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Automata and Formal Languages — Homework 12

Due Friday 15th December 2016 (TA: Christopher Broadbent)

Exercise 12.1

Consider the following deterministic Müller automaton A over the alphabet { a, b } with acceptance condition

{ { p, q }, { q, r }, { r, p } }
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(i) Write down an ω-regular expression for the language recognised by A.

(ii) Write down a new Müller acceptance condition that would result in an automaton recognising L(A).

(iii) Describe a procedure for directly complementing deterministic Müller automata (without going through Büchi au-
tomata).

(iv) Describe a procedure that takes two deterministic Müller automata A1 and A2 as input and returns a deterministic
Müller automaton B such that L(B) = L(A1) ∪ L(A2).

Exercise 12.2
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(i) Viewing the automaton above as a deterministic finite automaton, write down a regular expression for the finite language
that it recognises.

(ii) Viewing the automaton above as a deterministic Büchi automaton, write down an ω-regular expression for the ω-
language that it recognises.

(iii) The limit of a language L ⊆ Σ∗, denoted by lim(L), is the ω-language defined as follows: w ∈ lim(L) iff infinitely many
prefixes of w are words of L. For example, the limit of (ab)∗ is {(ab)ω}.
Prove that an ω-language is recognisable by a deterministic Büchi automaton iff it is the limit of a regular language.

(iv) Exhibit a non-regular language whose limit is ω-regular.



(v) Exhibit a non-regular language whose limit is not ω-regular.

(vi) Exhibit an ω-regular language (recognised by a non-deterministic Büchi automaton) that is not the limit of any regular
language.

Exercise 12.3

The parity acceptance condition for ω-automata is defined as follows. Every state q of the automaton is assigned a natural
number nq. A run ρ is accepting if the number max{ns | s ∈ inf (ρ)} is even.

(i) Find a parity automaton accepting the language L = {w ∈ {a, b}ω | w has exactly two occurrences of ab}.

(ii) Show that each language accepted by a parity automaton is also accepted by a Rabin automaton and vice versa.



Solution 12.1

(i) The automaton recognises the language (a+ b)∗(a+ b)ω.

(ii) We can simply complement the Müller acceptance condition to get:

{ { p, q, r }, { p }, { q }, { r }, ∅ }

Every infinite run must contain at least one state that occurs infinitely often (there are only finitely many possible
states to choose from), and so it never makes any difference including ∅ in a Müller acceptance condition. Moreover,
in this particular case there are no self-loops in the automaton and so it is not possible for just one state to occur
infinitely often. Thus in this particular case, the following would also be a correct answer:

{ { p, q, r } }

(iii) If a deterministic Müller automaton has acceptance condition Ω ∈ 2Q (where 2Q is the power set of the set of states
Q), then it can always be complemented by replacing its acceptance condition with Ω := 2Q − Ω.

(iv) We can reuse the product construction for deterministic finite automata to construct the state space Q , transition
relation and initial states of B. For the acceptance condition Ω of B we take:

Ω := { S ⊆ Q | π1(Q) ∈ Ω1 or π2(Q) ∈ Ω2 }

where Ω1 and Ω2 are the respective acceptance conditions for A1 and A2 (and π1 and π2 are respectively the first and
second projections so that πi(S) := { qi | (q1, q2) ∈ S }).

Solution 12.2

(i) (b∗a)(b+a + a)∗

(ii) (b∗a)(b+a + a)ω

(iii) Let B be a deterministic Büchi automaton recognizing an ω-language L. Look at B as a DFA, and let L′ be the regular
language recognized by B. We prove L = lim(L′). If w ∈ lim(L′), then B (as a DFA) accepts infinitely many prefixes
of w. Since B is deterministic, the runs of B on these prefixes are prefixes of the unique infinite run of B (as a DBA)
on w. So the infinite run visits accepting states infinitely often, and so w ∈ L. If w ∈ L, then the unique run of B
on w (as a DBA) visits accepting states infinitely often, and so infinitely many prefixes of w are accepted by B (as a
DFA). So w ∈ lim(L′).

(iv) The irregular language { anbn | n ∈ ω } has limit ∅, which is trivially ω-regular. In order to pick a less degenerate
example, the irregular language { a2n | n ∈ ω } has as its limit aω, which is clearly ω-regular.

(v) The irregular language { anbnci | n ∈ ω, i ∈ ω } has limit { anbncω | n ∈ ω }, which is not ω-regular.

(vi) The ω-regular language Lω := (a+b)∗aω is not the limit of any regular language of finite words. (It follows that (a+b)∗aω

cannot be recognised by a deterministic Büchi automaton, although it can be recognised by a non-deterministic Büchi
automaton).

In order to prove this, suppose for contradiction that there does exist some language L of finite words such that
Lω = lim(L). (In fact L need not even be regular, so we prove the required result also for irregular finite languages).

Let us write w1 v w2 to mean that w1 is a prefix of w2.

We now construct an ω-sequence of ω-words (ui)i∈ω and an ω-sequence of finite words (vi)i∈ω. The words ui will all
belong to Lω, and the words vi will all belong to L. Moreover it will be the case that for each i ∈ ω, vib v vi+1.

To start with we take
u0 := baω and b v v0 v u0

where v0 may be any fixed such word in L. Note that such a v0 must exist, since we are assuming that u0 has inifinitely
many prefixes in L.

We then take
ui+1 := viba

ω

Since each vi belongs to (a + b)∗ it must be the case that ui+1 ∈ Lω. Since we assume that ui+1 has infinitely many
prefixes in L, it must be the case that it has one, to which we set vi+1, of length greater than |v0 v1 · · · vib| so that

vib v vi+1 v ui+1



Thus we have an ω sequence of words in L such that

v0 b v v1 v1 b v v2 · · · vi b v vi+1 · · ·

v0 b, v1 b, · · · give infinitely many prefixes of some word in ((a + b)∗b)ω, which cannot belong to (a + b)∗aω, giving the
required contradiction.


