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Logics on words

• Regular expressions give operational descriptions 
of regular languages.

• Often the natural description of a language is 
declarative:
 even number of ࢇ's and even number of ࢈'s vs.
ܽܽ + ܾܾ + ܾܽ + ܾܽ ܽܽ + ܾܾ ∗ ܾܽ + ܾܽ ∗

 words not containing ‘hello’ 
• Goal: find a declarative language  able to express 

all the regular languages, and only the regular 
languages.



Logics on words

• Idea: use a logic that has an interpretation on 
words

• A formula expresses a property that each word 
may satisfy or not, like
– the word contains only ࢇ's
– the word has even length
– between every occurrence of an  ࢇ and a  ࢈ there is 

an occurrence of a  ࢉ
• Every formula (indirectly) defines a language: the 

language of all the words over the given fixed 
alphabet that satisfy it. 



First-order logic on words

• Atomic formulas: for each letter ܽ we 
introduce the formula ܳ௔(ݔ), with intuitive 
meaning: the letter at position ࢞ is an ࢇ.



First-order logic on words: Syntax

• Formulas constructed out of atomic formulas 
by means of standard “logic machinery”:
– Alphabet Σ = {ܽ, ܾ, … } and position variables 
ܸ = ,ݕ,ݔ} … }

– ܳ௔ ݔ is a formula for every ܽ ∈ Σ and ݔ ∈ ܸ.
– ݔ < ݕ is a formula for every ݔ, ݕ ∈ ܸ
– If ߮,߮ଵ ,߮ଶ are formulas then so are ¬߮ and 
߮ଵ ∨ ߮ଶ

– If ߮ is a formula then so is ∃ݔ	߮ for every ݔ ∈ ܸ



Abbreviations



Examples (without semantics yet)



First-order logic on words: Semantics
• Formulas are interpreted on pairs (ݓ,ࣤ) called 

interpretations, where
– ݓ is a word, and
– ࣤ assigns positions to the free variables of the 

formula (and maybe to others too—who cares)
• It does not make sense to say a formula is true or 

false: it can only be true or false for a given 
interpretation.

• If the formula has no free variables (if it is a 
sentence), then for each word it is either true or 
false.



• More logic jargon:
 A formula is valid if it is true for all  its 

interpretations
 A formula is satisfiable if is is true for at least 

one of its interpretations 

• Satisfaction relation:



The empty word ...

• ... is as usual a pain in the eh, neck.
• It satisfies all universally quantified formulas, 

and no existentially quantified formula.



Can we only express regular languages?
Can we express all regular languages?
• The language ܮ ߮ of a sentence ߮ is the set of 

words that satisfy ߮.
• A language ܮ is expressible in first-order logic or  FO-

definable if some sentence ߮ satisfies	ܮ ߮ = .ܮ
• Proposition: a language over a one-letter alphabet is 

expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

• Consequence: we can only express regular 
languages, but not all, not even the language of 
words of even length.



Proof sketch

1. If ܮ is finite, then it is FO-definable

2. If ܮ is co-finite, then it is FO-definable.



Proof sketch

3. If ܮ is FO-definable (over a one-letter 
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free 
fragment)

2) We show that a language is QF-definable iff it is 
finite or co-finite

3) We show that a language is QF-definable iff it FO-
definable.



1) The logic QF

• ݔ < ݇ ݔ > ݇
ݔ < ݕ + ݇ ݔ > ݕ + ݇
݇	 < ݐݏ݈ܽ	 ݇	 > ݐݏ݈ܽ	
are formulas for every variable ݕ ,ݔ and every 
݇ ≥ 0 .

• If ଵ݂, ଶ݂ are formulas, then so are ଵ݂ ∨ ଶ݂ and 
ଵ݂ ∧ ଶ݂



ܮ (2 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is an and-or combination of formulas 
݇	 < 	ݐݏ݈ܽ	 and ݇	 > .ݐݏ݈ܽ	

݇)ܮ < (ݐݏ݈ܽ = {݇ + 1,݇ + 2, … }	is co-finite (we 
identify words and numbers)
݇)ܮ > (ݐݏ݈ܽ = {0,1, … ,݇}	is finite
ܮ ଵ݂ ∨ ଶ݂ = ܮ ଵ݂ 	∪ ܮ ଶ݂ and so if ܮ(݂) and ܮ ݃
finite or co-finite the ܮ is finite or co-finite.
ܮ ଵ݂ ∧ ଶ݂ = ܮ ଵ݂ 	∩ ܮ ଶ݂ and so if ܮ(݂) and ܮ ݃
finite or co-finite the ܮ is finite or co-finite.



ܮ (2 is QF-definable iff it is finite or co-finite

(←) If  ܮ	 = 	 {݇ଵ, … , ݇௡}	is finite, then
݇ଵ − 1 < 	ݐݏ݈ܽ ∧ ݐݏ݈ܽ	 < ݇ଵ + 1 ∨⋯∨

(݇௡ − 1 < 	ݐݏ݈ܽ ∧ ݐݏ݈ܽ	 < ݇௡ + 1)														
expresses ܮ.

If ܮ is co-finite, then its complement is finite, and so expressed 
by some formula. We show that for every  ݂ some formula  
݊݁݃(݂) expresses  ܮ(݂)
• ݊݁݃ ݇ < ݐݏ݈ܽ = ݇ − 1 < 	ݐݏ݈ܽ ∧ ݐݏ݈ܽ	 < ݇ + 1

∨ ݐݏ݈ܽ	 < ݇
• ݊݁݃ ଵ݂ ∨ ଶ݂ = ݊݁݃ ଵ݂ ∧ ݊݁݃ ଶ݂

• ݊݁݃( ଵ݂ ∧ ଶ݂) = ݊݁݃( ଵ݂) ∨ ݊݁݃( ଶ݂)



3) Every first-order formula ߮ has an equivalent 
QF-formula ܳܨ(߮)

• ܨܳ ݔ < ݕ = ݔ < ݕ + 0	
• ܨܳ ¬߮ = ݊݁݃ ܨܳ ߮
• ܨܳ ߮ଵ ∨ ߮ଶ = ܨܳ ߮ଵ ∨ ܨܳ ߮ଶ 	
• ܨܳ ߮ଵ ∧ ߮ଶ = ܨܳ ߮ଵ ∧ ܨܳ ߮ଶ 	
• ܨܳ ߮	ݔ∃ = ܨܳ	ݔ∃)ܨܳ ߮ )

– If ܳܨ ߮ 	disjunction, apply ∃x	(߮ଵ ∨ ... ∨ ߮௡) =
∃x	߮ଵ ∨  ... ∨ ∃x	߮௡

– If ܳܨ ߮ 	 conjunction  (or atomic formula), see example in the 
next slide.



• Consider the formula
ݔ					ݔ∃ < ݕ + 3					 ∧

ݖ < ݔ + 4					 ∧
ݖ < ݕ + 2					 ∧
ݕ < ݔ + 1	

• The equivalent QF-formula is
ݖ < ݕ + 8		 ∧ ݕ		 < ݕ + 5		 ∧ ݖ		 < ݕ + 2



Monadic second-order logic

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted 

on sets of positions.
– Diadic second-order variables: interpreted on 

relations over positions
– Monadic third-order variables: interpreted on sets 

of sets of positions
– New atomic formulas:  ݔ ∈ ܺ



Expressing „even length“

• Express 
There is a set ࢄof positions such that
– ࢄ contains exactly the even positions, and
– the last position belongs to ࢄ.

• Express 
ࢄ contains exactly the even positions 

as 
A position is in ࢄ iff it is  second position or the 

second successor of another position of ࢄ



Syntax and semantics of MSO

• New set ܺ,ܻ,ܼ, … of second-order variables
• New syntax:  ݔ ∈ ܺ and ߮	ݔ∃
• New semantics:

– Interpretations now also assign sets of positions to 
the free second-order variables.

– Satisfaction defined as expected.



Expressing ܿ∗ ܾܽ ∗݀∗

• Express: 
There is a block ࢄ of consecutive positions such that 

– before ࢄ there are only ࢉ‘s; 
– after ࢄ there are only ࢈‘s; 
–  ;ࢄ s alternate in‘࢈ s and‘ࢇ
– the first letter in ࢄ is an ࢇ, and the last is a ࢈.

• Then we can take the formula
ݏ݊݋ܥ)	ܺ∃ ܺ 	∧ ܿ݋ܤ ܺ ∧ ݀݋ܣ ܺ ∧ Alt X

∧ ܽܨ ܺ ∧ ܾܮ ܺ 	)



• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ



Every regular language is expressible in 
MSO logic

• Goal: given an arbitrary regular language ܮ, 
construct an MSO sentence ߮ such having 
ܮ = .(߮)ܮ

• We use: if ܮ is regular, then there is a DFA ܣ
recognizing ܮ. 

• Idea: construct a formula expressing 
the run of ࡭ on this word is accepting



• Fix a regular language ܮ. 
• Fix a DFA ܣ with states ݍ଴, … , ௡ݍ recognizing ܮ.
• Fix a word ݓ = ܽଵܽଶ … ܽ௠. 
• Let ௤ܲ be the set of positions ݅ such that after 

reading ܽଵܽଶ …ܽ௜ the automaton ܣ is in state ݍ.
• We have: 

ܣ accepts ݓ iff ݉ ∈ ௤ܲ for some final state ݍ.



• Assume we can construct a formula 
,଴ܺ)ݏݐ݅ݏܸ݅ … ,ܺ௡)

which  is true for ݓ, ओ 	iff
	ओ ܺ଴ = ௤ܲబ , … , ओ ܺ௡ = ௤ܲ೙

• Then (ݓ, ओ) satisfies the formula

iff ݓ has a last letter and ݓ ∈  and we easily ,ܮ
get a formula expressing ܮ .



• To construct ܸ݅ݏݐ݅ݏ(ܺ଴, … ,ܺ௡) we observe that 
the sets ௤ܲ are the unique sets satisfying
a) 1 ∈ ܲఋ ௤బ,௔భ i.e., after reading the first letter the 

DFA is in state ߜ ଴,ܽଵݍ .
b) The sets ௤ܲ build a partition of the set of positions, 

i.e., the DFA is always in exactly one state.
c) If ݅ ∈ ௤ܲ and ߜ ,ݍ ܽ௜ାଵ = ′ݍ then ݅ + 1 ∈ ܲ௤ᇲ , i.e., 

the sets „match“ ߜ.

• We give formulas for a) , b), and c)



• Formula for a)

• Formula for b)



• Formula for c)

• Together:



Every language expressible in MSO 
logic is regular

• Recall: an interpretation of a formula is a pair 
,ݓ) ओ) consisting of a word ݓ and 
assignments ओ	to the free first and second 
order variables (and perhaps to others).



• We encode interpretations as words.



• Given a formula with ݊ free variables, we 
encode an interpretation (ݓ, ओ) as a word 
,ݓ)ܿ݊݁ ओ) over the alphabet Σ × 0,1 ௡.

• The language of the formula ߮ , denoted by 
is given by ,(߮)ܮ

ܮ ߮ ={݁݊ܿ ,ݓ ओ |	 ,ݓ ओ ⊨ ߮}
• We prove by induction on the structure of ߮

that ܮ ߮ is regular (and explicitely construct 
an automaton for it).



Case  ߮ = ܳ௔(ݔ)



Case  ߮ = ݔ < ݕ



Case  ߮ = ݔ ∈ ܺ



Case  ߮ = ¬߰
• Then ݂݁݁ݎ ߮ = (߰)݁݁ݎ݂ . By i.h. ܮ ߰ is regular.
• ܮ ߮ is equal to ܮ ߰ minus the words that do not encode any 

implementation („the garbage“).
• Equivalently, ܮ ߮ is equal to the intersection of ܮ ߰ and the 

encodings of all interpretations of ߰.
• We show that the set of these encodings is regular.

– Condition for encoding: Let ݔ be a free first-oder variable of 
߰	. The projection of an encoding onto ݔ must belong to 
0∗10∗ (because it represents one position). 

– So we just need an automaton for the words satisfying this 
condition for every free first-order variable.



Example: ݂݁݁ݎ ߮ = {ݕ,ݔ}



Case  ߮ = ߮ଵ ∨ ߮ଶ
• Then ݂݁݁ݎ ߮ = ݁݁ݎ݂ ߮ଵ ∪ ݁݁ݎ݂ ߮ଶ . By i.h. ܮ ߮ଵ

and ܮ ߮ଶ 	are regular.
• If ݂݁݁ݎ ߮ଵ = ݁݁ݎ݂ ߮ଶ then ܮ ߮ = ܮ ߮ଵ ∪ (ଶ߮)ܮ

and so ܮ ߮ is regular.
• If ݂݁݁ݎ ߮ଵ ≠ ݁݁ݎ݂ ߮ଶ then we extend ܮ ߮ଵ to a 

language  ܮଵ	encoding all interpretations of 
݁݁ݎ݂ ߮ଵ ∪ ݁݁ݎ݂ ߮ଶ whose projection onto 
݁݁ݎ݂ ߮ଵ belongs to ܮ ߮ଵ . Similarly we extend 
ܮ ߮ଶ to ܮଶ. We have
 ଵܮ and ܮଶ are regular.
 ܮ ߮ = ଵܮ ∪ .ଶܮ



Example: ߮ = ܳ௔ ݔ ∨ (ݕ)ܾ_ܳ
• ଵܮ contains the encodings of all 

interpretations (ݓ, 	ݔ ⟼ ݊ଵ, ݕ ⟼ ݊ଶ ) such 
that the encoding of (ݓ, 	ݔ ⟼ ݊ଵ ) belongs 
to ܮ ܳ௔ ݔ .

• Automata for ܮ ܳ௔ ݔ and ܮଵ:



• Then  ݂݁݁ݎ(߮)= ݁݁ݎ݂ ߰ {ݔ}	⃥		 or  ݂݁݁ݎ(߮)=
݁݁ݎ݂ ߰ 		⃥	{ܺ}

• By i.h. ܮ(߰) is regular. 
• ܮ ߮ is the result of projecting ܮ(߰) onto the 

components for ݂݁݁ݎ ߰ {ݔ}	⃥		 or 
݁݁ݎ݂ ߰ 		⃥	 ܺ .

Cases  ߮ = ߰	ݔ∃ and ߮ = ∃ܺ	߰



• Automata for  ܳ௔ ݔ and   ∃ݔ	ܳ௔ ݔ

Example: ߮ = ܳ௔ ݔ



The mega-example
• We compute an automaton for

• First we rewrite ߮ into

• In the next slides we 
1. compute a DFA for ݈ܽݐݏ ݔ
2. compute DFAs for ∃ݔ	ݐݏ݈ܽ) ݔ ∧ ܳ௕ ݔ ) and 

ݐݏ݈ܽ¬)	ݔ∃¬ ݔ ∧ ¬ܳ௔ ݔ )
3. compute a DFA for the complete formula.

• We denote the DFA for a formula ߰ by [߰].



ݐݏ݈ܽ] ݔ ]



	ݔ∃] ݐݏ݈ܽ ݔ ∧ ܳ௕ ݔ ]



[¬ܳ௔ ݔ ]

[ܳ௔ ݔ ]



	ݔ∃¬] ݐݏ݈ܽ¬ ݔ ∧ ¬ܳ௔ ݔ ]



	ݔ∃] ݐݏ݈ܽ ݔ ∧ ܳ௕ ݔ
∧ 	ݔ∃¬ ݐݏ݈ܽ¬ ݔ ∧ ¬ܳ௔ ݔ ]


