3. CLOSURE PROPERTIES OF RECOGNIZABLE SETS

Example 3.8. In the preceding example, only the change of final states is
necessary to recognize the complement: 0 instead of 01. Nonetheless, the
completion is often necessary as in the following case where ¢» stores the
garbage which is a part of the complement.

Theorem 3.9. (McNaughton's Theorem) A Biichi automaton can be transformed
effectively into an equivalent deterministic Muller automaton.

Proof. The classical subset construction does not work in the case of infinite
words, since passing infinitely often through a macrostate M that contains
a final state f does not imply that we pass infinitely often through this final
state f —we may pass through the states in M \ { f}. Therefore, an improved
version of this construction, called Safra determinization, is presented.

Assume the following run, where u;, v; are words, the states here are ac-
tually the macrostates, i.e. subsets of states, with the macrostate transitions;
F; are subsets of final states:
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We call the situation R; = G; a breakpoint. Clearly, any state in R; is
reachable from R,, moreover, passing i times through F'. Particularly, if we
choose Ry = {qo} and if we have such a sequence for all i > 0, then there is
a successful run on ujvjugvs - - - . Indeed, by choosing corresponding runs
for every i and ¢ € R;, we get an infinite tree with finite branching and we
conclude by Kénig’s Lemma.

Thus, an infinite sequence of breakpoints can serve to detect a successful
run, we will show it to be complete as well.

Obviously, the idea of remembering the subset of (); has to be applied re-
cursively. Here, the notion of Safra tree arises, these will be the states of the
new deterministic automaton. It is a tree with macrostates as nodes and the
properties as follows. The key point is that an own thread of macrostates is
split off whenever final states are encountered on all the levels. We describe
the action of a letter on a Safra tree.

To proceed to the next Safra tree in the run, we apply the subset con-
struction to each macrostate in the tree, particularly the root always con-
tains the momentarily reachable states. And then, for each macrostate in
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3. CLOSURE PROPERTIES OF RECOGNIZABLE SETS

the tree that contains some final states, we introduce his new (youngest, i.e.
rightmost) son containing these final states. Note that in such a way, sons
are subsets of their fathers.

In this way, the trees would grow without any bounds. Therefore, we
introduce two merges. Firstly, we merge horizontally: we erase a state from
macrostate if it is contained in its older brother. And if a macrostate is then
left empty, we delete it. Thus, brothers are disjoint (*). Secondly, we merge
vertically: if the union of sons is the whole father, we delete the sons (in-
cluding their subtrees) — this is our breakpoint. Thus, the union of sons is a
proper subset of the father (xx).

We show the tree is of size at most |Q| (the set of the original states).
Each macrostate contains at least one state that is not included in his sons
(by (#x)), we call the set of these states the remainder. Thus, the remainders
are nonempty. The remainders for different macrostates are disjoint by (x)
and (#x). Hence, the number of remainders is bounded by |Q)|.

Given the Biichi automaton B, we construct the Muller automaton M as
follows. The states are the Safra trees, where we distinguish at each node
whether it is marked or not (the marked macrostates will be the break-
points). Each node (carrying a subset of states and the flag of being marked)
is identified with a number from {1, ...,2m}. The numbers are inherited
from the previous tree in the run, some nodes may be deleted, some nodes
are new, these have to get their number. However, the continuity of subse-
quentness in the run must be preserved, i.e. if in a successive sequence (s;)
of Safra trees there is a node named & in each of them (say with respective
subsets R; for s;), we need a thread of states ¢; € R; that form a run. There-
fore, a new node must not get the number of any node from the previous
tree (not even from the just deleted nodes), that is why we need numbers
up to twice the maximum size of a tree. For a new node, we choose the least
momentarily free number.

The construction begins with the tree with only one node {¢y}, we in-
ductively follow with adding the youngest sons with final states, applying
the subset construction, applying the horizontal merge and then the ver-
tical merge where the parents of the deleted sons get marked (as they are
breakpoints).

A set of Safra trees S is set to be in the system F if there is a node k in
each Safra tree in S and at least one of these occurrences is marked.

The proof of equivalence of both automata:

Firstly, if M accepts w, we have a run where from some point onwards
some node k is always present and it is marked infinitely often, we get a
sequence of breakpoints discussed above, whence the correctness.
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Secondly, if B accepts w, we have a run passing some ¢ € F infinitely
often. Consider the corresponding Safra tree run. If the root is marked in-
finitely often (let us call that stabilization), M accepts. Otherwise, after the
last occurrence in the root, it must be put into its son. If it stabilizes, we are
done. Otherwise, by horizontal merge it moves to the older brothers . If it
stabilizes in some of them, we are done. If it does not, then (as there are only
finitely many of them), there must be a last occurrence in this level in some
son and we proceed by induction as we did with the root. By the finiteness
of the trees, there must be a grandson of the root where we stabilize. This
implies acceptance, whence the completeness. O

Example 3.10. As to the automaton from the Example 3.4 that recognizes
words with finitely many a’s, the determinization results in the same au-
tomaton as the determinization of this automaton on finite words, see the
Example 3.6. Therefore, we illustrate the whole process on its modification
that requires moreover at least one occurrence of a.

a,b b
@ -

For each tree, we depict the corresponding subset transition together
with adding the children, where final states occur. The next step is the hor-
izontal and then the vertical merge.
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We have obtained new states which are trees with the respective nodes:
I:1,1I:1,2,111I:1, 3. The transitions for the tree 111 are obtained in the same

way as those for /1. We sum up the transitions by depicting the new deter-
ministic automaton.

What is the Muller condition? For the marked state 2, there is only one
tree containing it — the tree II. Similarly for 3 and I1I. Therefore, ¥ =

{{II},{II1}}.

Proposition 3.11. A Muller automaton can effectively be transformed into an
equivalent Biichi automaton.

Proof. At the beginning, the Biichi automaton guesses non-deterministically
which F' € F is correct for the Muller automaton. Then it reads until the last
symbol from @ \ F (guessed again) and then checks if only F' states follow
and if they are all infinitely many times encountered. For the latter, in the
state we keep a subset of F' and when we encounter a state from F' we add
it to it. When the subset is equal to F' — this is our final state — we make
our set empty and start again. Clearly, we accept iff the whole F' is visited
infinitely many times. O

Proposition 3.12. R(A“) is closed under complement.

Proof. Given L € R(A“), we transform the corresponding Biichi automaton
to the deterministic Muller automaton (Q, A, A, i, F) by the McNaughton’s
theorem. We make this automaton complete (by adding a new state where
the undefined transitions will end). And for final states we take P(Q)\ F'. As
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