftrightarrow p \xrightarrow{w}_{A} p^{\prime} \text { and } q \xrightarrow{w}_{B} q^{\prime} .
$$

We proceed by induction on $|w|$. If $|w|=0$, then $w=\varepsilon$ and the claim trivially holds. Assume that $|w|>0$ and suppose that the claim holds for every word of length $|w|-1$. Let $w=a_{1} a_{2} \cdots a_{n}$. We have,

$$
\begin{array}{rlr}
(p, q) \xrightarrow{w}_{C}\left(p^{\prime}, q^{\prime}\right) & \Longleftrightarrow \delta^{\prime}\left((p, q), a_{1}\right)=\left(p^{\prime \prime}, q^{\prime \prime}\right) & \\
& \Longleftrightarrow \delta^{\prime}\left((p, q), a_{1}\right)=\left(p^{\prime \prime}, q^{\prime \prime}\right) & \text { and }\left(p^{\prime \prime}, q^{\prime \prime}\right){\xrightarrow{\prime \prime}{\xrightarrow{a_{2} \cdots a_{n}}}_{C}\left(p^{\prime}, q^{\prime}\right)}_{A} p^{\prime} \text { and } q^{\prime \prime}{\xrightarrow{a_{2} \cdots a_{n}}}_{B} q^{\prime} \text { (by ind. hyp.) } \\
& \Longleftrightarrow \delta_{A}\left(p, a_{1}\right)=p^{\prime \prime} \text { and } \delta_{B}\left(q, a_{1}\right)=q^{\prime \prime} & \text { and } p^{\prime \prime} \xrightarrow{a_{2} \cdots a_{n}} A p^{\prime} \text { and } q^{\prime \prime}{\xrightarrow{a_{2} \cdots a_{n}}}_{B} q^{\prime} \text { (by def. of } C \text {) } \\
& \Longleftrightarrow p{\xrightarrow{a_{1} a_{2} \cdots a_{n}}}_{A} p^{\prime} \text { and } q \xrightarrow{a_{1} a_{2} \cdots a_{n}}{ }_{B} q^{\prime} \\
& \Longleftrightarrow p \xrightarrow{w}_{A} p^{\prime} \text { and } q \xrightarrow{w}_{B} q^{\prime} . & \square
\end{array}
$$

(c) Intersection sometimes require the $\left|Q_{A}\right| \cdot\left|Q_{B}\right|$ states from the product construction [1, Thm. 11], however it is possible to do better with union. Since multiple initial states are allowed in this course, we can simply build the following NFA:

$$
C=\left(Q_{A} \cup Q_{B}, \Sigma, \delta_{A} \cup \delta_{B}, Q_{0} \cup Q_{0}^{\prime}, F_{A} \cup F_{B}\right)
$$

If we were restricted to a single initial state, we could build the following NFA:

$$
C=\left(q_{\mathrm{init}} \cup Q_{A} \cup Q_{B}, \Sigma, \delta^{\prime}, q_{\mathrm{init}}, F_{A} \cup F_{B}\right)
$$

where

$$
\delta^{\prime}(q, a)= \begin{cases}\delta_{A}\left(q_{0}, a\right) \cup \delta_{B}\left(q_{0}^{\prime}, a\right) & \text { if } q=q_{\text {init }} \\ \delta_{A}(q, a) & \text { if } q \in Q_{A} \\ \delta_{B}(q, a) & \text { if } q \in Q_{B}\end{cases}
$$

The last construction would even be simpler if ε-transitions were allowed:

Solution 1.5

We simply flip transitions of A and swap initial and final states. More formally, let $A=\left(Q, \Sigma, \delta_{A}, Q_{0}, F\right)$. We define B as $B=\left(Q, \Sigma, \delta_{B}, F, Q_{0}\right)$ where $\delta_{B}(p, a)=\left\{q \in Q: p \in \delta_{A}(q, a)\right\}$.

Solution 1.6

We give an NFA C that simulates A and B by "non deterministically guessing" in which automaton each letter must be read.

Let $A=\left(Q_{A}, \Sigma, \delta_{A}, q_{0}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma, \delta_{B}, q_{0}^{\prime}, F_{B}\right)$. We let $C=\left(Q_{A} \times Q_{B}, \Sigma, \delta_{C},\left(q_{0}, q_{0}^{\prime}\right), F_{A} \times F_{B}\right)$ where

$$
\delta_{C}((p, q), a)=\left\{\left(p^{\prime}, q\right): p^{\prime} \in \delta_{A}(p, a)\right\} \cup\left\{\left(p, q^{\prime}\right): q^{\prime} \in \delta_{B}(q, a)\right\}
$$

References

[1] Markus Holzer and Martin Kutrib. State complexity of basic operations on nondeterministic finite automata. In Proc. $7^{\text {th }}$ International Conference on Implementation and Application of Automata (CIAA), pages 148157, 2002.

