Automata and Formal Languages — Homework 4

Due Wednesday 4th November 2015 (TA: Christopher Broadbent)

The lectures (slide 9 of *'implementing operations on sets'*) present a 'generic algorithm' $BinOp[{\odot}|(A_1, A_2)$ paramaterised by a binary Boolean operation ⊙. (For example, ⊙ can be substituted for one of \wedge , \vee or \Leftrightarrow to produce a concrete algorithm for the substituting operation). The algorithm takes DFAs A_1 and A_2 as input and returns a DFA A such that $\mathcal{L}(A)$ = $\mathcal{L}(A_1) \widehat{\odot} \mathcal{L}(A_2)$ where

$$
L_1\,\widehat{\odot}\,L_2:=\{\,w\in\Sigma^*\mid (w\in L_1)\odot(w\in L_2)\,\}.
$$

For example

$$
L_1 \widehat{\wedge} L_2 := \{ w \in \Sigma^* \mid (w \in L_1) \wedge (w \in L_2) \} = L_1 \cap L_2
$$

Exercise 4.1

- (a) Draw a three state DFA A_1 recognising ab^* .
- (b) Draw a three state DFA A_2 recognising ba^* .
- (c) Draw the DFA recognising $\mathcal{L}(A_1) \cup \mathcal{L}(A_2)$ that is computed by $\text{BinOp}[\vee](A_1, A_2)$.

Exercise 4.2

Describe concrete algorithms based on $BinOp[{\bigcirc}](A_1, A_2)$ that achieve the following. You may need to modify the algorithm beyond merely substituting \odot , but the structure of your algorithms should be similar to $BinOp[\odot](A_1, A_2)$.

- (a) An algorithm that takes two DFAs A_1 and A_2 as input and returns a DFA recognising $\overline{\mathcal{L}(A_1)} \cap \overline{\mathcal{L}(A_2)}$.
- (b) An algorithm that takes a DFA A and a reverse deterinistic ¹ NFA B that has at most one final state q_f , and returns a DFA recognising

 $\mathcal{L}(A) \cap \mathcal{L}(B)^R$

where L^R denotes the *reverse* of L.²

(c) Let $2:2:2$ be the ternary Boolean operator whose truth table has entries of the following form:

We would like an algorithm that takes three DFAs A_1 , A_2 and A_3 as input and returns a DFA recognising

{ $w \in \Sigma^* \mid (w \in \mathcal{L}(A_1))$? $(w \in \mathcal{L}(A_2))$: $(w \in \mathcal{L}(A_3)$ }

¹An NFA $A = (Q, \Sigma, \delta, Q_0, F)$ is reverse-deterministic if $(q_1, a, q) \in \delta$ and $(q_2, a, q) \in \delta$ implies $q_1 = q_2$, i.e., no state has two input transitions labelled by the same letter.

²For a word $w = a_1 \cdots a_k$, the reverse of that word is defined by $w^R := a_k \cdots a_1$, and for a language $L \subseteq \Sigma^*$, the reverse of L is defined to be $L^R:=\{\;w^R\in\Sigma^*\;|\;w\in L\;\}.$

Solution 4.2

 ω

Input: DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1) A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** DFA $A = (Q, \Sigma, \delta, Q_0, F)$ with $L(A) = \overline{L(A_1)} \cap \overline{L(A_2)}$

- 1 $Q, \delta, F \leftarrow \emptyset$
- 2 $q_0 \leftarrow [q_{01}, q_{02}]$
- 3 $W \leftarrow \{q_0\}$
- 4 while $W \neq \emptyset$ do
- 5 **pick** $[q_1, q_2]$ from W
- 6 add $[q_1, q_2]$ to Q
- 7 if $(q_1 \notin F_1)$ and $(q_2 \notin F_2)$ then add $[q_1, q_2]$ to F
- 8 for all $a \in \Sigma$ do
- 9 $q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$
- 10 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 11 **add** $([q_1, q_2], a, [q'_1, q'_2])$ to δ

Input: DFA $A = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and reverse deterministic NFA $B = (Q_2, \Sigma, \delta_2, Q_{02}, \{ q_f \})$ **Output:** DFA $C = (Q, \Sigma, \delta, Q_0, F)$ with $L(C) = L(A) \cap L(B)^R$

- 1 $Q, \delta, F \leftarrow \emptyset$
- 2 $q_0 \leftarrow [q_{01}, q_f]$
- 3 $W \leftarrow \{q_0\}$
- 4 while $W \neq \emptyset$ do
- 5 pick $[q_1, q_2]$ from W
- 6 add $[q_1, q_2]$ to Q
- 7 if $(q_1 \in F_1)$ and $(q_2 \in Q_{02})$ then add $[q_1, q_2]$ to F
- 8 for all $a \in \Sigma$ do
- 9 $q'_1 \leftarrow \delta_1(q_1, a);$
- 10 $\delta_2' \leftarrow$ unique p s.t. $\delta_2(p,a) = q_2$
- 11 if $[q'_1, q'_2] \notin Q$ then add $[q'_1, q'_2]$ to W
- 12 **add** $([q_1, q_2], a, [q'_1, q'_2])$ to δ

Input: DFAs $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1) A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ $A_3 = (Q_3, \Sigma, \delta_3, q_{03}, F_3)$ **Output:** DFA $A = (Q, \Sigma, \delta, Q_0, F)$ with $L(A) =$ $L(A_1) \hat{?} L(A_2) \hat{.} L(A_3)$ 1 $Q, \delta, F \leftarrow \emptyset$ 2 $q_0 \leftarrow [q_{01}, q_{02}, q_{03}]$ 3 $W \leftarrow \{q_0\}$ 4 while $W \neq \emptyset$ do 5 **pick** $[q_1, q_2, q_3]$ from W 6 add $[q_1, q_2, q_3]$ to Q 7 if $(q_1 \in F_1)$? $(q_2 \in F_2)$: $(q_3 \in F_3)$ then add $[q_1, q_2]$ to F 8 for all $a \in \Sigma$ do 9 $q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a); q'_3 \leftarrow \delta_3(q_3, a);$ 10 if $[q'_1, q'_2, q'_3] \notin Q$ then add $[q'_1, q'_2, q'_3]$ to W

11 **add** $([q_1, q_2, q_3], a, [q'_1, q'_2, q'_3])$ to δ