Automata and Formal Languages - Homework 14

Due Friday 29th December 2016 (TA: Christopher Broadbent)

Exercise 14.1

(Schwoon). Which of the following formulas of LTL are tautologies? (A formula is a tautology if all computations satisfy it.) If the formula is not a tautology, give a computation that does not satisfy it.

- $\mathbf{G} p \rightarrow \mathbf{F} p$
- $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$
- $\mathbf{F}(p \wedge q) \leftrightarrow(\mathbf{F} p \wedge \mathbf{F} q)$
- $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$
- $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$
- $(\mathbf{F G} p \rightarrow \mathbf{G F} q) \leftrightarrow \mathbf{G}(p \mathbf{U}(\neg p \vee q))$
- $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$.

Exercise 14.2

Let $A P=\{p, q\}$ and let $\Sigma=2^{A P}$. Give LTL formulas defining the following languages:

$$
\begin{array}{ll}
\{p, q\} \emptyset \Sigma^{\omega} & \Sigma^{*}\{q\}^{\omega} \\
\Sigma^{*}(\{p\}+\{p, q\}) \Sigma^{*}\{q\} \Sigma^{\omega} & \{p\}^{*}\{q\}^{*} \emptyset^{\omega}
\end{array}
$$

Exercise 14.3

Let $A P=\{p, q\}$. Give NBAs accepting the languages defined by the LTL formulas $\mathbf{X G} \neg p,(\mathbf{G F} p) \Rightarrow(\mathbf{F} q)$, and $p \wedge \neg \mathbf{X F} p$.
Exercise 14.4
Prove $\mathbf{F G} p \equiv \mathbf{V F G} p$ and $\mathbf{G F} p \equiv \mathbf{V G F} p$ for every sequence $\mathbf{V} \in\{\mathbf{F}, \mathbf{G}\}^{*}$ of the temporal operators \mathbf{F} and \mathbf{G}.

Solution 14.1

The formulas in red are tautologies.

- $\mathbf{G} p \rightarrow \mathbf{F} p$.

Follows immediately from the definitions of \mathbf{F} and \mathbf{G}.

- $\mathbf{G}(p \rightarrow q) \rightarrow(\mathbf{G} p \rightarrow \mathbf{G} q)$.

The left-hand-side states that any point of the computation satisfying p also satisfies q. Therefore, if every point satisfies p, tehn every point satisfies q.

- $\mathbf{F}(p \wedge q) \leftrightarrow(\mathbf{F} p \wedge \mathbf{F} q)$.

The computation $\{p\}\{q\} \emptyset^{\omega}$ satisfies $\mathbf{F} p \wedge \mathbf{F} q$ but not $\mathbf{F}(p \wedge q)$.

- $\neg \mathbf{F} p \rightarrow \mathbf{F} \neg \mathbf{F} p$.

The formula $\phi \rightarrow \mathbf{F} \phi$ is clearly a tautology for every formula ϕ. Take $\phi=\neg \mathbf{F} p$.

- $(\mathbf{G} p \rightarrow \mathbf{F} q) \leftrightarrow(p \mathbf{U}(\neg p \vee q))$.

The left-hand-side is equivalent to $\mathbf{F} \neg p \vee \mathbf{F} q \equiv \mathbf{F}(\neg p \vee q)$. If the right-hand-side holds, then some point of the computation satisfies $\neg p \vee q$, and so the left-hand-side holds. If the left-hand-side holds, then there exists a first point at which $\neg p \vee q$ holds, and. since it is the first, all points before it satisfy $p \wedge \neg q$, and so in particular they all satisfy p. So the right-hand-side holds as well.

- ($\mathbf{F G} p \rightarrow \mathbf{G F} q) \leftrightarrow \mathbf{G}(p \mathbf{U}(\neg p \vee q))$.

The left-hand-side is equivalent to $\mathbf{G F} \neg p \vee \mathbf{G F} p$, which is equivalent to $\mathbf{G F}(\neg p \vee q)$ (recall that $\mathbf{G F}$ means "infinitely often"). If the right-hand-side holds, then every point satisfies $\mathbf{F} \neg p \vee \mathbf{G F} p$, and so for every point some future point satisfies $\neg p \vee q$, which implies that the left-hand-side holds. If the left-hand-side holds, then infinitely many points satisfy $\neg p \vee q$, and all others satisfy p. Therefore, every point satisfies $\mathbf{G}(p \mathbf{U}(\neg p \vee q))$.

- $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p)$.

We have $\mathbf{G}(p \rightarrow \mathbf{X} p) \rightarrow(p \rightarrow \mathbf{G} p) \equiv \mathbf{F}(p \wedge \neg \mathbf{X} p) \vee \neg p \vee \mathbf{G} p \equiv \mathbf{F} \neg p \vee \mathbf{G} p$, which is clearly a tautology.

Solution 14.2

$$
\begin{array}{lc}
(p \wedge q) \wedge \mathbf{X}(\neg p \wedge \neg q) & \mathbf{F}(\neg p \wedge q) \\
\mathbf{F}(p \wedge \mathbf{X F}(\neg q \wedge q)) & (p \wedge \neg q) \mathbf{U}((\neg p \wedge q) \mathbf{U} \mathbf{G}(\neg p \wedge \neg q))
\end{array}
$$

Solution 14.3

Taking $\Sigma:=2^{A P}$.

Solution 14.4

Given two formulas ϕ, ψ of LTL, we denote by $\phi \models \psi$ that every computation satisfying ϕ satisfies ψ. Clearly, we have $\phi \equiv \sigma$ iff $\phi=\psi$ and $\psi \models \phi$. We prove several little lemmas.
(1) For every formula ϕ : $\mathbf{F F} \phi \equiv \mathbf{F} \phi$ and $\mathbf{G G} \phi \equiv \mathbf{G} \phi$.

Follows immediately from the definitions.
(2) For every formula ϕ : $\mathbf{G} \phi \models \phi$ and $\phi \models \mathbf{F} \phi$.

Follows immediately from the definitions.
(3) For every formula ϕ : FG $\phi \equiv \mathbf{G F G} \phi$.

GFG $\phi \models \mathbf{F G} \phi$ by (2). FG $\phi \models$ GFG ϕ because if there is point at a computation such that from this point onwards ϕ always holds, then the same is true of every suffix of the computation.
(4) For every formula ϕ : GF $\phi \equiv \mathbf{F G F} \phi$.
$\mathbf{G F} \phi=\mathbf{F G F} \phi$ by (2). $\mathbf{F G F} \phi=\mathbf{G F} \phi$ because if p holds at infinitely many points of some suffix of a computation, then it also holds at infinitely many points of the computation.

We prove $\mathbf{F G} p \equiv \mathbf{V F G} p$ by induction on the length of \mathbf{V}. If $\mathbf{V}=\epsilon$, we are done. If $\mathbf{V}=\mathbf{Y F}$, then we have $\mathbf{V F G} p \equiv \mathbf{Y F G} p$ by (1), and if $\mathbf{V}=\mathbf{Y G}$, then we have the same equivalence by (3). By induction hypothesis we get YFG $p \equiv \mathbf{F G} p$. The other equivalence is proved similarly.

