Automata and Formal Languages — Sample Solution 5

Due 13.11.2015

Solution 5.1

Perform NFA to DFA and check on-the-fly whether generated states are final. The subsumption test prevents adding (q_2, q_5) to the worklist.

Solution 5.2

(a) NFA A_1 for $(a+ab)^*$

NFA- ε and NFA A_2 for $a^*(aba^*)^*$

Run $InclNFA(A_1, A_2)$. The following graph illustrates the algorithm execution, where each node represents a state $[q_1, Q_2]$ and edge $u \xrightarrow{a} v$ means that v can be constructed from u using the letter a. Dashed nodes are ignored because of the subsumption test.

$$\underbrace{\left[[q_0, \{r_0, r_1, r_2\}] \right]}_{q_{\bullet}} \underbrace{\left[[q_0, \{r_1, r_2, r_3\}] \right]}_{q_{\bullet}} \underbrace{\left[[q_0, \{r_1, r_2, r_3\}] \right]}_{q_{\bullet}} \underbrace{\left[[q_0, \{r_1, r_2, r_3\}] \right]}_{q_{\bullet}} \underbrace{\left[[q_0, \{r_1, r_3\} \right]}_{q_{\bullet}} \underbrace{\left[[q_0, \{r_1, r_3] \right]}_{q_{\bullet}} \underbrace{\left[[q_0, \{r_$$

$$\begin{array}{c} \left([r_0, \{q_0, q_1\}] \right) & \left[[r_1, \{q_0, q_1\}] \right) & \left[[r_1, \{q_0, q_1\}] \right) \\ \rightarrow \left[[r_0, \{q_0\}] \right) & \rightarrow \left[[r_2, \{q_0, q_1\}] \right) & \left[[r_3, \{q_0\}] \right] & \left[[r_1, \{q_0, q_1\}] \right] \\ \rightarrow \left[[r_0, \{q_0\}] \right) & \rightarrow \left[[r_2, \{q_0, q_1\}] \right) & \left[[r_3, \{q_0\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \right] & \left[[r_3, \{q_0, q_1\}] \right] \\ \left[[r_3, \{q_0, q_1\}] \\$$

For each state $[q_1, Q_2]$, whenever q_1 is a final state, Q_2 always contains a final state. So, $L(A_1) \subseteq L(A_2)$, $L(A_2) \subseteq L(A_1)$, and therefore $L(A_1) = L(A_2)$.

(b) DFA $B_1 = NFAtoDFA(A_1)$:

The algorithm execution:

For each state $[q_1, q_2]$, q_1 is final if and only if q_2 is final. Therefore, $L(B_1) = L(B_2)$.

(c) By executing $LanPar(B_2)$, we have $P_l = \{\{t_0, t_2\}, \{t_1, t_3\}, \{t_4\}\}$. Therefore, B_2/P_l can be constructed as follows:

which is obviously isomorphic to B_1 .

Solution 5.3

 $p = a^n$ and $t = a^{n-1}b$.

Solution 5.4

Use the pattern matching algorithm to search for the pattern p = w' in the text t = ww.