Automata and Formal Languages - Sample Solution 1

Due 21.10.2015

Solution 1.1

(a) NFA for C_{3} :

$$
a, b
$$

(b) $n+1$ states
(c) NFA for L_{3} :

(d) 7 states
(e) We need to prove that $\varepsilon, a, a a, \ldots, a^{n(n-1)-1}$ all belong to different residuals, hence there are at least $n(n-1)$ residuals. Consider two arbitrary a^{x} and a^{x+d}, where $0 \leq x<x+d<n(n-1)$. We need to find $z \in \mathbb{N}$ such that L_{n} accepts either $a^{x} a^{z}$ or $a^{x+d} a^{z}$, but not both. We consider four possible cases:

Case 1 Neither n nor $n-1$ divides d. Let $z=n(n-1)-x$. We have $a^{x} a^{z}=a^{n(n-1)} \in L_{n}$. On the other hand, $a^{x+d} a^{z}=a^{n(n+1)+d} \notin L_{n}$, because neither n nor $n-1$ dividees d.

Case $2 n$ divides d, but $n-1$ does not. Let $z=n(n-1)-x-(d \bmod (n-1))$. We have $a^{x} a^{z}=a^{n(n-1)-(d \bmod (n-1))} \notin$ L_{n}, because $d \bmod (n-1)<n-1<n$. On the other hand, $a^{x+d} a^{z}=a^{n(n+1)+d-(d \bmod (n-1))} \in L_{n}$, because $n-1$ dividees $d-(d \bmod (n-1))$.

Case $3 n-1$ divides d, but n does not. Similar to Case 2 .

Case 4 Both $n-1$ and n devide d. This cannot happen, because $1 \leq d<n(n-1)=\operatorname{lcm}(n, n-1)$.

Solution 1.3

(a) RE: $(a+b a)^{*}(b+\varepsilon)$

NFA- $:$

NFA:

DFA:

Solution 1.4

Let $A=\left(Q_{A}, \Sigma_{A}, \delta_{A}, q_{0, A}, F_{A}\right)$ and $B=\left(Q_{B}, \Sigma_{B}, \delta_{B}, q_{0, B}, F_{B}\right)$ be DFAs accepting L_{1} and L_{2}, respectively. We define $C=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where $Q=Q_{A} \times Q_{B}, \Sigma=\Sigma_{A} \cup \Sigma_{B}, q_{0}=\left(q_{0, A}, q_{0, B}\right), F=F_{A} \times F_{B}$, and for every $q_{A} \in Q_{A}, q_{B} \in Q_{B}$, and $a \in \Sigma$:

$$
\delta\left(\left(q_{A}, q_{B}\right), a\right)=\left\{\left(\delta_{A}\left(q_{A}, a\right), q_{B}\right)\right\} \cup\left\{\left(q_{A}, \delta_{B}\left(q_{B}, a\right)\right)\right\}
$$

Obviously, C accepts $S\left(L_{1}, L_{2}\right)$.

