## Verification

## Verification

- We use languages to describe the implementation and the specification of a system.
- We reduce the verification problem to language inclusion between implementation and specification

```
1 while }x=1\mathrm{ do
2 if }y=1\mathrm{ then
3 x
4 y\leftarrow1-x
5 end
```

- Configuration: triple $\left[l, n_{x}, n_{y}\right]$ where
- $l$ is the current value of the program counter, and
- $n_{x}, n_{y}$ are the current values of $x, y$

Examples: [0,1,1], [5,0,1]

- Initial configuration: configuration with $l=1$
- Potential execution: finite or infinite sequence of configurations

Examples: [0,1,1][4,1,0]
[2,1,0][5,1,0]
[1,1,0][2,1,0][4,1,0][1,1,0]

```
1 while \(x=1\) do
2 if \(y=1\) then
\(3 \quad x \leftarrow 0\)
\(4 \quad y \leftarrow 1-x\)
5 end
```

- Execution: potential execution starting at an initial configuration, and where configurations are followed by their „legal successors" according to the program semantics.

```
Examples: [1,1,1][2,1,1][3,1,1][4,0,1][1,0,1][5,0,1]
    [1,1,0][2,1,0][4,1,0][1,1,0]
```

- Full execution: execution that cannot be extended (either infinite or ending at a configuration without successors)


## Verification as a language problem

- Implementation: set $E$ of executions
- Specification:
- subset $P$ of the potential executions that satisfy a property, or
- subset $V$ of the potential executions that violate a property
- Implementation satisfies specification if :

$$
\begin{aligned}
& -E \subseteq P, \text { or } \\
& -E \cap V=\emptyset .
\end{aligned}
$$

- If $E$ and $P$ regular: inclusion checkable with automata
- If $E$ and $V$ regular: disjointness checkable with automata


## Verification as a language problem

- Implementation: set $E$ of executions
- Specification:
- subset $P$ of the potential executions that satisfy a property, or
- subset $V$ of the potential executions that violate a property
- Implementation satisfies specification if :

$$
\begin{aligned}
& -E \subseteq P, \text { or } \\
& -E \cap V=\varnothing .
\end{aligned}
$$

- If $E$ and $P$ regular: inclusion checkable with automata
- If $E$ and $V$ regular: disjointness checkable with automata
- How often is the case that $E, P, V$ are regular?


## System NFA

1 while $x=1$ do
2 if $y=1$ then
$3 \quad x \leftarrow 0$
$4 \quad y \leftarrow 1-x$
5 end


## System NFA

$$
1,0,0 \longrightarrow 5,0,0
$$



## System NFA



## Property NFA

- Is there a full execution such that
- initially $y=1$,
- finally $y=0$, and
- $y$ never increases?
- Set of potential executions for this property:

$$
[l, x, 1][l, x, 1]^{*}[l, x, 0]^{*}[5, x, 0]
$$

- Automaton for this set:



## Intersection of the system and property NFAs



- Automaton is empty, and so no execution satisfies the property


## Another property

- Is the assignment $y \leftarrow x-1$ redundant?
- Potential executions that use the assignment:

$$
[l, x, y]^{*}([4, x, 0][1, x, 1]+[4, x, 1][1, x, 0])[l, x, y]^{*}
$$

- Therefore: assignment redundant iff none of these potential executions is a real execution of the program.


## Networks of automata



- Tuple $\mathcal{A}=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ of NFAs.
- Each NFA has its own alphabet $\Sigma_{i}$ of actions
- Alphabets usually not disjoint!
- $A_{i}$ participates in action $a$ if $a \in \Sigma_{i}$.
- A configuration is a tuple $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ of states, one for each automaton of the network.
- $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ enables $a$ if every participant in $a$ is in a state from which an $a$-transition is possible.
- Enabled actions can occur, and their occurrence simultaneously changes the states of their participants. Non-participants stay idle and don't change their states.
- Tuple $\mathcal{A}=\left\langle A_{1}, . ., A_{n}\right\rangle$ of NFAs.
- Each NFA has its own alphabet $\Sigma_{i}$ of actions
- Alphabets usually not disjoint!
- $A_{i}$ participates in $a$ if $a \in \Sigma_{i}$.
- A configuration is a tuple $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ of states, one for each automaton.
- $\left\langle q_{1}, \ldots, q_{n}\right\rangle$ enables $a$ if every participant in $a$ is in a state from which an $a$-transition is possible.
- Enabled actions can occur, and their occurrence simultaneously changes the states of their participants. Non-participants stay idle.


## Configuration graph of the network


$\operatorname{AsyncProduct}\left(A_{1}, \ldots, A_{n}\right)$
Input: a network of automata $\mathcal{A}=A_{1}, \ldots A_{n}$, where
$A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{01}, Q_{1}\right), \ldots, A_{n}=\left(Q_{n}, \Sigma_{n}, \delta_{n}, q_{0 n}, Q_{n}\right)$
Output: the asynchronous product $A_{1} \otimes \cdots \otimes A_{n}=\left(Q, \Sigma, \delta, q_{0}, F\right)$

```
    \(Q, \delta, F \leftarrow \emptyset\)
    \(q_{0} \leftarrow\left[q_{01}, \ldots, q_{0 n}\right]\)
    \(W \leftarrow\left\{\left[q_{01}, \ldots, q_{0 n}\right]\right\}\)
    while \(W \neq \emptyset\) do
        pick \(\left[q_{1}, \ldots, q_{n}\right]\) from \(W\)
        add \(\left[q_{1}, \ldots, q_{n}\right]\) to \(Q\)
    add \(\left[q_{1}, \ldots, q_{n}\right]\) to \(F\)
    for all \(a \in \Sigma_{1} \cup \ldots \cup \Sigma_{n}\) do
        for all \(i \in[1 . . n]\) do
            if \(a \in \Sigma_{i}\) then \(Q_{i}^{\prime} \leftarrow \delta_{i}\left(q_{i}, a\right)\) else \(Q_{i}^{\prime}=\left\{q_{i}\right\}\)
        for all \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right] \in Q_{1}^{\prime} \times \ldots \times Q_{n}^{\prime}\) do
            if \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right] \notin Q\) then add \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right]\) to \(W\)
            add \(\left(\left[q_{1}, \ldots, q_{n}\right], a,\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}\right]\right)\) to \(\delta\)
    return \(\left(Q, \Sigma, \delta, q_{0}, F\right)\)
```


## Concurrent programs as networks of automata: Lamport's 1-bit algorithm (JACM 86)

Shared variables: $b[1], \ldots, b[n] \in\{0,1\}$, initially 0 Processi $\in\{1, \ldots, n\}$
repeat forever
noncritical section
$\mathrm{T}: \mathrm{b}[\mathrm{i}]:=1$
for $j \in\{1, \ldots, i-1\}$
if $b[j]=1$ then $b[i]:=0$ await $\neg b[j]$
goto T
for $j \in\{i+1, \ldots, N\}$ await $\neg b[j]$
critical section
b[i]:=0

## Network for the two-process case



Asynchronous product


## Checking properties of the algorithm

- Deadlock freedom: every configuration has at least one successor.
- Mutual exclusion: no configuration of the form [ $b_{0}, b_{1}, c_{0}, c_{1}$ ] is reachable
- Bounded overtaking (for process 0 ): after process 0 signals interest in accessing the critical section, process 1 can enter the critical section at most one before process 0 enters.
- Let $N C_{i}, T_{i}, C_{i}$ be the configurations in which process i is non-critical, trying, or critical
- Set of potential executions violating the property:

$$
\Sigma^{*} T_{0}\left(\Sigma \backslash C_{0}\right)^{*} C_{1}\left(\Sigma \backslash C_{0}\right)^{*} N C_{1}\left(\Sigma \backslash C_{0}\right)^{*} C_{1} \Sigma^{*}
$$

$\operatorname{CheckViol}\left(A_{1}, \ldots, A_{n}, V\right)$
Input: a network $\left\langle A_{1}, \ldots A_{n}\right\rangle$, where $A_{i}=\left(Q_{i}, \Sigma_{i}, \delta_{i}, q_{0 i}, Q_{i}\right)$; an NFA $V=\left(Q_{V}, \Sigma_{1} \cup \ldots \cup \Sigma_{n}, \delta_{V}, q_{0 v}, F_{v}\right)$.
Output: true if $A_{1} \otimes \cdots \otimes A_{n} \otimes V$ is nonempty, false otherwise.

```
\(Q \leftarrow \emptyset ; q_{0} \leftarrow\left[q_{01}, \ldots, q_{0 n}, q_{0 v}\right]\)
\(W \leftarrow\left\{q_{0}\right\}\)
while \(W \neq \emptyset\) do
    pick \(\left[q_{1}, \ldots, q_{n}, q\right]\) from \(W\)
    add \(\left[q_{1}, \ldots, q_{n}, q\right]\) to \(Q\)
    for all \(a \in \Sigma_{1} \cup \ldots \cup \Sigma_{n}\) do
        for all \(i \in[1 . . n]\) do
        if \(a \in \Sigma_{i}\) then \(Q_{i}^{\prime} \leftarrow \delta_{i}\left(q_{i}, a\right)\) else \(Q_{i}^{\prime}=\left\{q_{i}\right\}\)
        \(Q^{\prime} \leftarrow \delta_{V}(q, a)\)
        for all \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}, q^{\prime}\right] \in Q_{1}^{\prime} \times \ldots \times Q_{n}^{\prime} \times Q^{\prime}\) do
        if \(\bigwedge_{i=1}^{n} q_{i}^{\prime} \in F_{i}\) and \(q \in F_{v}\) then return true
        if \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}, q^{\prime}\right] \notin Q\) then add \(\left[q_{1}^{\prime}, \ldots, q_{n}^{\prime}, q^{\prime}\right]\) to
```

W
13 return false

## The state-explosion problem

- In sequential programs, the number of reachable configurations grows exponentially in the number of variables.
- Proposition: The following problem is PSPACEcomplete.
- Given: a boolean program $\pi$ (program with only boolean variables), and a NFA $A_{V}$ recognizing a set of potential executions
- Decide: Is $E_{\pi} \cap L\left(A_{V}\right)$ empty?


## The state-explosion problem

- In concurrent programs, the number of reachable configurations also grows exponentially in the number of components.
- Proposition: The following problem is PSPACEcomplete.
- Given: a network of automata $\mathcal{A}=\left\langle A_{1}, \ldots, A_{n}\right\rangle$ and a NFA $A_{V}$ recognizing a set of potential executions of $\mathcal{A}$
- Decide: Is $L\left(A_{1} \otimes \cdots \otimes A_{n} \otimes A_{V}\right)=\varnothing$ ?


## Symbolic exploration

- A technique to palliate the state-explosion problem
- Configurations can be encoded as words.
- The set of reachable configurations of a program can be encoded as a language.
- We use automata to compactly store the set of reachable configurations.


## Flowgraphs

1 while $x=1$ do
2 if $y=1$ then
$3 \quad x \leftarrow 0$
$4 \quad y \leftarrow 1-x$
5 end


## Step relations

- Let $l, l^{\prime}$ be two control points of a flowgraph.
- The step relation $S_{l, l^{\prime}}$ contains all pairs

$$
\left(\left[l, x_{0}, y_{0}\right],\left[l^{\prime}, x_{0}^{\prime}, y_{0}^{\prime}\right]\right)
$$

of configurations such that:
if at point $l$ the current values of $x, y$ are $x_{0}, y_{0}$, then the program can take a step, after which the new control point is $l^{\prime}$, and the new values of $x, y$ are $x_{0}^{\prime}, y_{0}^{\prime}$.


$$
S_{4,1}=\left\{\left(\left[4, x_{0}, y_{0}\right],\left[1, x_{0}, 1-x_{0}\right]\right) \mid x_{0}, y_{0} \in\{0,1\}\right\}
$$

- The global step relation $S$ is the union of the step relations $S_{l, l^{\prime}}$ for all pairs $l, l^{\prime}$ of control points.


## Computing reachable configurations

- Start with the set of initial configurations.
- Iteratively: add the set of successors of the current set of configurations until a fixed point is reached.

$$
P_{0}=I
$$

$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

$$
P_{0}=I
$$



$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

$$
P_{2}=P_{1} \cup \operatorname{Post}\left(P_{1}, S\right)
$$

$$
P_{1}=P_{0} \cup \operatorname{Post}\left(P_{0}, S\right)
$$

## $P_{0}=I$

$$
P_{2}=P_{1} \cup \operatorname{Post}\left(P_{1}, S\right)
$$

$\operatorname{Reach}(I, R)$
Input: set $I$ of initial configurations; relation $R$ Output: set of configurations reachable form $I$
$1 \quad$ Old $P \leftarrow \emptyset ; P \leftarrow I$
2 while $P \neq O$ old $P$ do
$3 \quad$ Old $P \leftarrow P$
$4 \quad P \leftarrow \mathbf{U n i o n}(P, \boldsymbol{\operatorname { P o s t }}(P, S))$
5 return $P$





## Example: Transducer for the global step relation

1 while $x=1$ do
2
3
$4 \quad y \leftarrow 1-x$
5 end


## Example: DFAs generated by Reach

- Initial configurations

- Configurations reachable in at most 1 step



## Example: DFAs generated by Reach

- Configurations reachable in at most 2 steps



## Example: DFAs generated by Reach

- Configurations reachable in at most 3 steps



## Variable orders

- Consider the set $Y$ of tuples $\left[x_{1}, \ldots, x_{2 k}\right]$ of booleans such that

$$
x_{1}=x_{k+1}, x_{2}=x_{k+2}, \ldots, x_{k}=x_{2 k}
$$

- A tuple $\left[x_{1}, \ldots, x_{2 k}\right]$ can be encoded by the word $x_{1} x_{2} \ldots x_{2 k-1} x_{2 k}$ but also by the word $x_{1} x_{k+1} \ldots x_{k} x_{2 k}$.
- For $k=3$, the encodings of $Y$ are then, respectively $\{000000,001001,010010,011011,100100,101101,110110,111111\}$
$\{000000,000011,001100,001111,110000,110011,111100,111111\}$
- The minimal DFAs for these languages have very different sizes!



## Another example: Lamport's algorithm



## Larger sets can yield smaller DFAs!



- DFAs after adding the configuration $\left\langle c_{0}, c_{1}, 1,1\right\rangle$ to the set
- When encoding configurations, good variable orders can lead to much smaller automata.
- Unfortunately, the problem of finding an optimal encoding for a language represented by a DFA is NP-complete.

