Technische Universität München Winter term 2015/16 Prof. J. Esparza / J. Křetínský *et al.* Name:

Matrikelnummer:

Automata and Formal Languages — Endterm

Answer all questions. Question 1 requires only short answers that can be written directly on this sheet. All other questions should be answered in a separate booklet. A total of 40 points is available.

Question 1

(a) Prove (via a proof) or disprove (via a counterexample) the following LTL equivalence.

 $(\mathbf{G}p) \mathbf{U} (\mathbf{G}q) \equiv \mathbf{G}(p \mathbf{U} q)$

Answer: _

[1 point]

(b) Let $\Sigma = \{a, b\}$. Give formulae of $MSO(\Sigma)$ for each of the following two languages. You may use the following macros from the lecture notes:

 $\begin{aligned} &\text{first}(x) &:= \neg \exists y \ y < x \\ &y = x + 1 \quad := \quad x < y \land \neg \exists z \ (x < z \land z < y) \\ &y = x + 2 \quad := \quad \exists z \ (z = x + 1 \land y = z + 1) \\ &X \subseteq Y \quad := \quad \forall x \ (x \in X \to x \in Y) \\ &\text{Odd}(X) \quad := \quad \forall x \ (x \in X \leftrightarrow (\text{first}(x) \lor \exists z \ (x = z + 2 \land z \in X))) \end{aligned}$

(i) ab^*

Answer: _

(ii) $(ab + ba)^*$

Answer:

[2 points]

(c) Consider the following Müller automaton with $\mathcal{F} = \{\{q_0, q_1\}, \{q_1\}\}:$

(i) Describe the language recognized by the automaton.

Answer:

(ii) Construct an equivalent $\underline{deterministic}$ Büchi automaton.

Answer: _____

(d) Consider the following Büchi automaton:

Which lassos can be reported by the NestedDFS algorithm?

Answer:

(e) Draw a <u>deterministic</u> <u>co</u>-Büchi automaton recognising the language $(a + b)^*(aa + bb)^{\omega}$.

[2 points]

[2 points]

[2 points]

Name:

Matrikelnummer:

(f) Fill in the gaps in the following algorithm (in lines 2, 7 and 11) so that it meets its specification.

Input: DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** DFA $A = (Q, \Sigma, \delta, q_0, F)$ with $L(A) = (L(A_1) \cap L(A_2)) \cup \overline{L(A_2)}$ 1 $Q, \delta, F \leftarrow \emptyset$ $q_0 \leftarrow __$ $\mathbf{2}$ 3 $W \leftarrow \{q_0\}$ 4 while $W \neq \emptyset$ do pick $[q_1, q_2]$ from W 5 $\mathbf{6}$ add $[q_1, q_2]$ to Q7if ___ _____ then ____ for all $a \in \Sigma$ do 8 9 $q_1' \leftarrow \delta_1(q_1, a); q_2' \leftarrow \delta_2(q_2, a)$ if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W10add ___ to δ 11[1 point]

(g) Draw a Büchi automaton recognising the infinite sequences σ of subsets of $\{p, q\}$ such that

 $\sigma \vDash \mathbf{G}(\mathbf{F}(p \ \mathbf{U} \ q))$

(You do \underline{not} need to use the conversion algorithm from the lectures).

Answer:

[2 points]

[Total: 12 points]

This page is intentionally left blank.

Question 2

Given two languages L_1 and L_2 over an alphabet Σ , define the language L_{12} as follows:

 $w \in L_{12}$ iff there is a word $u_1u_2 \in L_1$ and a word $v \in L_2$ such that $w = u_1v$.

Show that if L_1 and L_2 are regular, then L_{12} is regular.

Question 3

- (a) Draw a DFA recognising $(a + bb)^*$.
- (b) Given a language $L \subseteq \Sigma^*$ and $w \in \Sigma^*$, give a formal definition of the residual L^w .
- (c) Give regular expressions for every residual of the language $(a + bb)^*$.
- (d) Prove that the language $L' := \{ a^{2^n} \mid n \in \mathbb{N}_0 \}$ has infinitely many residuals. Is L' regular? Justify your answer.

[Total: 6 points]

Question 4

For this question, use the LSBF encoding of the natural numbers \mathbb{N}_0 .

- (i) Given a binary relation $R \subseteq \mathbb{N}_0 \times \mathbb{N}_0$, what does it mean to say that R is regular?
- (ii) Show that the relation $R_1 := \{ (n, 2n) \mid n \in \mathbb{N}_0 \}$ is regular.
- (iii) Show that the relation $R_2 := \{ (n, 1+n) \mid n \in \mathbb{N}_0 \}$ is regular.
- (iv) You may assume that given two regular relations P_1 and P_2 , their composition

 $P_1 \circ P_2 := \{ (n, m) \mid (n, k) \in P_1 \text{ and } (k, m) \in P_2 \text{ for some } k \in \mathbb{N}_0 \}$

is also regular. Use this fact together with the facts that R_1 and R_2 from parts (ii) and (iii) are regular to show that the following relation is regular

 $R := \{ (n, 4n+3) \mid n \in \mathbb{N}_0 \}$

[Total: 6 points]

[Total: 4 points]

Question 5

Construct a LazyDFA recognising words over the alphabet $\{a, b, c\}$ that contain the pattern *abacab*. [Total: 3 points]

Question 6

Consider the following program with two parallel processes. The domain of x is $\{0, 1\}$, and the initial value is 0.

Process 1:		Process 2:
while true do		while true do
	if $x = 0$ then	$1 \mid \mathbf{x} \leftarrow 0$
2		

(a) Model the program by constructing a network of three automata (one for each process and one for the variable x) and then drawing their asynchronous product.

- (b) Consider the set of atomic propositions $AP = \{x = 0, x = 1\}$. Give an LTL formula for the following property: x = 0holds infinitely often. Construct a Büchi automaton for the negation of this property.
- (c) Does the program satisfy the property in (b)? Why?

[Total: 5 points]

Question 7 *

- (a) Consider the language $L := \{ 0^i \mid i \text{ is prime } \}$ (which is not regular). Prove that $L^* = \epsilon + 000^*$.
- (b) Now let L be an arbitrary language over the single-letter alphabet $\{0\}$. (L is not necessarily regular). Prove that L^* is regular.

[Total: 4 points]

End of Examination