
Technische Universität München Winter term 2015/16
I7
Prof. J. Esparza / Dr. D. Suwimonteerabuth / Dr. C. Broadbent 11.12.2015

Automata and Formal Languages — Homework 10

Due Friday 18th December 2015 (TA: Christopher Broadbent)

As announced in the last class, we will also have a short written quiz in the first half hour of this class. This does not count
towards anything, so you do not need to worry. However, it will be very helpful for us to guage how well you are following

the material, and it should also be useful practice for you.

Exercise 10.1

Consider a circular railway1 divided into 8 tracks: 0 → 1 → . . . → 7 → 0. In the railway circulate three trains, modeled
by three automata T1, T2, and T3. Each automaton Ti has states {qi,0, . . . , qi,7}, alphabet {enter[i, j] | 0 ≤ j ≤ 7} (where
enter[i, j] models that train i enters track j), transition relation {(qi,j , enter[i, j ⊕ 1], qi,j⊕1) | 0 ≤ j ≤ 7}, and initial state
qi,2i, where ⊕ denotes addition modulo 8. In other words, initially the trains occupy the tracks 2, 4, and 6.

Define automata C0, . . . , C7 (the local controllers) to make sure that two trains can never be on the same or adjacent
tracks (i.e., there must always be at least one empty track between two trains). Each controler Cj can only have knowledge
of the state of the tracks j 	 1, j, and j ⊕ 1, there must be no deadlocks, and every train must eventually visit every track.
More formally, the network of automata A = 〈C0, . . . , C7, T1, T2, T3〉 must satisfy the following specification:

• For j = 0, . . . , 7: Cj has alphabet {enter[i, j 	 1], enter[i, j], enter[i, j ⊕ 1], | 1 ≤ i ≤ 3}.
(Cj only knows the state of tracks j 	 1, j, and j ⊕ 1.)

• For i = 1, 2, 3: L(A) |Σi
= (enter[i, 2i] enter[i, 2i⊕ 1] . . . enter[i, 2i⊕ 7])∗.

(No deadlocks, and every train eventually visits every segment.)

• For every word w ∈ L(A): if w = w1 enter[i, j] enter[i′, j′]w2 and i′ 6= i, then |j − j′| 6∈ {0, 1, 7}.
(No two trains on the same or adjacent tracks.)

Exercise 10.2

Construct Büchi automata and ω-regular expressions, as small as possible, recognizing the following languages over the
alphabet {a, b, c}.

(1) {w ∈ {a, b, c}ω | {a, b} ⊇ inf (w)}

(2) {w ∈ {a, b, c}ω | {a, b} = inf (w)}

(3) {w ∈ {a, b, c}ω | {a, b} ⊆ inf (w)}

(4) {w ∈ {a, b, c}ω | {a, b, c} = inf (w)}

(5) {w ∈ {a, b, c}ω | if a ∈ inf (w) then {b, c} ⊆ inf(w)}

(The set inf (w) is the set of symbols that occur infinitely often in w.)

Exercise 10.3

[This question is harder, but we have already discussed representing addition of integers using finite languages, and the idea
from this can be adapted].

As mentioned in the lectures, ω-words can be used to represent real numbers. Just as we can use ‘decimal’ (base 10)
notation to represent real numbers as infinite words (e.g. 3.3ω represents 3 +

∑∞
i=1

3
10i , that is to say ‘three and a third’) so

can it be convenient to use a base 2 notation.
More specifically we will represent real numbers as words in the language (0 + 1)∗ . (0 + 1)ω (over the alphabet { 0, 1, . }).

This time the representation uses most significant bit first representation. Given r ∈ R the set of encodings of r is given by:

encs(r) := { akak−1 · · · a0.b1b2 · · · ∈ (0 + 1)∗ . (0 + 1)ω | r =

k∑
i=0

ai.2
i +

∞∑
i=1

bi.2
−i }

1If you want to get in a seasonal mood, feel free to pretend that the railway is located at the North Pole and has some connection to reindeer,
slays and Santa Claus.

For example:
00100.0ω ∈ encs(4) 100.0ω ∈ encs(4)

0.01ω ∈ encs(0.5) 0.10ω ∈ encs(0.5) 10.(01)ω ∈ encs(2.33 · · ·) 01.(10)ω ∈ encs(1.66 · · ·)

We can represent a binary function on the real numbers by a language over the alphabet { 0, 1 }×{ 0, 1 }×{ 0, 1 }∪{ . }
that is a subset of

L := ({ 0, 1 } × { 0, 1 } × { 0, 1 })∗ . ({ 0, 1 } × { 0, 1 } × { 0, 1 })ω

In particular the addition relation can be represented by such a language L+:

L+ :=

(ak, bk, ck) · · · (a0, b0, c0).(a′1, b
′
1, c
′
1) · · · ∈ L

∣∣∣∣∣∣∣∣
ak · · · a0.a

′
1 · · · ∈ encs(r1) and

bk · · · b0.b
′
1 · · · ∈ encs(r2) and

ck · · · c0.c
′
1 · · · ∈ encs(r3) for

r1, r2, r3 ∈ R s.t. r1 + r2 = r3


For example, the following corresponds to the fact that 2.33 · · ·+ 1.66 · · · = 4: 0

0
1

 1
0
0

 0
1
0

 .

 0
1
0

 1
0
0

ω

∈ L+

Show that real addition is ω-regular (i.e. that L+ is recognised by a non-deterministic Büchi automaton).

Solution 10.1

The controller Cj will be responsible for ensuring that no train enters the (j 	 1)th track when the jth track is occupied. It
has two states. When Cj is in state pj0 the jth track is unoccupied and when it is in state pj1 it is occupied.

Thus for j /∈ { 2, 4, 6 } we take Cj to be:

pj0 pj1

enter [, j 	 1] enter [, j]

enter [, j ⊕ 1]

and for j ∈ { 2, 4, 6 } we take Cj to be:

pj0pj1

enter [, j 	 1]enter [, j]

enter [, j ⊕ 1]

Solution 10.2

The automata are shown in Figure 1. We sketch the argument of why the recognize the specified languages. (1) The

q0 q1

a, b, c

a, b

a, b

q0 q1 q2

a, b, c

a, b

a, b

a

b

q0

q1

q2

a, b, c a

b
c

c
b

q0

q1

q2

q3

a, b, c

b, c

a

a, c

b

a, b

c

q0

q1

q2

q3

a, b, c

b, c

a

a, c

b

a, b

c

Figure 1: Automata for (1)-(5).

automaton must recognize the set of words containing only finitely many c. Every word with finitely many cs is acepted: the
automaton just moves to q1 after the last c. Conversely, every accepting run must eventually move to q1, and so the word
accepted contains only finitely many c.
(2) The automaton must recognize the ω-words containing infinitely many a, infinitely many b, but only finitely many c.

Every such ω-word is accepted by the automaton in the figure: the automaton moves to q1 after the last c. The rest of
the word contains only a and b, both inifnitely many times. So the word contains infinitely many occurrences of ab. At each

of them the automaton takes the loop through q2. Conversely, every accepted word contains only finitely many c, because
after moving to q1 no further c can be read, and both infinitely many as and bs, because every accepting run must visit q2

infinitely often, and each visit contributes an a and a b.
(3) The automaton recognizes all words containing infinitely many as and infinitely many bs, and either finitely or infinitely
many cs. To show that every such word is accepted by the automaton we have to modify the argument of (2): now every
word in the language contains infinitely many subwords of ac∗b, and the automaton accepts the word by moving to q1 at
each of these subwords. For the converse, it is clear that every visit to q1 requires to read an a and a b, and so every accepted
word contains both letters infinitely often. Notice that we cannot remove q2 and add a self-loop labeled by c to q1, because
then the automaton would accept for instance acω.
(4) The automaton recognizes all words containing infinitely many as, bs, and cs. The argument is similar to that of (2), but
now we ensure that between and two visits to the final state the automaton has read at least one a, one b, and one c. Observe
that the order doesn’t matter: if all three letters occur infinitely often, we know that after any letter we will eventually see
again any of the others.
(5) We add a new final state to the automaton for (4). Every word accepted by (4) is accepted now. The new accepting
runs eventually stay on q1, and accept all the words containing finitely many as.

Here are ω-regular expressions for the five languages:

(1) (a + b + c)∗(a + b)ω

(2) (a + b + c)∗(aa∗bb∗)ω

(3)
(
(b + c)∗a(a + c)∗b

)ω
(4)

(
(b + c)∗a(a + c)∗b(a + b)∗c

)ω
(5) (a + b + c)∗

(
b + c + a(a + c)∗b(a + b)∗c

)ω

