Technische Universität München
Winter term 2015/16
Prof. J. Esparza / J. Křetínský et al.

Name:

Matrikelnummer:

Automata and Formal Languages - Endterm

Answer all questions. Question 1 requires only short answers that can be written directly on this sheet. All other questions should be answered in a separate booklet. A total of 40 points is available.

Question 1

(a) Prove (via a proof) or disprove (via a counterexample) the following LTL equivalence.

$$
(\mathbf{G} p) \mathbf{U}(\mathbf{G} q) \quad \equiv \quad \mathbf{G}(p \mathbf{U} q)
$$

Answer: \qquad
[1 point]
(b) Let $\Sigma=\{a, b\}$. Give formulae of $M S O(\Sigma)$ for each of the following two languages. You may use the following macros from the lecture notes:

$$
\begin{aligned}
\operatorname{first}(x) & :=\neg \exists y y<x \\
y=x+1 & :=x<y \wedge \neg \exists z(x<z \wedge z<y) \\
y=x+2 & :=\exists z(z=x+1 \wedge y=z+1) \\
X \subseteq Y & :=\forall x(x \in X \rightarrow x \in Y) \\
\operatorname{Odd}(X) & :=\forall x(x \in X \leftrightarrow(\operatorname{first}(x) \vee \exists z(x=z+2 \wedge z \in X)))
\end{aligned}
$$

(i) $a b^{*}$

Answer: \qquad
(ii) $(a b+b a)^{*}$

Answer: \qquad
(c) Consider the following Müller automaton with $\mathcal{F}=\left\{\left\{q_{0}, q_{1}\right\},\left\{q_{1}\right\}\right\}$:

(i) Describe the language recognized by the automaton.

Answer:

\qquad
(ii) Construct an equivalent deterministic Büchi automaton.

Answer:

\qquad
(d) Consider the following Büchi automaton:

Which lassos can be reported by the NestedDFS algorithm?

Answer:

(e) Draw a deterministic co-Büchi automaton recognising the language $(a+b)^{*}(a a+b b)^{\omega}$.

Answer:

\qquad

Name:

Matrikelnummer:

(f) Fill in the gaps in the following algorithm (in lines 2,7 and 11) so that it meets its specification.

```
Input: DFAs \(A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)\)
Output: DFA \(A=\left(Q, \Sigma, \delta, q_{0}, F\right)\) with \(L(A)=\left(L\left(A_{1}\right) \cap L\left(A_{2}\right)\right) \cup \overline{L\left(A_{2}\right)}\)
    \(Q, \delta, F \leftarrow \emptyset\)
    \(q_{0} \leftarrow\)
    \(W \leftarrow\left\{q_{0}\right\}\)
    while \(W \neq \emptyset\) do
        pick \(\left[q_{1}, q_{2}\right]\) from \(W\)
        \(\operatorname{add}\left[q_{1}, q_{2}\right]\) to \(Q\)
        if
```

\qquad

``` then
``` \(\qquad\)
```

    for all \(a \in \Sigma\) do
            \(q_{1}^{\prime} \leftarrow \delta_{1}\left(q_{1}, a\right) ; q_{2}^{\prime} \leftarrow \delta_{2}\left(q_{2}, a\right)\)
            if \(\left[q_{1}^{\prime}, q_{2}^{\prime}\right] \notin Q\) then add \(\left[q_{1}^{\prime}, q_{2}^{\prime}\right]\) to \(W\)
            add
    ```
\(\qquad\)
``` to \(\delta\)
```

(g) Draw a Büchi automaton recognising the infinite sequences σ of subsets of $\{p, q\}$ such that

$$
\sigma \vDash \mathbf{G}(\mathbf{F}(p \mathbf{U} q))
$$

(You do not need to use the conversion algorithm from the lectures).
\qquad

This page is intentionally left blank.

Question 2

Given two languages L_{1} and L_{2} over an alphabet Σ, define the language L_{12} as follows:

$$
w \in L_{12} \quad \text { iff } \quad \text { there is a word } u_{1} u_{2} \in L_{1} \text { and a word } v \in L_{2} \text { such that } w=u_{1} v .
$$

Show that if L_{1} and L_{2} are regular, then L_{12} is regular.
[Total: 4 points]

Question 3

(a) Draw a DFA recognising $(a+b b)^{*}$.
(b) Given a language $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$, give a formal definition of the residual L^{w}.
(c) Give regular expressions for every residual of the language $(a+b b)^{*}$.
(d) Prove that the language $L^{\prime}:=\left\{a^{2^{n}} \mid n \in \mathbb{N}_{0}\right\}$ has infinitely many residuals. Is L^{\prime} regular? Justify your answer.
[Total: 6 points]

Question 4

For this question, use the LSBF encoding of the natural numbers \mathbb{N}_{0}.
(i) Given a binary relation $R \subseteq \mathbb{N}_{0} \times \mathbb{N}_{0}$, what does it mean to say that R is regular?
(ii) Show that the relation $R_{1}:=\left\{(n, 2 n) \mid n \in \mathbb{N}_{0}\right\}$ is regular.
(iii) Show that the relation $R_{2}:=\left\{(n, 1+n) \mid n \in \mathbb{N}_{0}\right\}$ is regular.
(iv) You may assume that given two regular relations P_{1} and P_{2}, their composition

$$
P_{1} \circ P_{2}:=\left\{(n, m) \mid(n, k) \in P_{1} \text { and }(k, m) \in P_{2} \text { for some } k \in \mathbb{N}_{0}\right\}
$$

is also regular. Use this fact together with the facts that R_{1} and R_{2} from parts (ii) and (iii) are regular to show that the following relation is regular

$$
R:=\left\{(n, 4 n+3) \mid n \in \mathbb{N}_{0}\right\}
$$

[Total: 6 points]

Question 5

Construct a LazyDFA recognising words over the alphabet $\{a, b, c\}$ that contain the pattern $a b a c a b$.

Question 6

Consider the following program with two parallel processes. The domain of x is $\{0,1\}$, and the initial value is 0 .

Process 1:
while true do
if $x=0$ then
$x \leftarrow 1$
2

Process 2:
while true do
1 $x \leftarrow 0$
(a) Model the program by constructing a network of three automata (one for each process and one for the variable x) and then drawing their asynchronous product.
(b) Consider the set of atomic propositions $A P=\{x=0, x=1\}$. Give an LTL formula for the following property: $x=0$ holds infinitely often. Construct a Büchi automaton for the negation of this property.
(c) Does the program satisfy the property in (b)? Why?
[Total: 5 points]

Question 7 *

(a) Consider the language $L:=\left\{0^{i} \mid i\right.$ is prime $\}$ (which is not regular). Prove that $L^{*}=\epsilon+000^{*}$.
(b) Now let L be an arbitrary language over the single-letter alphabet $\{0\}$. (L is not necessarily regular). Prove that L^{*} is regular.
[Total: 4 points]

End of Examination

