Automata and Formal Languages — Homework 4

Due Wednesday 4th November 2015 (TA: Christopher Broadbent)

The lectures (slide 9 of 'implementing operations on sets') present a 'generic algorithm' $BinOp[\odot](A_1, A_2)$ paramaterised by a binary Boolean operation \odot . (For example, \odot can be substituted for one of \wedge , \vee or \Leftrightarrow to produce a concrete algorithm for the substituting operation). The algorithm takes DFAs A_1 and A_2 as input and returns a DFA A such that $\mathcal{L}(A) = \mathcal{L}(A_1) \widehat{\odot} \mathcal{L}(A_2)$ where

$$L_1 \widehat{\odot} L_2 := \{ w \in \Sigma^* \mid (w \in L_1) \odot (w \in L_2) \}.$$

For example

$$L_1 \widehat{\wedge} L_2 := \{ w \in \Sigma^* \mid (w \in L_1) \wedge (w \in L_2) \} = L_1 \cap L_2$$

Exercise 4.1

- (a) Draw a three state DFA A_1 recognising ab^* .
- (b) Draw a three state DFA A_2 recognising ba^* .
- (c) Draw the DFA recognising $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ that is computed by $BinOp[\vee](A_1, A_2)$.

Exercise 4.2

Describe concrete algorithms based on $BinOp[\odot](A_1, A_2)$ that achieve the following. You may need to modify the algorithm beyond merely substituting \odot , but the structure of your algorithms should be similar to $BinOp[\odot](A_1, A_2)$.

- (a) An algorithm that takes two DFAs A_1 and A_2 as input and returns a DFA recognising $\overline{\mathcal{L}(A_1)} \cap \overline{\mathcal{L}(A_2)}$.
- (b) An algorithm that takes a DFA A and a reverse deterinistic ¹ NFA B that has at most one final state q_f , and returns a DFA recognising

$$\mathcal{L}(A) \cap \mathcal{L}(B)^R$$

where L^R denotes the reverse of L. ²

(c) Let _?_: _ be the ternary Boolean operator whose truth table has entries of the following form:

b_1	b_2	b_3	$b_1 ? b_2 : b_3$
1	b_2	b_3	b_2
0	b_2	b_3	b_3

We would like an algorithm that takes three DFAs A_1 , A_2 and A_3 as input and returns a DFA recognising

$$\{ w \in \Sigma^* \mid (w \in \mathcal{L}(A_1)) ? (w \in \mathcal{L}(A_2)) : (w \in \mathcal{L}(A_3) \}$$

¹An NFA $A = (Q, \Sigma, \delta, Q_0, F)$ is reverse-deterministic if $(q_1, a, q) \in \delta$ and $(q_2, a, q) \in \delta$ implies $q_1 = q_2$, i.e., no state has two input transitions labelled by the same letter.

²For a word $w = a_1 \cdots a_k$, the reverse of that word is defined by $w^R := a_k \cdots a_1$, and for a language $L \subseteq \Sigma^*$, the reverse of L is defined to be $L^R := \{ w^R \in \Sigma^* \mid w \in L \}$.

Solution 4.1

Solution 4.2

```
Input: DFAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1) A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)
Output: DFA A = (Q, \Sigma, \delta, Q_0, F) with L(A) = \overline{L(A_1)} \cap \overline{L(A_2)}
  1 Q, \delta, F \leftarrow \emptyset
  2
      q_0 \leftarrow [q_{01}, q_{02}]
      W \leftarrow \{q_0\}
       while W \neq \emptyset do
  4
          pick [q_1, q_2] from W
  5
          add [q_1, q_2] to Q
  6
          if (q_1 \notin F_1) and (q_2 \notin F_2) then add [q_1, q_2] to F
  7
          for all a \in \Sigma do
  8
               q_1' \leftarrow \delta_1(q_1, a); q_2' \leftarrow \delta_2(q_2, a)
  9
10
               if [q'_1, q'_2] \notin Q then add [q'_1, q'_2] to W
               add ([q_1, q_2], a, [q'_1, q'_2]) to \delta
11
```

Input: DFA $A=(Q_1,\Sigma,\delta_1,q_{01},F_1)$ and reverse deterministic NFA $B = (Q_2, \Sigma, \delta_2, Q_{02}, \{ q_f \})$ **Output:** DFA $C = (Q, \Sigma, \delta, Q_0, F)$ with $L(C) = L(A) \cap L(B)^R$ $Q, \delta, F \leftarrow \emptyset$ 1 2 $q_0 \leftarrow [q_{01}, q_f]$ $W \leftarrow \{q_0\}$ 3 while $W \neq \emptyset$ do 4 pick $[q_1, q_2]$ from Wadd $[q_1, q_2]$ to Q6 7 if $(q_1 \in F_1)$ and $(q_2 \in Q_{02})$ then add $[q_1, q_2]$ to Ffor all $a \in \Sigma$ do 8 9 $q_1' \leftarrow \delta_1(q_1, a);$ $q_2' \leftarrow \text{ unique } p \text{ s.t. } \delta_2(p, a) = q_2$ 10 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W11**add** $([q_1, q_2], a, [q'_1, q'_2])$ **to** δ 12

```
Input: DFAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1) \ A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)
A_3 = (Q_3, \Sigma, \delta_3, q_{03}, F_3)
Output:
                 DFA A
                                             (Q, \Sigma, \delta, Q_0, F) with L(A) =
L(A_1) ? L(A_2) : L(A_3)
  1 Q, \delta, F \leftarrow \emptyset
  2 \quad q_0 \leftarrow [q_{01}, q_{02}, q_{03}]
  3 \quad W \leftarrow \{q_0\}
      while W \neq \emptyset do
          \mathbf{pick}\ [q_1,q_2,q_3]\ \mathbf{from}\ W
  5
  6
          add [q_1, q_2, q_3] to Q
  7
          if (q_1 \in F_1) ? (q_2 \in F_2) : (q_3 \in F_3) then add [q_1, q_2]
\mathbf{to}\; F
          for all a \in \Sigma do
  8
               q_1' \leftarrow \delta_1(q_1, a); \ q_2' \leftarrow \delta_2(q_2, a); \ q_3' \leftarrow \delta_3(q_3, a);
 9
10
               if [q_1', q_2', q_3'] \notin Q then add [q_1', q_2', q_3'] to W
               add ([q_1, q_2, q_3], a, [q'_1, q'_2, q'_3]) to \delta
11
```