Logic

Logics on words

- Regular expressions give operational descriptions of regular languages.
- Often the natural description of a language is declarative:
- even number of \boldsymbol{a} 's and even number of \boldsymbol{b} 's vs.

$$
\left(a a+b b+(a b+b a)(a a+b b)^{*}(b a+a b)\right)^{*}
$$

- words not containing 'hello'
- Goal: find a declarative language able to express all the regular languages, and only the regular languages.

Logics on words

- Idea: use a logic that has an interpretation on words
- A formula expresses a property that each word may satisfy or not, like
- the word contains only a 's
- the word has even length
- between every occurrence of an a and a b there is an occurrence of a c
- Every formula (indirectly) defines a language: the language of all the words over the given fixed alphabet that satisfy it.

First-order logic on words

- Atomic formulas: for each letter a we introduce the formula $Q_{a}(x)$, with intuitive meaning: the letter at position \boldsymbol{x} is an \boldsymbol{a}.

First-order logic on words: Syntax

- Formulas constructed out of atomic formulas by means of standard "logic machinery":
- Alphabet $\Sigma=\{a, b, \ldots\}$ and position variables $V=\{x, y, \ldots\}$
$-Q_{a}(x)$ is a formula for every $a \in \Sigma$ and $x \in V$.
$-x<y$ is a formula for every $x, y \in V$
- If $\varphi, \varphi_{1}, \varphi_{2}$ are formulas then so are $\neg \varphi$ and
$\varphi_{1} \vee \varphi_{2}$
- If φ is a formula then so is $\exists x \varphi$ for every $x \in V$

Abbreviations

$$
\begin{aligned}
\varphi_{1} \wedge \varphi_{2} & :=\neg\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\varphi_{1} \rightarrow \varphi_{2} & :=\neg \varphi_{1} \vee \varphi_{2} \\
\forall x \varphi & :=\neg \exists x \neg \varphi \\
\operatorname{first}(x) & := \\
\operatorname{last}(x) & := \\
y=x+1 & := \\
y=x+2 & := \\
y=x+(k+1) & :=
\end{aligned}
$$

Examples (without semantics yet)

- "The last letter is a b and before it there are only a 's."

$$
\exists x Q_{b}(x) \wedge \forall x\left(\operatorname{last}(x) \rightarrow Q_{b}(x) \wedge \neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- "Every a is immediately followed by a b."

$$
\forall x\left(Q_{a}(x) \rightarrow \exists y\left(y=x+1 \wedge Q_{b}(y)\right)\right)
$$

- "Every a is immediately followed by a b, unless it is the last letter."

$$
\forall x\left(Q_{a}(x) \rightarrow \forall y\left(y=x+1 \rightarrow Q_{b}(y)\right)\right)
$$

- "Between every a and every later b there is a c."

$$
\forall x \forall y\left(Q_{a}(x) \wedge Q_{b}(y) \wedge x<y \rightarrow \exists z\left(x<z \wedge z<y \wedge Q_{c}(z)\right)\right)
$$

First-order logic on words: Semantics

- Formulas are interpreted on pairs (w, \mathcal{J}) called interpretations, where
$-w$ is a word, and
- J assigns positions to the free variables of the formula (and maybe to others too-who cares)
- It does not make sense to say a formula is true or false: it can only be true or false for a given interpretation.
- If the formula has no free variables (if it is a sentence), then for each word it is either true or false.
- Satisfaction relation:

$$
\begin{array}{llll}
(w, \mathcal{J}) & \vDash & Q_{a}(x) & \text { iff } \\
w[\mathcal{J}(x)]=a \\
(w, \mathcal{J}) & \vDash x<y & \text { iff } & \mathcal{J}(x)<\mathcal{J}(y) \\
(w, \mathcal{J}) & \vDash \neg \varphi & \text { iff } & (w, \mathcal{J}) \not \vDash \varphi \\
(w, \mathcal{J}) & \vDash \varphi 1 \vee \varphi_{2} & \text { iff } & (w, \mathcal{J}) \vDash \varphi_{1} \text { or }(w, \mathcal{J}) \vDash \varphi_{2} \\
(w, \mathcal{J}) & \vDash \exists x \varphi & \text { iff } & |w| \geq 1 \text { and some } i \in\{1, \ldots,|w|\} \text { satisfies }(w, \mathcal{J}[i / x]) \vDash \varphi
\end{array}
$$

- M ore logic jargon:
- A formula is valid if it is true for all its interpretations
- A formula is satisfiable if is is true for at least one of its interpretations

The empty word ...

- ... is as usual a pain in the eh, neck.
- It satisfies all universally quantified formulas, and no existentially quantified formula.

Can we only express regular languages? Can we express all regular languages?

- The language $L(\varphi)$ of a sentence φ is the set of words that satisfy φ.
- A language L is expressible in first-order logic or FO definable if some sentence φ satisfies $L(\varphi)=L$.
- Proposition: a language over a one-letter alphabet is expressible in first-order logic iff it is finite or cofinite (its complement is finite).
- Consequence: we can only express regular languages, but not all, not even the language of words of even length.

Proof sketch

1. If L is finite, then it is FO-definable
2. If L is co-finite, then it is FO-definable.

Proof sketch

3. If L is FO-definable (over a one-letter alphabet), then it is finite or co-finite.
1) We define a new logic QF (quantifier-free fragment)
2) We show that a language is QF-definable iff it is finite or co-finite
3) We show that a language is QF-definable iff it FOdefinable.

1) The logic QF

- $x<k \quad x>k$
$x<y+k \quad x>y+k$
$k<$ last $k>$ last
are formulas for every variable x, y and every $k \geq 0$.
- If f_{1}, f_{2} are formulas, then so are $f_{1} \vee f_{2}$ and $f_{1} \wedge f_{2}$

2) L is QF-definable iff it is finite or co-finite

(\rightarrow) Let f be a sentence of QF .

Then f is an and-or combination of formulas
$k<$ last and $k>$ last.
$L(k<$ last $)=\{k+1, k+2, \ldots\}$ is co-finite (we identify words and numbers)
$L(k>$ last $)=\{0,1, \ldots, k\}$ is finite
$L\left(f_{1} \vee f_{2}\right)=L\left(f_{1}\right) \cup L\left(f_{2}\right)$ and so if $L(f)$ and $L(g)$ finite or co-finite the L is finite or co-finite.
$L\left(f_{1} \wedge f_{2}\right)=L\left(f_{1}\right) \cap L\left(f_{2}\right)$ and so if $L(f)$ and $L(g)$ finite or co-finite the L is finite or co-finite.

2) L is QF-definable iff it is finite or co-finite

(\leftarrow) If $L=\left\{k_{1}, \ldots, k_{n}\right\}$ is finite, then

$$
\begin{aligned}
& \left(k_{1}-1<\text { last } \wedge \text { last }<k_{1}+1\right) \vee \cdots \vee \\
& \left(k_{n}-1<\text { last } \wedge \text { last }<k_{n}+1\right)
\end{aligned}
$$

expresses L.
If L is co-finite, then its complement is finite, and so expressed by some formula. We show that for every f some formula $n e g(f)$ expresses $\overline{L(f)}$

- neg $(k<$ last $)=(k-1<$ last \wedge last $<k+1)$ \vee last < k
- $\operatorname{neg}\left(f_{1} \vee f_{2}\right)=\operatorname{neg}\left(f_{1}\right) \wedge n e g\left(f_{2}\right)$
- $\operatorname{neg}\left(f_{1} \wedge f_{2}\right)=\operatorname{neg}\left(f_{1}\right) \vee \operatorname{neg}\left(f_{2}\right)$

3) Every first-order formula φ has an equivalent QF-formula $Q F(\varphi)$

- $Q F(x<y)=x<y+0$
- $Q F(\neg \varphi)=\operatorname{neg}(Q F(\varphi))$
- $Q F\left(\varphi_{1} \vee \varphi_{2}\right)=Q F\left(\varphi_{1}\right) \vee Q F\left(\varphi_{2}\right)$
- $Q F\left(\varphi_{1} \wedge \varphi_{2}\right)=Q F\left(\varphi_{1}\right) \wedge Q F\left(\varphi_{2}\right)$
- $Q F(\exists x \varphi)=Q F(\exists x Q F(\varphi))$
- If $Q F(\varphi)$ disjunction, apply $\exists \mathrm{x}\left(\varphi_{1} \vee \ldots \vee \varphi_{n}\right)=$ $\exists \mathrm{x} \varphi_{1} \vee \ldots \vee \exists \mathrm{x} \varphi_{n}$
- If $Q F(\varphi)$ conjunction (or atomic formula), see example in the next slide.
- Consider the formula

$$
\exists x \quad \begin{array}{lll}
\exists<y+3 & \wedge \\
z<x+4 & \wedge \\
z<y+2 & \wedge \\
y<x+1 &
\end{array}
$$

- The equivalent QF-formula is

$$
z<y+8 \wedge y<y+5 \wedge z<y+2
$$

M onadic second-order logic

- First-order variables: interpreted on positions
- M onadic second-order variables: interpreted on sets of positions.
- Diadic second-order variables: interpreted on relations over positions
- M onadic third-order variables: interpreted on sets of sets of positions
- New atomic formulas: $x \in X$

Expressing „even length"

- Express

There is a set X of positions such that

- X contains exactly the even positions, and
- the last position belongs to X.
- Express
X contains exactly the even positions
as
A position is in X iff it is second position or the second successor of another position of X

Syntax and semantics of M SO

- New set $\{X, Y, Z, \ldots\}$ of second-order variables
- New syntax: $x \in X$ and $\exists x \varphi$
- New semantics:
- Interpretations now also assign sets of positions to the free second-order variables.
- Satisfaction defined as expected.

Expressing $c^{*}(a b)^{*} d^{*}$

- Express:

There is a block X of consecutive positions such that

- before X there are only c ' s;
- after X there are only b 's;
- a 's and b 's alternate in X;
- the first letter in X is an a, and the last is a b.
- Then we can take the formula
$\exists X(\operatorname{Cons}(X) \wedge \operatorname{Boc}(X) \wedge \operatorname{Aod}(X) \wedge \operatorname{Alt}(X)$

$$
\wedge F a(X) \wedge L b(X))
$$

- X is a block of consecutive positions
- Before X there are only $c^{\prime} s$
- In $X a^{\prime} s$ and $b^{\prime} s$ alternate

Every regular language is expressible in M SO logic

- Goal: given an arbitrary regular language L, construct an M SO sentence φ such having $L=L(\varphi)$.
- We use: if L is regular, then there is a DFA A recognizing L.
- Idea: construct a formula expressing the run of A on this word is accepting
- Fix a regular language L.
- Fix a DFA A with states q_{0}, \ldots, q_{n} recognizing L.
- Fix a word $w=a_{1} a_{2} \ldots a_{m}$.
- Let P_{q} be the set of positions i such that after reading $a_{1} a_{2} \ldots a_{i}$ the automaton A is in state q.
- We have:
A accepts w iff $m \in P_{q}$ for some final state q.
- Assume we can construct a formula

$$
\operatorname{Visits}\left(X_{0}, \ldots, X_{n}\right)
$$

which is true for (w, \mathcal{J}) iff

$$
\mathcal{J}\left(X_{0}\right)=P_{q_{0}}, \ldots, \mathcal{J}\left(X_{n}\right)=P_{q_{n}}
$$

- Then (w, \mathcal{J}) satisfies the formula
$\psi_{A}:=\exists X_{0} \ldots \exists X_{n} \operatorname{Visits}\left(X_{0}, \ldots X_{n}\right) \wedge \exists x\left(\operatorname{last}(x) \wedge \bigvee_{q_{i} \in F} x \in X_{i}\right)$
iff w has a last letter and $w \in L$, and we easily get a formula expressing L.
- To construct Visits $\left(X_{0}, \ldots, X_{n}\right)$ we observe that the sets P_{q} are the unique sets satisfying
a) $1 \in P_{\delta\left(q_{0}, a_{1}\right)}$ i.e., after reading the first letter the DFA is in state $\delta\left(q_{0}, a_{1}\right)$.
b) The sets P_{q} build a partition of the set of positions, i.e., the DFA is always in exactly one state.
c) If $i \in P_{q}$ and $\delta\left(q, a_{i+1}\right)=q^{\prime}$ then $i+1 \in P_{q^{\prime}}$, i.e., the sets "match" δ.
- We give formulas for a) , b), and c)
- Formula for a)
$\operatorname{Init}\left(X_{0}, \ldots, X_{n}\right)=\exists x\left(\operatorname{first}(x) \wedge\left(\bigvee_{a \in \Sigma}\left(Q_{a}(x) \wedge x \in X_{i_{a}}\right)\right)\right)$
- Formula for b)
$\operatorname{Partition}\left(X_{0}, \ldots, X_{n}\right)=\forall x\left(\bigvee_{i=0}^{n} x \in X_{i} \wedge \bigwedge_{\substack{i, j=0 \\ i \neq j}}^{n}\left(x \in X_{i} \rightarrow x \notin X_{j}\right)\right)$
- Formula for c)
$\operatorname{Respect}\left(X_{0}, \ldots, X_{n}\right)=$

- Together:
$\operatorname{Visits}\left(X_{0}, \ldots X_{n}\right):=\operatorname{Init}\left(X_{0}, \ldots, X_{n}\right) \wedge$
Partition $\left(X_{0}, \ldots, X_{n}\right) \wedge$
$\operatorname{Respect}\left(X_{0}, \ldots, X_{n}\right)$

Every language expressible in M SO logic is regular

- Recall: an interpretation of a formula is a pair (w, \boldsymbol{J}) consisting of a word w and assignments \mathcal{J} to the free first and second order variables (and perhaps to others).
- We encode interpretations as words.

$$
\left.\begin{array}{cll}
\\
\left(\begin{array}{llll}
x & \mapsto 1 \\
y & \mapsto 3 \\
X & \mapsto\{2,3\} \\
Y & \mapsto\{1,2\}
\end{array}\right.
\end{array}\right) \quad\left(\begin{array}{lll}
x & \mapsto 2 \\
b a, \\
y & \\
X & \mapsto \emptyset \\
Y & \mapsto\{1\}
\end{array}\right)
$$

- Given a formula with n free variables, we encode an interpretation (w, \boldsymbol{J}) as a word $\operatorname{enc}(w, \mathcal{J})$ over the alphabet $\Sigma \times\{0,1\}^{n}$.
- The language of the formula φ, denoted by $L(\varphi)$, is given by

$$
L(\varphi)=\{\operatorname{enc}(w, \mathcal{J}) \mid(w, \mathcal{J}) \vDash \varphi\}
$$

- We prove by induction on the structure of φ that $L(\varphi)$ is regular (and explicitely construct an automaton for it).

Case $\varphi=Q_{a}(x)$

- $\varphi=Q_{a}(x)$. Then free $(\varphi)=x$, and the interpretations of φ are encoded as words over $\Sigma \times\{0,1\}$. The language $L(\varphi)$ is given by
$L(\varphi)=\left\{\left[\begin{array}{lll}a_{1} \\ b_{1}\end{array}\right] \ldots\left[\begin{array}{l}a_{k} \\ b_{k}\end{array}\right] \begin{array}{l}k \geq 0, \\ a_{i} \in \Sigma \text { and } b_{i} \in\{0,1\} \text { for every } i \in\{1, \ldots, k\}, \text { and } \\ b_{i}=1 \text { for exactly one index } i \in\{1, \ldots, k\} \text { such that } a_{i}=a\end{array}\right\}$
and is recognized by

Case $\varphi=x<y$

- $\varphi=x<y$. Then $\operatorname{free}(\varphi)=\{x, y\}$, and the interpretations of ϕ are encoded as words over $\Sigma \times\{0,1\}^{2}$. The language $L(\varphi)$ is given by

$$
L(\varphi)=\left\{\begin{array}{l}
\left.\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right] \ldots\left[\begin{array}{l}
a_{k} \\
b_{k}
\end{array}\right] \begin{array}{l}
k \geq 0, \\
c_{k}
\end{array}\right] \begin{array}{l}
a_{i} \in \Sigma \text { and } b_{i}, c_{i} \in\{0,1\} \text { for every } i \in\{1, \ldots, k\}, \\
b_{i}=1 \text { for exactly one index } i \in\{1, \ldots, k\}, \\
c_{j}=1 \text { for exactly one index } j \in\{1, \ldots, k\}, \text { and } \\
i<j
\end{array}
\end{array}\right\}
$$

and is recognized by

Case $\varphi=x \in X$

- $\varphi=x \in X$. Then free $(\varphi)=\{x, X\}$, and interpretations are encoded as words over $\Sigma \times\{0,1\}^{2}$. The language $L(\varphi)$ is given by

$$
L(\varphi)=\left\{\left[\begin{array}{l}
{\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right] \ldots} \\
\ldots
\end{array}\right]\left[\begin{array}{l}
a_{k} \\
b_{k} \\
c_{k}
\end{array}\right] \left\lvert\, \begin{array}{l}
k \geq 0, \\
a_{i} \in \sum \text { and } b_{i}, c_{i} \in\{0,1\} \text { for every } i \in\{1, \ldots, k\}, \\
b_{i}=1 \text { for exactly one index } i \in\{1, \ldots, k\}, \text { and } \\
\text { for every } i \in\{1, \ldots, k\}, \text { if } b_{i}=1 \text { then } c_{i}=1
\end{array}\right.\right\}
$$

and is recognized by

Case $\varphi=\neg \psi$

- Then free $(\varphi)=$ free (ψ). By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is equal to $\overline{L(\psi)}$ minus the words that do not encode any implementation („the garbage").
- Equivalently, $L(\varphi)$ is equal to the intersection of $\overline{L(\psi)}$ and the encodings of all interpretations of ψ.
- We show that the set of these encodings is regular.
- Condition for encoding: Let x be a free first-oder variable of ψ. The projection of an encoding onto x must belong to $0^{*} 10^{*}$ (because it represents one position).
- So we just need an automaton for the words satisfying this condition for every free first-order variable.

Example: free $(\varphi)=\{x, y\}$

Case $\varphi=\varphi_{1} \vee \varphi_{2}$

- Then $\operatorname{free}(\varphi)=$ free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$. By i.h. $L\left(\varphi_{1}\right)$ and $L\left(\varphi_{2}\right)$ are regular.
- If $\operatorname{free}\left(\varphi_{1}\right)=$ free $\left(\varphi_{2}\right)$ then $L(\varphi)=L\left(\varphi_{1}\right) \cup L\left(\varphi_{2}\right)$ and so $L(\varphi)$ is regular.
- If $\operatorname{free}\left(\varphi_{1}\right) \neq \operatorname{free}\left(\varphi_{2}\right)$ then we extend $L\left(\varphi_{1}\right)$ to a language L_{1} encoding all interpretations of free $\left(\varphi_{1}\right) \cup$ free $\left(\varphi_{2}\right)$ whose projection onto free $\left(\varphi_{1}\right)$ belongs to $L\left(\varphi_{1}\right)$. Similarly we extend $L\left(\varphi_{2}\right)$ to L_{2}. We have
- L_{1} and L_{2} are regular.
- $L(\varphi)=L_{1} \cup L_{2}$.

Example: $\varphi=Q_{a}(x) \vee Q _b(y)$

- L_{1} contains the encodings of all interpretations ($w,\left\{x \mapsto n_{1}, y \mapsto n_{2}\right\}$) such that the encoding of ($w,\left\{x \mapsto n_{1}\right\}$) belongs to $L\left(Q_{a}(x)\right)$.
- Automata for $L\left(Q_{a}(x)\right)$ and L_{1} :

Cases $\varphi=\exists x \psi$ and $\varphi=\exists X \psi$

- Then $\operatorname{free}(\varphi)=$ free $(\psi) \backslash\{x\}$ or free $(\varphi)=$ free $(\psi) \backslash\{X\}$
- By i.h. $L(\psi)$ is regular.
- $L(\varphi)$ is the result of projecting $L(\psi)$ onto the components for free $(\psi) \backslash\{x\}$ or free $(\psi) \backslash\{X\}$.

Example: $\varphi=Q_{a}(x)$

- Automata for $Q_{a}(x)$ and $\exists x Q_{a}(x)$

The mega-example

- We compute an automaton for

$$
\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \forall x\left(\neg \operatorname{last}(x) \rightarrow Q_{a}(x)\right)
$$

- First we rewrite φ into
$\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)$
- In the next slides we

1. compute a DFA for last (x)
2. compute DFAs for $\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)$ and

$$
\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)
$$

3. compute a DFA for the complete formula.

- We denote the DFA for a formula ψ by $[\psi]$.

[last(x)]

$$
[x<y] \quad[\exists y x<y]
$$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right]$

$\left[Q_{b}(x)\right]$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right]$

$\left[\neg Q_{a}(x)\right]$

$$
\left[\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]
$$

$\left[\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$
$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right.$

$$
\left.\wedge \neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]
$$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right)\right]$

$\left[\neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

$\left[\exists x\left(\operatorname{last}(x) \wedge Q_{b}(x)\right) \wedge \neg \exists x\left(\neg \operatorname{last}(x) \wedge \neg Q_{a}(x)\right)\right]$

