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Automata and Formal Languages — Homework 6

Due Friday 20th November 2015 (TA: Christopher Broadbent)

Please note that questions marked ?? are extra-challenging; you should not worry if you are unable to solve
them as they are harder than what will be expected in the exam. Only consider them if you have time and
are interested!

Exercise 6.1

Construct DFAs and lazy DFAs that recognise the set of strings containing the patterns (i) mammamia, and (ii) abracadabra.

Exercise 6.2

Two-way finite automata are an extension of lazy automata in which the reading head may not only move right or stay put,
but also move left. The tape extends infinitely long to both the left and to the right of the input with all cells empty. A
word is accepted if the control state is a final state at the moment the head reaches an empty cell to the right of the input
for the first time.

(i) Give a two-way DFA for the language (0 + 1)∗1(0 + 1)4. How big is this automaton compared to the smallest ordinary
DFA for the same language?

(ii) Show that for every n ∈ N there exists a two-way DFA for the language (0 + 1)∗1(0 + 1)n with O(n) states. How many
states does the minimal ordinary DFA have for each n ∈ N?

(iii) Sketch an algorithm for membership of a two-way DFA

(iv) ?? Sketch an algorithm for emptiness of two-way DFA

(v) ?? Prove that the languages recognized by two-way DFA are regular.

Exercise 6.3

Which of the following relations are regular (with the lsbf -encoding)? Justify your answers.

(i) { (n, n2) | n ∈ N }

(ii) { (n,m) | n,m ∈ N with m ≤
√
n }

(iii) { (n, 5n) | n ∈ N }

(iv) { (n, 7 + n) | n ∈ N }

(v) { (n, 7 + 5n) | n ∈ N }

(vi) { (n,m) | n,m ∈ N with 2n+ 3m = 2k for some k ∈ N }

Exercise 6.4

?? Suppose that L is a regular language. Let us write |w| for the length of the word |w|. Prove that the language
|L| := { lsbf (|w|) | w ∈ L } is regular.

[Hint: It follows from the final question of Exercise Sheet 2 that there exist k0, k1, . . . , kn such that

|L| = { lsbf (k0 + λ1k1 + · · ·+ λnkn) | λi ∈ N for each 1 ≤ i ≤ n }

.
(i) Show that the relation Rk := { (k, λk) | λ ∈ N } is regular for each k ∈ N.



(ii) Show also that for any set of numbers N ⊆ N such that lsbf (N) is regular, it is the case that the relation

SN := { (r,m) | r,m ∈ N, such that r = m+K for some K ∈ N }

is regular.
(iii) Then put these facts together to prove the result (using induction on n and the Post operator from the lectures.)]



Solution 6.2

(i) The following two-way DFA does the job:

A := 〈{ 0, 1 }, Q, δ, q0, { p4 }〉

where Q := { q0, p0, p1, p2, p3, p4, q4, q3, q2, q1 } and

δ(0, q0) = (q0, R) δ(1, q0) = (p0, R) δ( , pi) = (pi+1, R) δ( , qi+1) = (qi, L) for each i ∈ [0, 3]

We will give a proof of correctness for the more general construction in the next part.

The residuals of L := (0 + 1)∗1(0 + 1)4 are as follows (for all k ≥ 0):

L0k = (0 + 1)∗1(0 + 1)4

L0k1 = (0 + 1)∗1(0 + 1)4 + (0 + 1)4

L0k10 = (0 + 1)∗1(0 + 1)4 + (0 + 1)3

L0k11 = (0 + 1)∗1(0 + 1)4 + (0 + 1)4 + (0 + 1)3

...

In fact the residuals will be all those languages of the form L+
∑
i∈N (0 + 1)i for a set N ⊆ [0, 4] meaning that there

are 25 = 32 residuals. Thus the minimal DFA for L must contain 16 states, more than that of the two-way DFA that
we have just given.

We will prove the more general case in the next part.

(ii) Let Ln := (0 + 1)∗1(0 + 1)n (for each n ∈ N). We claim that each such language is recognised by a 2-way DFA given
by:

An = 〈{ 0, 1 }, Qn, δn, q0, { pn }〉

where Qn := { qi | i ∈ [0, n] } ∪ { pi | i ∈ [0, n) } and

δ(0, q0) = (q0, R) δ(1, q0) = (p0, R) δ( , pi) = (pi+1, R) δ( , pn) = (qn−1, L) δ( , qj+1) = (qj , L)

for each i ∈ [0, n) and j ∈ [0, n − 1) where ranges over { 0, 1 }. We will now prove that An recognises the intended
language.

Consider a word w ∈ { 0, 1 }∗ that contains R occurrences of the symbol 1. For each r such that 0 ≤ r ≤ R, we
inductively define the prefix r of w by the following:

w0 = ε wr+1 is the shortest prefix of w ending with 1 of which wr is a prefix

In other words, wr is the prefix of w that ends in the rth occurrence of 1.

When reading such a word w, the automaton maintains the invariant consisting of the conjunction of all of the following:

• If it is in state pi, then the head of the automaton will be at a position immediately following a prefix of the form
wr+1(0 + 1)i.

• If it is in state qi, then (i) the head of the automaton will be at a position immediately following a prefix of
the form wr(0 + 1)i, and (ii) for bi+1, . . . , bn ∈ { 0, 1 } s.t. wrbi+1 · · · bn is a prefix of w, it is the case that
wrbi+1 · · · bn /∈ Ln

This follows from the fact that the initial position of the automaton satisfies the invariant (the first symbol of the input
word is in the position immediately following the prefix w0 = ε and the initial state is q0) and it can be checked that
each transition preserves the invariant.

It follows that L(An) ⊆ Ln since if the accepting state is pn is attained in the position immediately after the last
symbol in the word, then the invariant implies that the word must be of the from wr+1(0 + 1)n, i.e. of the form
(0 + 1)∗1(0 + 1)n.

In order to prove that Ln ⊆ L(An) we prove that L(An) ⊆ Ln. Let w ∈ L(An). Then one of two possibilities must
hold: (i) the automaton has reached a non-accepting state with its head just past the end of the word, or (ii) the
automaton’s head never reaches a position just beyond the end of the word.

In the first case, the invariant tells us that indeed w /∈ Ln. It therefore suffices to rule out the second case. That is we
must prove that for every word w the automaton’s head eventually reaches the position just beyond its end.



Note that the invariant tells us that the head never moves to the left of the word. Therfore if the head also never
moves to the right of the word it must be the case that the automaton has an infinite run on w. By inspection of the
transition relation we can also see that an infinite run must reach state q0 infinitely often.

Let w′b be the prefix of w such that b is the right-most position that the head reaches when in state q0.

We claim that there is a prefix w′bb0 of w such that the automaton will also reach b′ in state q0, which gives the
required contradition (since we assumed b is the right-most such position).

If b = 0, then this follows immediately. So consider the case when b = 1. Then the automaton will move its head to b0
and adopt state p0. By induction on the length of the run, we can then see that in fact w must have a prefix of the
form w′bb0 · · · bn such that its head will reach each bi (for 0 ≤ i ≤ n) in state pi and each bj (for 0 ≤ i < n) in state qj .
In particular it will reach position b0 in state q0, as required.

So there exists a two-way DFA of linear size (with respect to n) recognising each Ln. We now prove that the minimal
(ordinary DFA) has exponential size. Since the minimal DFA has size equal to the number of residuals of Ln, it suffices
to prove that Ln has exponentially many residuals.

We claim that the residuals of Ln are precisely those languages belonging to the following family:

R := { RN | N ⊆ [0, n] } where RN = (0 + 1)∗1(0 + 1)n +
∑
i∈N

(0 + 1)i

Proving this claim is sufficient since |R| = 2n+1.

• First we show that every residual of Ln belongs to R. Observe that Ln = R∅ and so Ln ∈ R. We thus just need
to check that R is closed under taking the residual of words of length one (it follows by induction on word-length
that the residual of a word of any length belongs to the family).

Below we use bold-face for members of the alphabet { 0,1 } to distinguish them from the integers 0 and 1.

R0
N = ((0 + 1)(0 + 1)∗)0 + (1(0 + 1)n)0 +

∑
i∈N

((0 + 1)i)0

= (0 + 1)∗1(0 + 1)n + ∅+
∑

i∈{ j∈N | j>0 }

(0 + 1)i−1 = R{ j−1∈N | j>0 } (1)

R1
N = ((0 + 1)(0 + 1)∗)1 + (1(0 + 1)n)1 +

∑
i∈N

((0 + 1)i)1

= (0 + 1)∗1(0 + 1)n + (0 + 1)n +
∑

i∈{ j∈N | j>0 }

(0 + 1)i−1 = R{ n }∪{ j−1∈N | j>0 } (2)

Thus R0
N ∈ R and R1

N ∈ R, as required.

• We now show the converse, that every member of R is in fact a residual of Ln. In other words, we must show
that for each N ⊆ [0, n] there exists a word wN ∈ { 0,1 }∗ such that RN = LwN

n .

We claim that the word w∅ := ε and when N 6= ∅, wN := bmin(N) · · · bn fits the bill where

bi :=

{
0 if i /∈ N
1 if i ∈ N

We argue by induction on the length of wN (up to a maximum length of n+ 1) that LwN
n = RN .

The base case is when wN = ε and thus N = ∅. Since R∅ = Ln = Lεn, the base case holds.

For the induction step, we assume as induction hypothesis that for a word wN = bn · · · bmin(N) with min(N) > 0

we have LwN
n = RN . We must show that LwNb

n = RN ′ where

N ′ =

{
{ j − 1 | j ∈ N } if b = 0

{ n } ∪ { j − 1 | j ∈ N } if b = 1

But LwNb
n = RbN = RN ′ by equations (1) and (2).



(iii) A semi-algorithm for membership can be obtained simply by simulating a run of the 2-way DFA on the candidate
word. Since the automaton is deterinisitic, if the word is accepted by the automaton, the simulation will terminate.

If the word is rejected by the automaton due to the unique run moving off either end of the word, then the simulation
will also terminate.

However if the word is rejected by the automaton because the unique run is infinitely long, then the simulation will
not terminate.

Thus to obtain an algorithm for membership, we must simulate the 2-way DFA on the candidate word and additionally
for each position i in the word maintain a set of states Qi in which the automaton has been when its head points at i.
The algorithm will additionally terminate and announce that the word is rejected by the automaton if the simulation
moves the automaton’s head to a position i in state q such that already q ∈ Qi.

Solution 6.3

(i) Irregular. The language corresponding to the relation, which we claim is irregular, is by definition the following:

L1 := { (a1, b1) · · · (al, bl) | a1 · · · al ∈ lsbf (n) and b1 · · · bl ∈ lsbf (n2) for n ∈ N }

To show that L1 is irregular, we show that it has infinitely many residuals. Suppose for contradiction that it only has
finitely many residuals.

For each integer k ≥ 1, let tk, uk and vk be the following words:

tk := (0, 0) · · · (0, 0)︸ ︷︷ ︸
k-times

(1, 0) uk := (0, 0) · · · (0, 0)︸ ︷︷ ︸
k-times

(1, 0) (0, 0) · · · (0, 0)︸ ︷︷ ︸
(k−1)-times

(0, 1) vk := (0, 0) · · · (0, 0)︸ ︷︷ ︸
(k−1)-times

(0, 1)

Observe that π1(uk) ∈ lsbf (2k) and that π2(uk) ∈ lsbf (22k), and so uk ∈ L1 for each k ≥ 1. It must thus be the case
that for each k ≥ 1 we have vk ∈ Ltk1 .

Since we are assuming that there are only finitely many residuals, there must exist k1, k2 ≥ 1 such that k1 6= k2 and
Ltk1 = Ltk2 . But that means that vk2 ∈ Ltk1 , which is to say that

tk1 vk2 = (0, 0) · · · (0, 0)︸ ︷︷ ︸
k1-times

(1, 0) (0, 0) · · · (0, 0)︸ ︷︷ ︸
(k2−1)-times

(0, 1) ∈ L1

This implies that 22k1 = 2k1+k2 whence 2k1 = k1 + k2 and k1 = k2, which is a contradiction.

(ii) Irregular. Now consider the following relation:

R′2 := { (4k,m) | (4k,m) ∈ R2 for some k ≥ 1 and there is no m′ s.t. (4k,m′) ∈ R2 and m′ > m }

Suppose that (4k,m) ∈ R′2. Then (4k,m) ∈ R2 and so m ≤
√

4k, that is m ≤ 2k. Moreover, there is no m′ > m such
that m′ ≤ 2k. Thus in fact m = 2k. So all elements of R′2 must be of the form (4k, 2k) for some k ≥ 2.

Conversely, since 4k = (2k)2, it follows that all elements of the form (4k, 2k) for k ≥ 2 belong to R′2. Thus we can
characterise R′2 by:

R′2 = { (n2, n) | n = 2k for some k ≥ 1 }

A very similar argument to that for part (i) shows that R′2 is not regular.

Now suppose for contradiction that R2 is regular. The relation < is also regular [needs proof, but we leave as an
exercise] and so the join construction from the lectures tells us that R2◦ < is regular. Thus R2 ∩ (R2◦ <) is regular.
But by definition we must have

R′2 = { (4k,m) | k ≥ 1 and (4k,m) ∈ R2 ∩ (R2◦ <) }

Since
⋃∞
k=1 lsbf (4k) is also regular, we would get that R′2 is regular, a contradiction.

For the next parts we will first prove that the following relation is regular:

R+{ (m1,m2, n | n = m1 +m2, for n,m1,m2 ∈ N }

Note that this is a ternary relation and so its elements will be encoded by words over the alphabet { 0, 1 }3 (instead of
{ 0, 1 }2, as is used for binary relations).



We claim that the DFA A+

〈
Q+, { 0, 1 }, 0̂, δ+, F+

〉
recognises the language encoding R+, where Q+ = { 0̂, 1̂, X },

F+ = { 0̂ }, and δ is given by

δ+(ĉ, (b1, b2, b)) := ĉ′ where b =

{
0 if an even number of c, b1, b2 are 0

1 if an odd number of c, b1, b2 are 0
c′ =

{
0 if fewer than two of c, b1, b2 are 1

1 if at least two of c, b1, b2 are 1

and δ+(ĉ, (b1, b2, b)) = X otherwise. Intuitively A+ implements a half-adder. It represents the ‘carry bit’ in its state and
sums this together with the input bits b1 and b2 to get the output bit b and the state of the new carry bit. (The sink state
X is adopted when it reads an incorrect output bit).

We can formulate this intuition with the following assertion: After reading a word of the form (a1, b1, c1) · · · (ak, bk, ck)
(for k ≥ 0) such that a1 · · · ak ∈ lsbf (m1) and b1 · · · bk ∈ lsbf (m2), and c1 · · · ck ∈ lsbf (n), it will be the case that:

• if n = (m1 +m2), then the automaton will be in state 0̂

• if n+ 2k = (m1 +m2), then the automaton will be in state 1̂

• otherwise the automaton will be in state X.

This assertion can be proved by induction on the length k of this word. The base case in when k = 0, and here the assertion
holds since ε ∈ lsbf (0) and after ‘reading’ the empty word the automaton remains in its initial state, which is 0̂.

For the induction step let us suppose that the automaton has read a word w = (a1, b1, c1) · · · (ak, bk, ck)(ak+1, bk+1, ck+1)
of length k + 1. Let Ak ∈ lsbf (a1 · · · ak), Ak+1 ∈ lsbf (a1 · · · ak, ak+1) Bk ∈ lsbf (b1 · · · bk), Bk+1 ∈ lsbf (b1 · · · bk, bk+1)
Ck ∈ lsbf (c1 · · · ck), Ck+1 ∈ lsbf (c1 · · · ck, ck+1).

Observe that it is always the case that Ak+1 +Bk+1 = Ak +Bk + ak+1.2
k + bk+1.2

k and that Ck+1 = Ck + ck+1.2
k. We

consider each of several cases in turn.

• Suppose first that Ck+1 = Ak+1 + Bk+1. Then Ck + ck+1.2
k = Ak + Bk + ak+12k + bk+12k. It must then be the case

that one of the following holds:

– Ck = Ak + Bk. Then by the induction hypothesis the automaton will be in state 0̂ prior to reading the symbol
(ak+1, bk+1, ck+1). Also it must be the case that ck+1.2

k = ak+12k + bk+12k.

Suppose first that ck+1 = 0. Then it must be the case that ak+1 = bk+1 = 0. Then it must be the case that
δ+(0̂, (ak+1, bk+1, ck+1)) = 0̂.

Suppose now that ck+1 = 1. Then it must be the case that { ak+1, bk+1 } = { 0, 1 } and that δ+(0̂, (ak+1, bk+1, ck+1)) =
0̂.

So in these cases we end up in state 0̂ and we also satisfy the requirement that Ck+1 + 0.2k+1 = Ak+1 +Bk+1.

– Ck+2k = Ak+1 +Bk+1. By the induction hypothesis the automaton will be in state 1̂ prior to reading the symbol
(ak+1, bk+1, ck+1). Also it must be the case that ck+1.2

k = 2k + ak+1.2
k + bk+1.2

k. Thus it must be the case that
ck+1 = 1 and ak+1 = bk+1 = 0.

Thus again by the definition of δ+ we end up in state 0̂ with the required Ck+1 + 0.2k+1 = Ak+1 +Bk+1.

• Suppose now that Ck+1 + 2k+1 = Ak+1 + Bk+1. We can perform a similar case analysis to the above to get that we
end up in state 1̂ (with the required Ck+1 + 2k+1 = Ak+1 +Bk+1). This will use the fact that 2k + 2k = 2.2k = 2k+1.

• The final case is when neither Ck+1 = Ak+1 + Bk+1 nor Ck+1 + 2k+1 = Ak+1 + Bk+1. We can again perform a case
analysis to check that we must end up in state X. (This time we must check three possibilities for the induction
hypothesis. Ck = Ak +Bk, Ck + 2k = Ak +Bk and ‘other’, giving us states 0̂, 1̂ and X respectively immediately after
reading the kth element.

Since 0̂ is the only final state, it follows immediately that L(A+) ⊆ L(R+). We can also see that L(A+) ⊆ L(R+) since
for w ∈ L(A+) either a run of A+ in w will end in 1̂, in which case the assertion tells us that w represents a triple of the
form (m1,m2,m1 +m2 + 1), or else it will end in state X, which tells us in particular that w does not represent a triple of
the form (m1,m2,m1 +m2).

Thus L(A+) = L(R+).

For technical reasons it will be helpful to consider a variant of R+ which we call R=
+. This differs in two ways: (i) it

makes a copy of the first number being summed, and (ii) although R=
+ can naturally be seen as a quarternary relation, we

in fact view it as a binary relation consisting of pairs of pairs (this will allow us to use Post below):

R=
+ := { ((m1,m2), (m1,m1 +m2)) | m1,m2 ∈ N }

The regularity of R=
+ follows from the regularity of R+.



(iii) Regular We prove something a bit more general: for every λ ∈ N it is the case that the relation

Rλ := { (n, λ.n) | n ∈ N }

is regular. (The relation in the question is the special case when λ = 5).

We argue by induction on λ ∈ N. The base case is when λ = 0, which is trivial, since R0 = { (n, 0) | n ∈ N } =
({ 0, 1 } × { 0 })∗.
For the induction step, suppose that we have already shown that Rλ is regular. We can view Rλ as a regular set of
pairs of numbers and we have

Rλ+1 = { (n, n+ λ.n) | n ∈ N } = { p | ((n, λ.n), p) ∈ R=
+ } = { p | (p0, p) ∈ R=

+ for some p0 ∈ Rλ } = PostR=
+

(Rλ)

Since R=
+ and Rλ are both regular, the lectures tell us that PostR=

+
(Rλ) and thus Rλ+1 is also regular.

(iv) Regular The set of pairs L7 = { (n, 7) | n ∈ N } is regular since it is represented by the language given by the following
regular expression  ∑

b1,b2,b3∈{ 0,1 }

(b1, 1)(b2, 1)(b3, 1)

 ({ 0, 1 } × { 0 })∗

The required language is thus given by PostR=
+

(L7).

(v) Regular The required relation is given by taking the join R5 ◦L7 of the relations from (iii) and (iv). We saw in lectures
that taking the join of regular relations produces a regular relation.

(vi) Regular Let us consider the following variant of R+ (which must also be regular):

R̂+ := { (n1,m1), (n2,m2), ((n1, n2),m1 +m2) | n1, n2,m1,m2 ∈ N }

Note that n1 and n2 are only treated trivially by R̂+ (they are copied).

We then get
P := { ((n,m), 2n+ 3m) | n,m ∈ N } = PostPost

R̂+
(R2)(R3)

(using R2 and R3 from part (iii)). Thus P is also regular.

The language K := 0∗10∗ is regular and encodes the set { 2k | k ∈ N }. The required relation is equal to

PreP (K)

and is thus regular (using the theorem concerning the preservation of regularity by Pre from the lectures).


