
ω-Automata



ω-Automata

• Automata that accept (or reject) words of 
infinite length.

• Languages of infinite words appear:
– in verification, as encodings of non-terminating                   

executions of a program.
– in arithmetic, as encodings of sets of real 

numbers.



ω-Languages
• An ω-word is an infinite sequence of letters.
• The set of all ω-words is denoted by  Σఠ.
• An ω-language is a set of ω-words, i.e., a subset 

of Σఠ.
• A language ܮଵ	can be concatenated with an   ω-

language ܮଶ to yield the ω-language ܮଵܮଶ, but 
two ω-languages cannot be concatenated.

• The ω-iteration of a language ܮ ⊆ Σ⋆, denoted 
by ܮఠ, is an ω-language.

• Observe:  ∅ఠ = ∅.



ω-Regular Expressions
• ω-regular expressions have syntax

ݏ ∷= ଵݏ	|	ଵݏݎ	|ఠݎ + ଶݏ

where ݎ is an (ordinary) regular expression.

• The ω-language ܮఠ(ݏ) of an ω-regular expression ݏ	is 
inductively defined by 

ఠܮ ఠݎ = ܮ ݎ ఠ ఠܮ ଵݏݎ = ܮ ݎ (ଵݏ)ఠܮ

ఠܮ ଵݏ + ଶݏ = ఠܮ ଵݏ ∪ (ଶݏ)ఠܮ
• A language is ω-regular if it is the language of some    

ω-regular expression .



Büchi Automata

• Invented by J.R. Büchi, swiss logician.



Büchi Automata

• Same syntax as DFAs and NFAs, but different 
acceptance condition.

• A run of a Büchi automaton on an ω-word is an 
infinite sequence  of states and transitions.

• A run is accepting if it visits the set of final states 
infinitely often.
– Final states renamed to accepting states. 

• A DBA or NBA  ܣ accepts an ω-word if it has an 
accepting run on it; the ω-language ܮఠ ܣ of ܣ is 
the set of ω-words it accepts.



Some examples



From ω-Regular Expressions to NBAs 



From NBAs to ω-Regular Expressions 



From NBAs to ω-Regular Expressions 



From ω-Regular Expressions to NBAs 

• Lemma: Let ܣ be a NFA, and let ݍ, ᇱݍ be states 
of ܣ . The language ܮ௤

௤ᇲ of words with runs 
leading  from ݍ to ݍᇱ and visiting ݍᇱ exactly 
once is regular.

• Let ݎ௤
௤ᇲ denote a regular expression for ܮ௤

௤ᇲ.



From ω-Regular Expressions to NBAs 

• Example:



From ω-Regular Expressions to NBAs 

• Given a NBA ܣ , we look at it as a NFA, and 
compute regular expressions ݎ௤

௤ᇲ .
• We show: 

ఠܮ ܣ = ෍			)ܮ ௤బݎ
௤ 	 ௤ݎ

௤ ఠ		)
௤∈ி

– An ω-word belongs to ܮఠ ܣ iff it is accepted by a 
run that starts at ݍ଴ and visits some accepting 
state ݍ infinitely often.



From ω-Regular Expressions to NBAs 

• Example:

ఠܮ ܣ = 	଴ଵݎ ଵଵݎ ఠ 	଴ଶݎ + ଶଶݎ ఠ



DBAs are less expressive than NBAs

• Prop.: The ω-language  ܽ + ܾ ∗ܾఠ is not recognized by 
any DBA.

• Proof: By contradiction. Assume some DBA recognizes 
ܽ + ܾ ∗ܾఠ.
– DBA accepts ܾఠ → DFA accepts ܾ௡బ

DBA accepts ܾ௡బܽ ܾఠ → DFA accepts	ܾ௡బܽ ܾ௡భ

DBA accepts ܾ௡బܽ ܾ௡భ 	ܾܽఠ → DFA accepts	ܾ௡బܽ ܾ௡భܽ ܾ௡మ etc.
– By determinism, the DBA accepts 	ܾ௡బܽ ܾ௡భܽ ܾ௡మ … ܽ ܾ௡೔ 	… , 

which does not belong to ܽ + ܾ ∗ܾఠ.



Generalized Büchi Automata

• Same power as Büchi automata, but more 
adequate for some constructions.

• Several sets of accepting states.
• A run is accepting if it visits each set of accepting 

states infinitely often. 



From NGAs to NBAs
• Important fact: 

All the sets ܨଵ, … are visited  infinitely often	௡ܨ,

is equivalent to  

ଵܨ is eventually visited
and 

every visit  to ܨ௜ is eventually followed by a visit to ܨ௜⊕ଵ



From NGAs to NBAs
ଵܨ

ଶܨ

ଷܨ

ଵܨ

ଶܨ

ଷܨ

ଵܨ

ଶܨ

ଷܨ

ଵܨ

ଶܨ

ଷܨ

NGA with 3 sets of 
accepting states

Equivalent NBA 
with 3 copies of 
the NGA







• Question: Are there other classes of omega-
automata with 
– the same expressive power as NBAs or NGAs, and 
– with equivalent deterministic and 

nondeterministic  versions?

DGAs have the same expressive power as DBAs, 
and so are not equivalent to NGAs.

We are only willing to change the acceptance 
condition!



Co-Büchi automata

• A nondeterministic co-Büchi automaton (NCA) 
is syntactically identical to a NBA, but a run is 
accepting iff it only visits accepting states 
finitely often.



Which are the languages?



Determinizing co-Büchi automata

• Given a NCA ܣ we construct a DCA ܤ such that 
ܮ ܣ = ܮ ܤ .

• We proceed in three steps:
– We assign to every ω-word ݓ a directed acyclic 

graph ݀ܽ݃(ݓ) that ``contains´´ all runs of ܣ on ݓ.
– We prove that ݓ is accepted by ܣ iff ݀ܽ݃(ݓ) is 

infinite but contains only finitely many breakpoints.
– We construct a DCA ܤ that accepts an ω-word ݓ iff 
(ݓ)݃ܽ݀ is infinite  and contains finitely many 
breakpoints.



• Running example:



݀ܽ݃(ܾܽܽன)

݀ܽ݃( ܾܽ ன)



• ܣ accepts w iff some infinite path of ݀ܽ݃ ݓ
only visits accepting states finitely often 



Levels of a ݀ܽ݃

Level 0 Level 1 Level 2 Level 3 Level 4



Breakpoints of a ݀ܽ݃

• We defined inductively the set of levels that 
are breakpoints:
– Level 0 is always a breakpoint
– If level ݈	is a breakpoint, then the next level ݈′ such 

that every path between ݈ and ݈ᇱ visits an 
accepting state is also a breakpoint.



Only two breakpoints

Infinitely many breakpoints



• Lemma: ܣ accepts ݓ iff ݀ܽ݃ ݓ is infinite and has 
only finitely many breakpoints.

Proof: 
If A accepts w, then ܣ has at least one run on ݓ, and 
so ݀ܽ݃ ݓ 	is infinite. Moreover, the run visits 
accepting states only finitely often, and so after it 
stops visiting accepting states there are no further 
breakpoints.
If ݀ܽ݃ ݓ is infinite, then it has an infinite path, and 
so ܣ has at least one run on ݓ. Since ݀ܽ݃ ݓ 	has 
finitely many breakpoints, then every infinite path 
visits accepting states only finitely often.



Constructing the DCA 

• If we could tell if a level is a breakpoint by looking 
at it, we could take the set of breakpoints as 
states of the DCA.

• However, we also need some information about 
its ``history´´.

• Solution: add that information to the level!
• States: pairs [ܲ,ܱ] where:

– ܲ is the set of states of a level, and
– ܱ ⊆ ܲ is the set of states ``that owe a visit to the 

accepting states‘‘. Formally: ݍ ∈ ܱ if q is the 



Constructing the DCA 

• States: pairs [ܲ,ܱ] where:
– ܲ is the set of states of a level, and
– ܱ ⊆ ܲ is the set of states ``that owe a visit to the 

accepting states‘‘. 

• Formally: ݍ ∈ ܱ if ݍ is the endpoint of a path 
starting at the last breakpoint that has not yet 
visited any accepting state.





Constructing the DCA 
• States: pairs [ܲ,ܱ]
• Initial state: pair [ ଴ݍ ,∅] if ݍ଴ ∈  and ,ܨ

[ ଴ݍ , ଴ݍ ] otherwise.
• Transitions: ߜ ܲ,ܳ ,ܽ = [ܲᇱ,ܱᇱ] where 
ܲ′ = (ܽ,ܲ)ߜ , and 
– ܱᇱ = ߜ ܱ,ܽ ∖ ܨ if ܱ ≠ ∅
(automaton updates set of owing states)
– ܱᇱ = ߜ ܲ,ܽ ∖ 	ܨ if ܱ = ∅
(automaton starts search for next breakpoint)

• Accepting states: pairs [ܲ,∅] (no owing states)



• Complexity: at most 3௡	states



Running example



• Question: Are there other classes of omega-
automata with 
– the same expressive power as NBAs or NGAs, and 
– with equivalent deterministic and 

nondeterministic  versions?

Are co-Büchi automata a positive answer?

Recall ...



Unfortunately no ...

• Lemma: No DCA recognizes the language ܾ∗ܽ ன.
Proof: Assume the cotrary. Then the same 
automaton seen as a DBA recognizes the 
complement ܽ + ܾ ∗ܾன . Contradiction.

So the quest goes on ...



Muller automata

• A nondeterministic Muller automaton (NMA) 
has a collection ܨ଴,ܨଵ, … ௠ିଵܨ, of sets of 
accepting states.

• A run is accepting if the set of states it visits 
infinitely often is equal to one of the sets in 
the collection.



From Büchi to Muller automata
• Let ܣ be a NBA with set ܨ of accepting states.
• A set of states of ܣ is good if it contains some state of 
 .ܨ

• Let ܩ be the set of all good sets of ܣ.
• Let ܣ′ be "the same automaton" as ܣ, but with Muller 

condition ܩ.
• Let ߩ be an arbitrary run of ܣ and	ܣ′. We have

ߩ is accepting  in ܣ
iff inf	(ߩ) contains some state of ܨ
iff inf	(ߩ) is a good set of ܣ
iff ߩ is accepting  in ܣ′



From Muller to Büchi automata
• Let  ܣ be a NMA with condition ܨ଴,ܨଵ, … ௠ିଵܨ, .
• Let  ܣ଴, … ௠ିଵܣ, be NMAs with the same structure 

as  ܣ but Muller conditions   ܨ଴ , ଵܨ , … , ௠ିଵܨ
respectively.

• We have:    ܮ ܣ = ܮ ଴ܣ ∪	…∪ ܮ ௠ିଵܣ

• We proceed in two steps:
1. we construct for each NMA  ܣ௜ an NGA  ܣ௜′ such that 

ܮ ௜ܣ = (௜ᇱܣ)ܮ
2. we construct an NGA  ܣ′ such that 

ܮ ′ܣ = ܮ ଴′ܣ ∪	…∪ ܮ ௠ିଵ′ܣ



௜ܨ NMA

NGA with accepting 
condition
{	 ଵᇱݍ , … , q௠ᇱ 	}

Transitions leaving
௜ܨ are duplicated
and resent to the
copy of ௜ܨ

ଵݍ

௠ݍ

ଵᇱݍ

௠ᇱݍ







Equivalence of NMAs and DMAs
• Theorem (Safra): Any NBA with ݊ states can be 

effectively transformed into a DMA of size ݊ை(௡).
Proof: Omitted.

• DMA for ܽ + ܾ ∗ܾன:

with accepting 
condition 
	 ଵݍ 	



• Question: Are there other classes of omega-
automata with 
– the same expressive power as NBAs or NGAs, and 
– with equivalent deterministic and 

nondeterministic  versions?

• Answer: Yes, Muller automata



Is the quest over?
• Recall the translation  NBA  ⇒	NMA 
• The NMA has the same structure as the NBA; 

its accepting condition are all the good sets 
of states.

• The translation has exponential complexity. 

New question: Is there a class of ω-automata with 
– the same expressive power as NBAs, 
– equivalent deterministic and nondeterministic 

versions, and
– polynomial conversions to and from Büchi automata?



Rabin automata
• The acceptance condition is a set of pairs 

{	 ଴ܩ,଴ܨ , … , ௠ିଵܩ,௠ିଵܨ 	}
• A run ߩ is accepting if there is a pair 
௜ܨ ௜ܩ, 	such that ߩ	visits the set ܨ௜ infinitely 

often and the set ܩ௜ finitely often.
• Translations  NBA ⇒	NRA and NRA ⇒	NBA are 

left as an exercise.
• Theorem (Safra): Any NBA with ݊ states can be 

effectively transformed into a DRA with 
݊ை ௡ states and ܱ(݊) accepting pairs.


