Automata and Formal Languages — Homework 15

Due 01.02.2016

Exercise 15.1

Let $\Sigma = \{a, b\}$. Determine the mapping \mathcal{I} for each of the following $\varphi \in MSO(\Sigma)$ such that

 $(w, \mathfrak{I}) \models \varphi$

for all $w \in L_{\omega}(((a+b)a)^{\omega})$.

- (a) $\forall x \in X \ Q_a(x)$
- (b) $x \in X \land y \in X \land x < y \land Q_a(x) \land Q_a(y)$
- (c) $\forall x \in X \ \forall y \in Y \ (x < y \to \exists z \ (x < z \land z < y \land Q_a(z)))$

Exercise 15.2

Let $\Sigma = \{a, b, c\}$. Give formulae of $MSO(\Sigma)$ for the following ω -languages:

- (a) ab^{ω}
- (b) $(a+b)^{\omega}$
- (c) $(ab)^{\omega}$
- (d) $(a^*b)^{\omega}$
- (e) $(a^*b)^{\omega} \vee (a^*b)^*a^{\omega}$
- (f) The set of ω -words in which every even position is a
- (g) The set of ω -words without subwords *aaa*
- (h) The set of ω -words without subwords ac^*ac^*a
- (i) The set of ω -words with finitely many *a*'s
- (j) The set of ω -words with infinitely many *a*'s

Exercise 15.3

Assume that there exists an algorithm RegToMSO that accepts a regular expression r as input and output a sentence φ such that $L(\varphi) = L(r)$.

Give an algorithm ω -RegToMSO that accepts an ω -regular expression s as input and directly constructs a sentence ψ such that $L(\psi) = L_{\omega}(s)$, without constructing any automata.

Hint: Break down the structure of s and construct the sentence bottom-up. Think about how to construct a formula φ^X from a formula φ of $MSO(\Sigma)$ and a free second-order variable X expressing "the projection of the word onto the positions of X satisfies φ ". Formally, for every mapping \mathfrak{I} of φ^X we have $(w,\mathfrak{I}) \models \varphi^X$ iff $(w|_{\mathfrak{I}(X)},\mathfrak{I})$, where $w|_{\mathfrak{I}(X)}$ denotes the result of deleting from w the letters at all positions that do not belong to $\mathfrak{I}(X)$.