Automata and Formal Languages - Homework 7

Due 27.11.2015

Exercise 7.1

We have defined transducers as finite automata whose transitions are labeled by pairs of symbols $(a, b) \in \Sigma \times \Sigma$. With this definition transducers can only accept pairs of words $\left(a_{1} \ldots a_{n}, b_{1} \ldots b_{n}\right)$ of the same length. In many applications this is limiting.

An ε-transducer is an NFA whose transitions are labeled by elements of $(\Sigma \cup\{\varepsilon\}) \times(\Sigma \cup\{\varepsilon\})$. An ε-transducer accepts a pair $\left(w, w^{\prime}\right)$ of words if it has a run

$$
q_{0} \xrightarrow{\left(a_{1}, b_{1}\right)} q_{1} \xrightarrow{\left(a_{2}, b_{2}\right)} \cdots \xrightarrow{\left(a_{n}, b_{n}\right)} q_{n} \text { with } a_{i}, b_{i} \in \Sigma \cup\{\varepsilon\}
$$

such that $w=a_{1} \ldots a_{n}$ and $w^{\prime}=b_{1} \ldots b_{n}$. Note that $|w| \leq n$ and $\left|w^{\prime}\right| \leq n$. The relation accepted by the ε-transducer T is denoted by $L(T)$.
(a) Construct ε-transducers T_{1}, T_{2} such that $L\left(T_{1}\right)=\left\{\left(a^{n} b^{m}, c^{2 n}\right) \mid n, m \geq 0\right\}$, and $L\left(T_{2}\right)=\left\{\left(a^{n} b^{m}, c^{2 m}\right) \mid n, m \geq 0\right\}$.
(b) Show that no ε-transducer recognizes $L\left(T_{1}\right) \cap L\left(T_{2}\right)$.

Exercise 7.2

Transducers can be used to capture the behaviour of simple programs. The figure below shows a program P, where the instruction end finishes the execution of the program and ? denotes a non-deterministic value. The domain of the variables is assumed to be $\{0,1\}$, and the initial value is assumed to be 0 .

```
x}\leftarrow
write x
3 while true do
    repeat
        read y
        until y = x^y
        if }x=y\mathrm{ then
            write y end
        if? then }x\leftarrowx-
        else y }\leftarrowx+
        if }x\not=y\mathrm{ then
            write x end
```

Let $[i, x, y]$ denote the configuration of P in which P is at line i of the program, and the values of x and y are x and y , respectively. The initial configuration of P is $[1,0,0]$. By executing the first instruction P moves nondeterministically to one of the configurations $[2,0,0]$ and $[2,1,0]$; no input symbol is read and no output symbol is written. Hence, the transition relation δ for P contains the transition rules $([1,0,0],(\varepsilon, \varepsilon),[2,0,0])$ and $([1,0,0],(\varepsilon, \varepsilon),[2,1,0])$. Similarly, by executing its second instruction, the program P moves from $[2,1,0]$ to $[3,1,0]$ while reading nothing and writing 1 . Hence, δ contains $([2,1,0],(\varepsilon, 1),[3,1,0])$
(a) Draw an ε-transducer that characterizes the program P
(b) Can an overflow error occur?
(c) What are the possible values of x upon termination, i.e. upon reaching end?
(d) Is there an execution during which P reads 101 and writes 01 ?
(e) Let I and O be regular sets of inputs and outputs, respectively. Think of O as a set of dangerous outputs that we want to avoid. We wish to prove that the inputs from I are safe, i.e. that when P is fed inputs from I, none of the dangerous outputs can occur. Describe an algorithm that decides, given I and O, whether there are $i \in I$ and $o \in O$ such that (i, o) belongs to the I / O-relation of P.

Exercise 7.3

Let $\Sigma=\{0,1\}$. Given $a, b \in \Sigma$, let $a \cdot b$ be the usual multiplication (an analog of boolean and) and let $a \oplus b$ be 0 if $a=b=0$ and 1 otherwise (an analog of boolean or)

Consider the boolean function $f: \Sigma^{6} \rightarrow \Sigma$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1} \cdot x_{2}\right) \oplus\left(x_{3} \cdot x_{4}\right) \oplus\left(x_{5} \cdot x_{6}\right)
$$

(a) Construct the minimal DFA recognizing $\left\{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$. (For instance, the DFA accepts 111000 because $f(1,1,1,0,0,0)=1$, but not 101010 , because $f(1,0,1,0,1,0)=0$.)
(b) Construct the minimal DFA recognizing $\left\{x_{1} x_{3} x_{5} x_{2} x_{4} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$.
(Notice the different order!)
(c) More generally, consider the function

$$
f\left(x_{1}, \ldots, x_{2 n}\right)=\bigoplus_{1 \leq k \leq n}\left(x_{2 k-1} \cdot x_{2 k}\right)
$$

and the languages $\left\{x_{1} x_{2} \ldots x_{2 n-1} x_{2 n} \mid f\left(x_{1}, \ldots, x_{2 n}\right)=1\right\}$ and $\left\{x_{1} x_{3} \ldots x_{2 n-1} x_{2} x_{4} \ldots x_{2 n} \mid f\left(x_{1}, \ldots, x_{2 n}\right)=1\right\}$.
Show that the size of the minimal DFA grows linearly in n for the first language, and exponentially in n for the second language.

