Automata and Formal Languages — Homework 9

Due 11.12.2015

Exercise 9.1

Let $\Sigma = \{a, b\}$. Give formulae of $FO(\Sigma)$ for the following languages:

- (a) $(a+b)(a+b)^*$
- (b) $a(a+b)^*$
- (c) $(aa^*b)^*$
- (d) a^*b^*
- (e) $L_n = \{ww \in \Sigma^* \mid |w| = n\}$ where $n \ge 1$.
- (f) $L'_n = \{ww \in \Sigma^* \mid |w| = 2^n\}$ where $n \ge 1$. The formula must be of polynomial length in n. Hint: construct first an abbreviation of polynomial length for $y = x + 2^n$.

Exercise 9.2

Let $\Sigma = \{a, b\}$. Give formulae of $MSO(\Sigma)$ for the following languages:

- (a) The set of words in which every odd position is a.
- (b) The set of words of odd length containing only a's.
- (c) The set of words with an odd number of occurences of a's.
- (d) The set of words of odd length with an odd number of occurences of a's.
- (e) The set of words, where between every two b's there is a block of odd number of occurences of a's.

Exercise 9.3

Consider the logic $Pure_MSO(\Sigma)$ with syntax

 $\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X \ \varphi$

Notice that formulas of $Pure_MSO(\Sigma)$ do not contain first-order variables. The satisfaction relation of $Pure_MSO(\Sigma)$ is given by:

 $\begin{array}{lll} (w, \mathfrak{I}) & \models & X \subseteq Q_a & \text{ iff } & w[p] = a \text{ for every } p \in \mathfrak{I}(X) \\ (w, \mathfrak{I}) & \models & X < Y & \text{ iff } & p < p' \text{ for every } p \in \mathfrak{I}(X), \, p' \in \mathfrak{I}(Y) \\ (w, \mathfrak{I}) & \models & X \subseteq Y & \text{ iff } & \mathfrak{I}(X) \subseteq \mathfrak{I}(Y) \end{array}$

with the rest as for $MSO(\Sigma)$.

Prove that $MSO(\Sigma)$ and $Pure_MSO(\Sigma)$ have the same expressive power for sentences. That is, show that for every sentence ϕ of $MSO(\Sigma)$ there is an equivalent sentence ψ of $Pure_MSO(\Sigma)$, and vice versa.