Automata and Formal Languages — Sample Solution 7

Due 27.11.2015

Solution 7.1

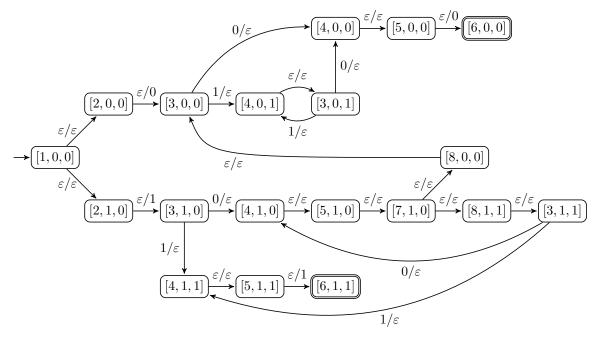
(a) The following figures use the notation a/b for $(a, b) \in (\Sigma \cup \{\varepsilon\}) \times (\Sigma \cup \{\varepsilon\})$.



(b) $L(T_1) \cap L(T_2) = \{(a^n b^n, c^n) \mid n \ge 0\}$. Assume that there is a transducer T that recognizes $L(T_1) \cap L(T_2)$. Replace each transition $q \stackrel{a/c}{\to} q'$ by $q \stackrel{a}{\to} q'$ and $q \stackrel{b/c}{\to} q'$ by $q \stackrel{b}{\to} q'$. The resulting NFA recognizes $\{a^n b^n \mid n \ge 0\}$, a contradiction.

Solution 7.2

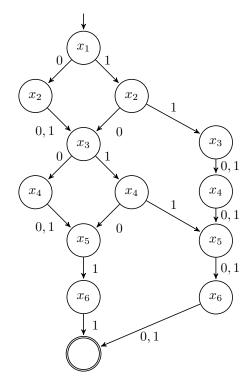
(a) Transducer T:

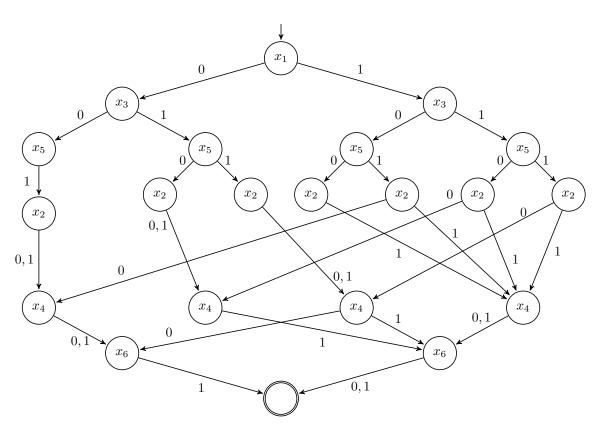


- (b) No.
- (c) 0, 1
- (d) No.
- (e) Let A_I and A_O be NFAs for I and O, respectively. A possible algorithm is to compute:

 $EmptyNFA(IntersNFA(Post^{\varepsilon}(A_{I},T),A_{O}))$.

Note that $Post^{\varepsilon}$ is similar to Post in the lecture. A slight modification is needed because T is an ε -transducer.





(c) We can generalize observations of the above automata. For the first language, we need at most 5 states for each pair $x_{2k-1} \cdot x_{2k}$. Therefore, the minimal DFA has O(n) states.

For the second language, observe that every assignment of x_1, \ldots, x_{2n-1} results in a different assignment of x_2, \ldots, x_{2n} . We need a different state for every different word of length n, and therefore the minimal DFA has at least 2^n states.