Automata and Formal Languages — Homework 14

Due Friday 29th December 2016 (TA: Christopher Broadbent)

Exercise 14.1

(Schwoon). Which of the following formulas of LTL are tautologies? (A formula is a tautology if all computations satisfy it.) If the formula is not a tautology, give a computation that does not satisfy it.

- $\mathbf{G}p \to \mathbf{F}p$
- $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$
- $\mathbf{F}(p \wedge q) \leftrightarrow (\mathbf{F}p \wedge \mathbf{F}q)$
- $\neg \mathbf{F}p \rightarrow \mathbf{F}\neg \mathbf{F}p$
- $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \ \mathbf{U} \ (\neg p \lor q))$
- $(\mathbf{FG}p \to \mathbf{GF}q) \leftrightarrow \mathbf{G}(p \ \mathbf{U} \ (\neg p \lor q))$
- $\mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p).$

Exercise 14.2

Let $AP = \{p,q\}$ and let $\Sigma = 2^{AP}$. Give LTL formulas defining the following languages:

$\{p,q\} \not \! 0 \Sigma^\omega$	$\Sigma^* \{q\}^{\omega}$
$\Sigma^* \left(\{p\} + \{p,q\} \right) \Sigma^* \left\{q\right\} \Sigma^\omega$	$\{p\}^*\;\{q\}^*\;\emptyset^\omega$

Exercise 14.3

Let $AP = \{p, q\}$. Give NBAs accepting the languages defined by the LTL formulas $\mathbf{XG} \neg p$, $(\mathbf{GF}p) \Rightarrow (\mathbf{F}q)$, and $p \land \neg \mathbf{XF}p$.

Exercise 14.4

Prove $\mathbf{FG}p \equiv \mathbf{VFG}p$ and $\mathbf{GF}p \equiv \mathbf{VGF}p$ for *every* sequence $\mathbf{V} \in {\{\mathbf{F}, \mathbf{G}\}}^*$ of the temporal operators \mathbf{F} and \mathbf{G} .

Solution 14.1

The formulas in red are tautologies.

• $\mathbf{G}p \to \mathbf{F}p$.

Follows immediately from the definitions of \mathbf{F} and \mathbf{G} .

- $\mathbf{G}(p \to q) \to (\mathbf{G}p \to \mathbf{G}q)$. The left-hand-side states that any point of the computation satisfying p also satisfies q. Therefore, if every point satisfies p, tehn every point satisfies q.
- $\mathbf{F}(p \wedge q) \leftrightarrow (\mathbf{F}p \wedge \mathbf{F}q).$

The computation $\{p\} \{q\} \emptyset^{\omega}$ satisfies $\mathbf{F}p \wedge \mathbf{F}q$ but not $\mathbf{F}(p \wedge q)$.

• $\neg \mathbf{F}p \rightarrow \mathbf{F}\neg \mathbf{F}p$.

The formula $\phi \to \mathbf{F}\phi$ is clearly a tautology for every formula ϕ . Take $\phi = \neg \mathbf{F}p$.

• $(\mathbf{G}p \to \mathbf{F}q) \leftrightarrow (p \ \mathbf{U} \ (\neg p \lor q)).$

The left-hand-side is equivalent to $\mathbf{F}\neg p \lor \mathbf{F}q \equiv \mathbf{F}(\neg p \lor q)$. If the right-hand-side holds, then some point of the computation satisfies $\neg p \lor q$, and so the left-hand-side holds. If the left-hand-side holds, then there exists a first point at which $\neg p \lor q$ holds, and. since it is the first, all points before it satisfy $p \land \neg q$, and so in particular they all satisfy p. So the right-hand-side holds as well.

• $(\mathbf{FG}p \to \mathbf{GF}q) \leftrightarrow \mathbf{G}(p \ \mathbf{U} \ (\neg p \lor q)).$

The left-hand-side is equivalent to $\mathbf{GF} \neg p \lor \mathbf{GF} p$, which is equivalent to $\mathbf{GF}(\neg p \lor q)$ (recall that \mathbf{GF} means "infinitely often"). If the right-hand-side holds, then every point satisfies $\mathbf{F} \neg p \lor \mathbf{GF} p$, and so for every point some future point satisfies $\neg p \lor q$, which implies that the left-hand-side holds. If the left-hand-side holds, then infinitely many points satisfy $\neg p \lor q$, and all others satisfy p. Therefore, every point satisfies $\mathbf{G}(p \mathbf{U} (\neg p \lor q))$.

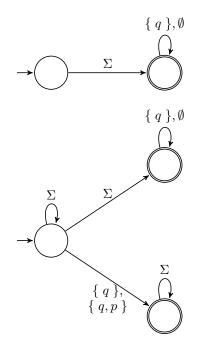
• $\mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p)$. We have $\mathbf{G}(p \to \mathbf{X}p) \to (p \to \mathbf{G}p) \equiv \mathbf{F}(p \land \neg \mathbf{X}p) \lor \neg p \lor \mathbf{G}p \equiv \mathbf{F} \neg p \lor \mathbf{G}p$, which is clearly a tautology.

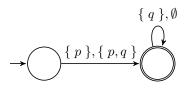
Solution 14.2

$$\begin{array}{ll} (p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q) & \mathbf{F}(\neg p \wedge q) \\ \mathbf{F}(p \wedge \mathbf{XF}(\neg q \wedge q)) & (p \wedge \neg q) \ \mathbf{U} \ ((\neg p \wedge q) \ \mathbf{U} \ \mathbf{G}(\neg p \wedge \neg q)) \end{array}$$

Solution 14.3

Taking $\Sigma := 2^{AP}$.





Solution 14.4

Given two formulas ϕ, ψ of LTL, we denote by $\phi \models \psi$ that every computation satisfying ϕ satisfies ψ . Clearly, we have $\phi \equiv \sigma$ iff $\phi \models \psi$ and $\psi \models \phi$. We prove several little lemmas.

- (1) For every formula ϕ : **FF** $\phi \equiv$ **F** ϕ and **GG** $\phi \equiv$ **G** ϕ . Follows immediately from the definitions.
- (2) For every formula ϕ : $\mathbf{G}\phi \models \phi$ and $\phi \models \mathbf{F}\phi$. Follows immediately from the definitions.
- (3) For every formula ϕ : $\mathbf{FG}\phi \equiv \mathbf{GFG}\phi$. $\mathbf{GFG}\phi \models \mathbf{FG}\phi$ by (2). $\mathbf{FG}\phi \models \mathbf{GFG}\phi$ because if there is point at a computation such that from this point onwards ϕ always holds, then the same is true of every suffix of the computation.
- (4) For every formula ϕ : $\mathbf{GF}\phi \equiv \mathbf{FGF}\phi$. $\mathbf{GF}\phi \models \mathbf{FGF}\phi$ by (2). $\mathbf{FGF}\phi \models \mathbf{GF}\phi$ because if p holds at infinitely many points of some suffix of a computation, then it also holds at infinitely many points of the computation.

We prove $\mathbf{FG}p \equiv \mathbf{VFG}p$ by induction on the length of **V**. If $\mathbf{V} = \epsilon$, we are done. If $\mathbf{V} = \mathbf{YF}$, then we have $\mathbf{VFG}p \equiv \mathbf{YFG}p$ by (1), and if $\mathbf{V} = \mathbf{YG}$, then we have the same equivalence by (3). By induction hypothesis we get $\mathbf{YFG}p \equiv \mathbf{FG}p$. The other equivalence is proved similarly.