
Technische Universität München Winter term 2015/16
I7
Prof. J. Esparza / Dr. D. Suwimonteerabuth / Dr. C. Broadbent 29.11.2015

Automata and Formal Languages — Homework 8

Due Friday 4th December 2015 (TA: Christopher Broadbent)

Exercise 8.1

In the lectures you saw an algorithm kinter that can be used to compute the intersection of two DDs. It takes as input states
recognising 〈L1〉 and 〈L2〉 and outputs a state recognising 〈L1〉 ∩ 〈L2〉.

(i) Design an algorithm kunion that instead returns a state recognising 〈L1〉 ∪ 〈L2〉 and that thus can be used to compute
the union of two DDs.

(ii) Design an algorithm knot for complementing a DD state

Exercise 8.2

The typical use case for BDDs is to represent (the meanings of) propositional formulae. Question 7.3 on the previous sheet
already introduced you to this idea using finite-length DFA. However, as demonstrated in the lectures, BDDs can provide a
more efficient representation since they avoid representing decisions that are irrelevant to the outcome.

Suppose that we have four Boolean variables x1, x2, . . . , x4. We write t for true and f for false. A valuation for the four
variables is a word of length four belonging to { t, f }4. A valuation b1 b2 b3 b4 sets the variable xi to be bi.

A propositional formula φ over x1, . . . , x4 is formed by combining (possibly multiple copies of) x1, . . . , x4 with the Boolean
connectives ∧, ∨ and ¬. We write

b1 · · · b4 � φ

to mean that the formula φ is true when the variables are given the values defined by the valuation b1 · · · b4. Let us define

L(φ) := { b1 · · · b4 | b1 · · · b4 � φ }

For example,
L(x1 ∧ x2) = { ttb3b4 | b3, b4 ∈ { t, f } }

A ‘BDD for a formula φ’ is a BDD recognising L(φ).

(i) Give a BDD for the formula

(x1 ∧ ((¬x2 ∧ ¬x3) ∨ (x2 ∧ x3)) ∨ (¬x1 ∧ ((¬x2 ∧ x4) ∨ (x2 ∧ ¬x4))

[HINT: You may find it helpful to remember that a BDD is indeed a decision diagram and that you are making a
decision on the value of the formula depending on the value of the variables!]

(ii) Give a BDD for the formula

(x4 ∧ ((¬x3 ∧ ¬x2) ∨ (x3 ∧ x2)) ∨ (¬x4 ∧ ((¬x3 ∧ x1) ∨ (x3 ∧ ¬x1))

The answers to (i) and (ii) should look quite different with one being bigger than the other. This is despite the fact that
they both represent the same Boolean function given by the formula

(p ∧ ((¬q ∧ ¬r) ∨ (q ∧ r)) ∨ (¬p ∧ ((¬q ∧ s) ∨ (q ∧ ¬s))

where the variables p, q, r, s are given the respective names x1, x2, x3, x4 in the first case and the respective names x4, x3, x2, x1
in the second case. The way in which numbers are assigned to variables in a formula is called the variable ordering since it
specifies the order in which the BDD considers each variable.

For (i) the variable ordering is p < q < r < s (e.g. p is considered first because it is given the name x1). For (ii) it is
s < r < q < p.

The variable ordering can have a big impact on the size of a BDD. We say that a variable ordering is optimal for a
formula φ if it is an ordering that yields a minimal BDD for φ.

(iii) Give an optimal variable ordering for the formula

((p ∧ s) ∨ (¬p ∧ ¬q)) ∧ ((q ∧ ¬r) ∨ (¬q ∧ r))

(iv) p, q, r, s can encode two two-bit integers p q and r s. (You are free to choose whether to use a least-significant-bit-first
or a most-significant-bit-first encoding).

Give a propositional formula expressing that p q ≥ r s (with respect to the integers that they encode). What is an
optimal variable ordering for its BDD?

Exercise 8.3

Suppose that we have n propositional variables x1, . . . , xn. A valuation b1 · · · bn ∈ { true, false }n over these n-variables
assigns bi to xi. We define

Ln(φ) := { b1 · · · bn | b1 · · · bn �n φ }

where b1 · · · bn �n φ means that φ is true when the variables are set as defined by the valuation b1 · · · bn.
Let Φ be a finite set of propositional formulae over x1, . . . , xn (for some n). Let us say that a Φ-BDD is a quadruple of

the form (m,Φ, f, B), where m ≥ n, and B is a BDD with state set Q and f : Φ→ Q is a map such that Lm(φ) = Ln(f(φ))
for all φ ∈ Φ.

(i) Give an algorithm that takes a Φ-BDD (n,Φ, f, B) and an integer i ∈ N as input and returns a (Φ ∪ { xi })-BDD.
(Remember that a variable xi is just an atomic formula).

(ii) Describe algorithms that take a Φ-BDD (n,Φ, f, B) as input and return a (Φ ∪ { φ })-BDD for each of φ = φ1 ∧ φ2,
φ = φ1∨φ2 and φ = ¬φ1 for φ1, φ2 ∈ Φ. You should make use of algorithms that you have already seen as subprocedures
(either from the lectures or from exercise 8.1).

(iii) What is the significance of this question?

Exercise 8.4

Give sentences of first-order logic that define each of the following languages.

(i) The language of words over Σ := { a, b } that contain at least three as and at most two bs.

(ii) The language (ab)? + (ba)?

(iii) The language aa(ab)? + bb(ba)?bb

Now consider the language

L = { w ∈ ({ 0, 1 }3)
∗ | π1(w) ∈ lsbf (m1), π2(w) ∈ lsbf (m2), π3(w) ∈ lsbf (n) and n = m1 +m2 (with m1,m2, n ∈ N) }

This language L turns out not to be definable in first-order logic. Part (iv) thus gives you a bit of choice in the language
that you define:

(iv) Give a first-oder sentence φ that defines a language L̂ ⊆ ({ 0, 1 }4)
∗

such that

L = { (a1, b1, c1) · · · (ak, bk, ck) | (a1, b1, c1, d1) · · · (ak, bk, ck, dk) ∈ L̂ for some d1, . . . dk ∈ { 0, 1 } }

[Hint : You have a free choice for what the fourth component contains. You might like to use it to store the carry bits.]

Solution 8.1

kunion(q1, q2)
Input: states q1, q2 recognizing 〈L1〉, 〈L2〉
Output: state recognizing 〈L1 ∪ L2〉
1 if G(q1, q2) is not empty then return G(q1, q2)

2 if q1 = q∅ and q2 = q∅ then return q∅
3 if q1 6= q∅ and q2 6= q∅ then

4 if l1 < l2 /* lengths of the kernodes for q1, q2 */ then

5 for all i = 1, . . . ,m do ri ← kunion(q1, q
ai
2)

6 G(q1, q2)← kmake(l2, r1, . . . , rm)

7 else if l2 < l1 then

8 for all i = 1, . . . ,m do ri ← kunion(qai1 , q2)

9 G(q1, q2)← kmake(l1, r1, . . . , rm)

10 else /* l1 = l2 */

11 for all i = 1, . . . ,m do ri ← kunion(qai1 , q
ai
2)

12 G(q1, q2)← kmake(l1, r1, . . . , rm)

13 else if q1 6= q∅ and q2 = q∅ then

14 G(q1, q2)← q1
15 else /* q1 = q∅ and q2 6= q∅*/

16 G(q1, q2)← q2
17 return G(q1, q2)

knot(q)
Input: state q recognizing a kernel K
Output: state recognizing K̂

1 if G(q) is not empty then return G(q)

2 if q = q∅ then return qε
3 else if q = qε then return q∅
4 else

5 for all i = 1, . . . ,m do ri ← knot(qai)

6 G(q)← kmake(r1, . . . , rm)

7 return G(q)

Solution 8.2

(i)

x1

x2 x2

x3 x3

x4x4

t f

t f

t f

t{ t,f } f{ t,f }f{ t,f } t{ t,f }

t{ t,f }f{ t,f }

t tff

(ii)

x1

x2 x2

x3x3 x3 x3

x4 x4

ε (t) ∅ (f)

t f

tf f t

t f

t{ t,f }f{ t,f }

tf

t{ t,f } f{ t,f }

t f f t

(iii) r < q < p < s

To see this intuitively think about what one ‘needs to remember’ after checking the value of each variable and when
one has discovered enough information to be able to ignore certain variables. To illustrate this, let us write how we
decide the truth of the formula by checking the variables according to each ordering. The orderings are chosen so as
to minimise what has to be ‘remembered’ between each step.

[1 BDD state at first level]:

– Check r and remember the value. [2 BDD states at second level]

– Check q and compare to r. If they are equal, we know immediately that the formula is false. If they are different,
then we know the right-hand conjunct is true and just need to check the left-hand conjunct.

The constraint on p is different depending on whether q is true or false, thus the third level must contain two
states for each possible value of q. (Observe that the value of q would still need to be remembered even if we had
chosen s to come before p). [2 BDD states at third level]

– Check p. If q was false and p is false, then we can immediately conclude the formula is true. If q was true and p
is false, then we can immediately conclude the formula is false. Thus the only time when we still need to check s
is when p is true (and then we can forget about q). [1 BDD state at fourth level]

– Check s. If it is true then the whole formula is true, otherwise it is false.

Thus the BDD will have 6 states (plus the two terminating states).

(iv) It will always be necessary to compare the most-significant bits. We might, however, get lucky and have different msbs,
allowing us to ignore the least-significant bit. If the msbs are equal, the lsbs need to be checked.

Thus using LSBF encoding, an optimal variable ordering for pq ≥ rs will be q < s < p < r. (There are other orderings
that are just as good, e.g. s < q < p < r).

Solution 8.3

Let us take the first (left) child of a node to correspond to t and the second (right) to correspond to f .

(i) Simply return (n′,Φ′, f ′, B′) where n′ = n,Φ′ = Φ, f ′ = f,B′ = B if xi ∈ Φ, otherwise return n′ := max(n, i),
Φ := Φ ∪ { xi }, f ′ = f ∪ { xi 7→ q }, where q is the state returned by kmake(i, qε, q∅) (and B′ is the resulting BDD).

(ii) If φ ∈ Φ, then we just return the input. Otherwise we return (n,Φ ∪ { φ }, f ∪ { q 7→ φ }, B′) where q is the state
returned by, and B′ is the resulting BDD produced by, running the appropriate algorithm on the nodes f(φ1) (and
f(φ2)). The appropriate algorithm is kunion for ∨, kintersect for ∧ and kcomp for ¬.

(iii) This shows how BDDs provide a compositional representation of Boolean formulae. One can reuse the work done to
construct BDDs representing simpler formulae to construct BDDs representing a more complex formula made up from
such simpler components.

Solution 8.4

(i) Given a formula φ(x) with a single free variable together with n ∈ N, we can define the formulae of the form

∃≥nx.φ(x) and ∀≤nx.φ(x)

asserting respectively that there are at least n positions (in a word) satisfying φ, and that there are at most n positions
(in a word) satisfying φ.

∃≥nx.φ(x) := ∃x1. · · · ∃xn.

 ∧
1≤i<j≤n

¬xi = xj ∧
∧

1≤i≤n

φ(xi)

∀≤nx.φ(x) := ∀x1. · · · ∀xn.∀y.

 ∧
1≤i≤n

φ(xi) ∧ φ(y)

→
 ∨

1≤i≤n

xi = y

Strictly speaking you have not been given equality in the lectures. However equality is definable from the < primitive:
x = y can be expressed by ¬x < y ∧ ¬y < x.

The following formula then answers the present question:

∃≥3Qa(x) ∧ ∀≤2Qb(x)

(ii) You have seen in the lectures that we can define x = y + k in the logic, where k is any positive integer. You have also
seen that First and Last predicates are definable, defining the last and first position in the word.

It is also helpful to remember that the domain of the empty-word is, well, empty. This means that the empty word
satisfies all formulae of the form ∀x.φ irrespective of what the formula φ may be (φ could even be unsatisfiable).

The language (ab)∗ can thus be defined by the sentence:

φ(ab)∗ := ∀x.∀y.(y = x+1→ ((Qa(x)→ Qb(x))∧(Qb(x)→ Qa(x)) ∧ ∀x.(First(x)→ Qa(x)) ∧ (Last(x)→ Qb(x)))

Likewise we can define

φ(ba)∗ := ∀x.∀y.(y = x+1→ ((Qa(x)→ Qb(x))∧(Qb(x)→ Qa(x)) ∧ ∀x.((First(x)→ Qb(x)) ∧ (Last(x)→ Qa(x)))

So the required sentence is φ(ab)∗ ∨ φ(ba)∗ .

(iii) For each formula φ that does not contain x free, and for each formula ψ(x) containing a free variable x, let us define
the formula φ[x : ψ(x)] by the following

Qa(y)[x : ψ(x)] := Qa(y) y1 < y2[x : ψ(x)] := y1 < y2 (φ1 ∧ φ2)[x : ψ(x)] := (φ1[x : ψ(x)] ∧ φ2[: ψ(x)])

(¬φ)[x : ψ(x)] := ¬(φ[x : ψ(x)]) ∃y.φ[x : ψ(x)] := ∃y.(ψ(y) ∧ φ)

(∀ is defined in terms of ∃, but if we were to treat it as primitive we would have ∀y.φ[x : ψ(x)] := ∀y.(ψ(y)→ φ).)

The formula φ[x : ψ(x)] is the formula φ with quantifiers restricted to positions satisfying ψ(x). So given a word w
we can construct a new word from w′ made up of positions i in w such that ψ(i). Then w satisfies φ[x : ψ(x)] iff w′

satisfies φ.

Thus the language aa(ab)∗ is defined by the following sentence

φaa(ab)∗ := ∃x.∃y.(First(x) ∧ y = x+ 1 ∧Qa(x) ∧Qa(y) ∧ φ(ab)∗ [z : y < z]

and the language bb(ba)∗bb is defined by

φbb(ba)∗bb := ∃x.∃y.∃x′.∃y′.(First(x) ∧ y = x+ 1 ∧ Last(y′) ∧ y′ = x′ + 1 ∧ Qb(x) ∧ Qb(y) ∧ Qb(x
′) ∧ Qb(y

′)

∧ φ(ba)∗ [z : y < z ∧ z < y′])

We can then take the required sentence to be φaa(ab)∗ ∨ φbb(ba)∗bb.

(iv) We follow the hint and use the fourth position to represent the carry-bit of an adder.

We define eight auxiliary predicates Ab, Bb, Cb and Sb for each b ∈ B = { 0, 1 }. The A predicates are used to describe
the bits making up the binary representation of the number m1 and B for m2. The C predicates will be used to define
the bits making up the fourth number (C stands for ‘carry’), and the S predicates will be used to define the bits making
up the sum m1 +m2 stored in the third row (adding the A and B bits together with the carry C bit).

Explicitly we can define:

Ab(x) :=
∨

b1,b2,b3∈B
Q(b,b1,b2,b3)(x) Bb(x) :=

∨
b1,b2,b3∈B

Q(b1,b,b2,b3)(x)

Sb(x) :=
∨

b1,b2,b3∈B
Q(b1,b2,b,b3)(x) Cb(x) :=

∨
b1,b2,b3∈B

Q(b1,b2,b3,b)(x)

It will also be useful to have the following formulae:

CarryOne(x) := ∃y.(y = x+ 1 ∧ C1(y))

and
NoCarry(x) := ∀y.(y = x+ 1→ C0(y))

The first formula asserts that a 1 should be carried to the position following x whilst the second formula asserts that
nothing should be carried. (Note that in the first case we must assert the existence of the next position, since a next
position is a prerequisite for carrying to the next position. In the second case we can ‘avoid carrying’ either by having
a 0 carry bit in the next position, or else the next position not existing at all).

Let us consider how we would describe a ‘half-adder’ in the logic, which sums a single bit from the first two numbers
together with the carry bit to produce a result together with a fresh carry bit.

φhalf (x) :=
∧

∨
[at least two of b1,b2,b3∈B are 1](Ab1(x) ∧Bb2(x) ∧ Cb3(x)) → CarryOne(x)∨
[at most one of b1,b2,b3∈B are 1](Ab1(x) ∧Bb2(x) ∧ Cb3(x)) → CarryZero(x)∨

[an even number of b1,b2,b3∈B are 1](Ab1(x) ∧Bb2(x) ∧ Cb3(x)) → S0(x)∨
[an odd number of b1,b2,b3∈B are 1](Ab1(x) ∧Bb2(x) ∧ Cb3(x)) → S1(x)

We can turn our half-adder into a ‘full adder’ by asserting that (i) every position in the word conforms to the half-adder,
(ii) if there is a first-postion in the word (i.e. if the word is non-empty) then the carry-bit there is 0, and (iii) there is
no ‘dangling carry bit’ (every position with a 1 carry-bit has a successor).

∀x.φhalf (x) ∧ ∀x.(First(x)→ C0(x)) ∧ ∀x.(C1(x)→ ∃y.(y = x+ 1))

