Technische Universitat Miinchen Winter term 2015/16
I7
Prof. J. Esparza / Dr. D. Suwimonteerabuth / Dr. C. Broadbent 12.10.2015

Automata and Formal Languages — Homework 2

Due Friday 23rd October (TA: Christopher Broadbent)

Exercise 2.1
Consider two alphabets ¥; and 9. Let h be a homomorphism h : ¥ — ¥5—that is a map such that

(i) h(e) =€ and (ii) h(wiws) = h(wy)h(we) for all w €]
(a) Prove that if L C X7 is regular, then h(L) C ¥} is also regular.

(b) Prove that h is injective if and only if the following holds:
For all L C X7 it is the case that if h(L) is regular, then L is also regular.

(c¢) Show that for every finite alphabet ¥, there exists an injective homomorphism h : ¥ — B*, where B = { 0,1 }.

(d) Let X be a finite alphabet such that [X| > 1. Let U = { e } be the alphabet containing just one element. Prove that
there exists no homomorphism ¢ : ¥* — U* that is injective.

Exercise 2.2

Recall the definition of residual: Given a language L C ¥* and w € ¥*, the w-residual of L is the language LY = { u €
¥* |wu € L }. A language L' C 3* is a residual of L if it is a w-residual of L for some w € X*.
Determine the residuals of the following languages over ¥ = {a, b}: (ab+ ba)*, (aa)*, and {a™b"c™ | n > 0}.

Exercise 2.3
Given a language L C ¥* and w € ¥*, we denote L = {u € ¥* | uw € L} . A language L' C ¥* is an inverse residual of L
if L' = "L for some w € ¥*.

(a) Determine the inverse residuals of the first two languages in Exercise 2.2.
(b) Show that a language is regular iff it has finitely many inverse residuals.

(¢) Does a language always have as many residuals as inverse residuals?

Exercise 2.4

We consider encodings of the natural numbers N ={ 0,1,2,... } in respectively B* and U* (where B and U are as in Exercise
2.1). Observe that the binary encoding B(n) for each n € N can be seen as an element of B* where trailing Os are suppressed.
(E.g. B(0) =€, B(1) =1, B(2) = 10, B(6) = 110). The unary encoding U(n) can be seen as an element of U* where U(n) is
the word consisting of n es. (E.g. (U(0) =€, U(1) =, U(2) = 0o, U(G) = e 00 e ee).

(a) Consider a language L C U* encoding the set of natural numbers S := Ufl(L) C N. Describe the sets of the form
T =U"*(L') C N where L' is a residual of L.
Do the same for L C B* and B.
rove that there exists a set of natural numbers S C N such that 1s regular but is not regular.
(b) P hat th i f 1 bers S C N such that B(S) is regular but U(S) i gul
[Hint: Recall that regular languages have a finite number of residuals. Consider using exponentiation to define a

candidate 5]

(¢) Prove that for every S C N such that U(S) is regular, it is also the case that B(S) is regular.

Exercise 2.5

An NFA A = (Q,%,0,Qo, F) is reverse-deterministic if (¢1,a,q) € § and (go,a,q) € 0 implies g1 = g2, i.e., no state has two
input transitions labelled by the same letter. Further, A is trimmed if every state accepts at least one word, i.e., if La(q) # 0
for every q € Q.

Let A be a reverse-deterministic, trimmed NFA with one single final state ¢y. Prove that NFAtoDFA(A) is a minimal

DFA.

[Hint: Show that any two distinct states of NFAtoDFA(A) recognize different languages.|

Exercise 2.6

Let us fix an alphabet ¥ = { a; | i € [1,n] } of size n. For each a; € ¥ and w € ¥* we define #,,(w) to be the
number of occurrences of a; in w. (E.g. #4,(a1a02a102a2) = 3 and #4,(€) = #4,(a1a1) = 0). The Parikh vector P(w)
associated with a word w € X* is the vector ¥ € N that counts the number of occurrences of each symbol in w. That is:
P(w) = (#aq,(w), ..., #q, (w)). For a language L C X* we call P(L) := { P(w) | w € L } the Parikh image of L.

(a)
(b)

(c)

Where a := a; and b := ag, characterise the sets P((ab)*) and P({ a"b™ | n >0 }).

For arbitrary languages L1, Lo C ¥* (not necessarily regular) describe how P(L) relates to P(L;) and P(L2) in each
of the following cases: (i) L = Ly U Lo, (ii) L = Ly N Ly, (iii) L = Ly - Lo, (iv) L =L}, (v) L = L} .

A set of vectors V' C N™ is linear if it takes the form V = { 0 = ¥p + M1 + -+ + MOk | M1,..., Ax € N } for some
vectors g, U1, ..., U, € N7,

Prove that for every linear set V' C N™ there exists a regular language L C X* such that V = P(L).

A set of vectors U C N™ is called semi-linear if it is of the form U =V U--- UV, for some linear sets V1,..., V,,.

Prove that for every semi-linear set U C N™ there exists a regular language L C X* such that U = P(L).
Prove that for all regular expressions eq, e3 it is the case that P((e1 + e2)*) = P(efes).

We inductively define two operations on regular expressions é that do not contain union (addition). Intuitively Ext.(é)
(‘extract) is the regular expression formed by deleting all sub-expressions that are not in the scope of an *. Intuitively
Str.(€) (‘strip *') is the regular expression formed by deleting all sub-expressions that are in the scope of an .

Ext.(a;) =€ Ezt.(é163) = Eat.(é1)Ext.(€3) Erxt.(e*)=¢"
Stri(a;) = a; Stri(€163) = Str.(€1)Str.(€3) Stre(e) =€

Prove that for all regular expressions € that do not contain union it is the case that
P(e*) = P(Ext.(e) Str.(&)" +¢)

Prove that P(L) is semi-linear for every regular language L C 3*.

(Observe that combining (g) and (d) tells us that the semi-linear sets are precisely the Parikh images of the regular
languages. How cool is that?)

Solution 2.1

We introduce some additional notation that is used throughout this solution. Suppose that @ is a finite set of states and ¥
is a finite alphabet.
Given a(n e-free) transition relation A C Q x ¥ x @ and word w € ¥*, we write ¢ % g2 to mean that an NFA with

transition relation A has a run on w from state ¢; to state gs. Formally we can define %) by induction on the structure of
w:
q % q and q % g2 if for some p € Q it is the case that ¢; % p and (p,a,q2) € A

for all q,q1,¢2 € Q.
In a similar vein, for a relation of the form A’ C Q x X1 x @, which we call a non-empty word transition relation, we also
write ¢ % g2 to mean that there is a run on w from ¢; to ¢o in a regular automaton with transition relation A’. Formally

this overloads notation since the inductive definition must be modified to reflect the fact that A’ labels its transitions over
Y* instead of X:

q ﬁ q and Qn wA—lf> qo if for some p € @ it is the case that ¢ %) p and (p,w’,q2) € A’

By definition, if A = (X, Q, A, Qo, F) is an e-free NFA (resp. regular automaton whose transition relation is a non-empty
word transition relation) it is the case that

L(A):{w62*|qo%>qf for some qo € Qp and qf € F' }
(a) Suppose that L C X7 is regular. There must be an e-free finite automaton 4; = (X1, Q, A1, Qo, F) such that L(A;) = L.

It suffices to show that there is a regular automaton As such that £(A3) = h(L). In fact we will only use the special
case of regular automata in which the transition relation is a non-empty word transition relation.

We claim that the regular automaton As is as required, where Ay = (X2, @, A, Qo, F') with Ay defined by
AQ = { (qlah(a)qu) ‘ ((h,aa(h) S A1 }

We now prove that A, is indeed as required

We argue by induction on the length of w € 33 that for all ¢1,¢2 € @ it is the case that
q1 % q2 if and only if w = h(wp) for some wy € XJ such that ¢; %’» ga.
’ 1

x The base case is when w = e.
Since A; is e-free and Ay has a non-empty word transition relation, it must be the case that

< iff = iff <,
q1 ~ q2 1 q1 = g2 1 q1 ~ q2

Since h is a homomorphism, h(e) = e. Thus taking wy = € shows us that the hypothesis holds in the base
case.

* For the induction step consider w € E; and q1, g2 € Q. By definition

¢ AL> q2 iff there exist wy € X3, wq € Z; and p € Q s.t. w=wiwy and ¢ %) p and (p,wa, q2) € Ay
2 2

By the induction hypothesis, for wy € ¥% such that |w;| < |w| it must be the case that

el % D iff wy = h(wg) for some wy € ¥ such that ¢ % D
2 1

Moreover, by the definition of Ag, (p, w2, qa2) € Ag iff there exists a € ¥y such that wy = h(a) and (p,a,g2) €
A;. Combining all of the above gives us

¢ Al> g2 iff there exist wy € X} and a € ¥y and p € @ s.t. w = h(wo)h(a) and ¢; % p and (p,a,q2) € Ay
2 1

Since h is a homomorphism, h(wg)h(a) = h(wpa), and so by additionally considering the inductive definition
of % we get the required conclusion:
1

qQ % 42 iff 91 =q it q % g2 where w = h(wpa)
2 1

()

In particular we have for every qop € Qo and gy € F and w € X5 that

Qo AL> qr iff Qo %) gy for some wy € X7 s.t. w = h(wp)
2 1

That is to say, w € L(As) iff w € h(L(A1)), in other words L£(Az2) = h(L), as required.
|
= Suppose that h is an injective homomorphism and that L C Xi is such that h(L) is regular. There must

then be a finite automaton Ay = (32, Q, A2, Qo, F') such that £L(Az) = h(L). We construct a finite automaton
Al = (217 Q7 Ala Q07 F) by deﬁning Al by

h(a
Ar=={(q1,0,¢2) [a €%y and ¢4 ’ﬁ() 2 }
2
We claim that £(A;) = L (and hence that L is indeed regular).

By induction on the length of w (which looks similar to the proof of (a)) we can get that for every w € X7 and
q1,q2 € Q it is the case that

oy iff L),
a1 A a2 Q1 . a2
Thus in particular, for every qo € Qo, and g5 € Qf, and w €]
N iff b,
q0 A qf 40 . ar

We now can finish the proof of the claim that £(A;) = L.
Suppose first that w € L. Then, of course, h(w) € h(L) and so by assumption h(w) € L£L(A3), which is to say that

qo %w)> ¢ whence qo Al> gy and so w € L£(A;). Thus we have L C L(A,).
2 1

Note that so far we have not used the assumption that h is injective. We now use this assumption to prove that
L(A1) C L, which combined with the inclusion above completes the proof.

Let w € L(A;). Then g % gy for some gqo € Qo and gy € F. It follows that gy %E)% gy and so h(w) € L(A2) =
1 2

h(L). It must thus be the case that there exists some wg € L such that h(wg) = h(w). Since h is injective, wy = w
and so it is also the case that w € L. Thus £(A;) C L, as required.]

< We prove the contrapositive by showing that if A is not injective then there exists a language L C 37 that is not
regular but is also such that h(L) is regular.

Suppose that h is not injective. Then there must exist distinct a,b € 31 such that h(a) = h(b). Let us define
w := h(a) = h(b) € X3. The language L = { (a™b™) | n € N } is irregular. However, h(L) = { (w™w™) |n € N} =
{ (ww)™ | n € N }. This is just the regular language given by (ww)*. U

Suppose that ¥ = { a1,...,a, }. Let us write B(i) to denote the binary representation of the natural number ¢ for
1 < i < n. Thus B(i) € B*. Let us further define k¥ to be the maximum number of digits appearing in B(i) for any
1 <i<n. We can then define h : ¥ — B* by iL(ai) := 0F~IBOIB(7). Observe that for every 1 < i < n it is the case
that |a;| = k (each letter maps to a word in B* of the same length).

h induces a unique homomorphism A : £¥* — B* defined inductively by:

h(e) := e and h(wa) := h(w)h(a)

We need to check that h is injective. We prove by induction on the total length of words wy and ws in X7 that for all
such words it is the case that h(w;) = h(ws) implies that w; = ws.

The base case is when w; = wa = €, which is immediate. For the induction step, suppose that w; = wja for some letter
a € ¥, and that h(w|a) = h(w})h(a) = h(w,). Since h(a) # € and so h(w:) # e, it must be the case that h(ws) # €
and so wq # €. Thus for some w), € X7 and letter b € 3 it is the case that wy = w}bd.

Thus we have h(w})h(a) = h(wh)h(b). Since h maps letters to words of length k, |h(a)| = |h(b)| = k. Thus it must
be the case that h(a) = h(b). Since h is, by construction, injective, it follows that a = b. (Let us set ¢ := a = b).
Moreover, we have h(w]) = h(w}) and so by the induction hypothesis, w] = wj. Let us say w := w} = w}.

Thus wy = wy = we, as required.]

(d) Suppose for contradiction that such an injective homomorphism does exist. Since |X| > 1, there must exist distinct
a,b € 3. It must be the case that for some m,n € N we have h(a) = o™ and h(b) = ™. Thus h(a)h(b) = h(b)h(a) =
o™t Since h is a homomorphism, we thus get h(ab) = h(a)h(b) = h(b)h(a) = h(ba), which contradicts injectivity,
since by assumption ab # ba. Ll

Solution 2.2

e For (ab+ ba)*. We give the residuals as regular expressions: (ab + ba)* (residual of €); b(ab + ba)* (residual of a);
a(ab + ba)* (residual of b); §) (residual of aa). All other residuals are equal to one of these four.

e For (aa)*. We give the residuals as regular expressions: (aa)* (residual of ¢); a(aa)* (residual of a); 0 (residual of b).
All other residuals are equal to one of these three.

e For {a"b"c™ | n > 0}: Every prefix of a word of the form a™b"c¢™ has a different residual. For all other words the
residual is the empty set. There are infinitely many residuals.

Solution 2.3

(b) Let L® be the reverse of L. Since uw € L iff wfu? € L®, we have u € YL iff uf® € (LR)w. So K is an inverse residual
of L iff K® is a residual of L®. In particular, the number of inverse residuals of L is equal to the number of residuals of L.
Now we have:

L is regular
iff LT is regular
iff LT has finitely many residuals
iff L has finitely many residuals

(c) No. Consider the language L over {a,b} containing all words ending with a. The language has two residuals:

v _ e+ (a+b)*a if w=w'a for some w € {a,b}*
| (a+b)*a if w = w'b for some w € {a,b}* or w=¢

However, it has three inverse residuals:

(a+b)*a fw=e
YL={¢ (a+b)* if w=wa for some w € {a,b}*
0 if w = w'b for some w € {a,b}*

Solution 2.4

(a) e For the unary encoding the residuals represent sets of numbers of the form 7, = { n € N|m +n € L } for each
m € N.

e For the binary encoding, the residuals represent sets of numbers of the form T,,, = { n € N | m.2leganl+l 4y e [}

where we define
log, k& ifk>1
logy k = 082 1 =
-1 ifk=0

Note that [B(n)| = |loghn| + 1 so that B(m.2l°g 41y = B(m) 00 and B(m.2ll2)1 4) = B(m)B(n).
|B(n)|-times
(b) Let S ={2"|neN}. Then B(S) = 10* and so is regular.
We now prove that U(S) is irregular. It suffices to show that U(S) has infinitely many residuals.

The residuals of U(S) take the form R, = { " | k +m = 2" for some n € N } for each m € N. Since we are working
over a unary alphabet, words are uniquely determined by their length, and so as in part (a) it is helpful to consider
residuals as the set of numbers U™ (S) that they define:

T ={|w||weUy,}={k]|k+m=2" for somen € N}

It suffices to show that there are infinitely many such sets T,,. Consider the special cases of the form V, := Tyri1_or
for each r € N.

Let r > 1. Since 2" + (271 — 27) = 2" for n = r + 1, it must be the case that 2" € V..

Now let ' € N be such that 0 < 7/ < r. Then 2" 4 (2"t —27) = 2" (1 4+ 2"+1=""2"~"") where r +1 — ' > 0 and
r — ' > 0. Dividing this number by 2 thus leaves remainder 1 whence it cannot be of the form 2™ for n € N (since
numbers of the latter form leave 0 remainder upon division by 2). We can thus infer that r’ # V..

Putting this together tells us that amongst the sets T}, is the infinite collection of sets: Vi, Vo, V3,..., V.., ... for each
r > 1. To see that this collection is indeed infinite we show that V. # V. for every r # 7’.

Suppose for contradiction that there exist r # 7’ such that V., = V.. Without loss of generality assume that r’ < r.
Then as we have previously seen 2" € V,., but 2" ¢ V.., which implies that V,. # V. after all, a contradiction. |

I am going to save this question for a subsequent problem sheet. You will learn some techniques in subsequent lectures
that will make for a much more elegant proof than using the apparatus currently at your disposal. (Look out for
Presburger Arithmetic). U

Solution 2.5

Let B = NFAtoDFA(A) and let @1, Q2 be two distinct states of B. Then @)1 and Q9 are sets of states of A, and we have
Lp(@Q;) = quQi La(q) for i = 1,2. We prove Lp(Q1) # Lp(Q2). Assume the contrary. Then, since @1 # Q2 , there is
q1 € Q1 \ g2. Since A is trimmed, the L4(q) contains at least one word w. Since Lg(Q1) = Lp(Q2), we have w € L(g2) for
some ¢q2 € (2, and further ¢; # ¢o. Since gy is the unique final state of A, the NFA has two paths ¢1dwgy and gad0wgy. Since
these paths start at different states and end at the same state, there is a prefix w’a of w, two different states ¢}, ¢}, and a
state ¢ such that ¢10w’q]dag and g20w’ghdaq. So A is not reverse-deterministic, contradicting the assumption.

Solution 2.6

(a)

(b)

()

(d)

Both languages have the same Parikh images namely the set

{(n,n)|neN}

(i) P(L) = P(L1) UP(Ls), (i) P(L) = P(L1) N P(Ly), (iii) P(L) = P(L1) + P(La), (iv) P(L) = Upen Timy L1 U
{(0....,0) } (v) P(L) = Upen iy n

Suppose that @; = (ji,...,5%) for each 0 < i < k. Let w; := ajﬁ -.-all for each i. By construction P(w;) = v;. We
thus have for each 1 <4 < k that P(w}) = { hiw; | \i € N }. Moreover P(wowy ---w}) =V. U

This follows from the fact that every linear set is the Parikh image of a regular language and the fact that regular
languages are closed under union. That is, for each V; there must exist a regular language L; such that P(L;) = V;.
Then P (U2, L;) = U. Ll

We have w € (e; + ez)* iff w =¢;, ---e;, for some 0 < k such that i1,...,ix € { 1,2 }. To compute the Parikh vector
for w we must sum the Parikh vectors for each of the 7;. That is:

k
P(w) =Y Plei,) =p1Pler) + paP(ea) = Plef*eh?) € Plefes)

j=1

taking p1 :=|{ r € [1,k] | i =1 }| and pa := |{ r € [1, k] | i, = 2 }|, where we take the empty sum to be (0,...,0) (and
consider the sum to be empty when k = 0).

Thus P((e1 + e2)*) C P(ejesd).

A very similar argument in the opposite direction gives the reverse inclusion and thus establishes the required result.

(]

Recall that €* =Y ;7 e*. Thus e* = e+ Y ,-, €. It thus suffices to prove that
oo o0

P (Z 8’“) =P (E;z:t*(é) > Stm(é’“))
k=1 k=1

This in turn follows from the claim that for every k > 1 it is the case that
P(e*) = P(Eat.(e)Str.(e%))

We prove this claim by induction on the structure of e.

e One base case is when € = a; for some 1 < i < n (i.e. when it is a letter). Trivially af = ea® = Ext,(a;)Str.(a;)*.
The situation is similar for the other base cases (when € € { €,0 }.

e Suppose € = €1€3. Then (by properties of P(_) and the induction hypothesis):
PE*) = P@E") +P&") = P(Bxt,(61)Str.(61)F) + P(Ext,(63)Str.(6)")
= P(Eut.(€1)) + P(Ext.(62)) + P(Str.(€1)*) + P(Str.(2)")
= P(Ezt, (€1) Ext,(5)(Str.(€1) Str, (62))F) = P(Ext, (¢)Str.(2)*)
e Suppose € = &;. Then since k > 1, &* = (&")* = &* = Eut,(¢) = Ext,(e)e* = Ext,(€)Str.(e)*.

(]

(g) Let L be a regular language. Then there must be some regular expression e for L. We first show that for every regular
expression e. We will show that for every regular expression e there exists a regular expression €’ such that P(e) = P(e’)
where €’ is of the form

=W +Wo+ -+ Wy
where each W; has the form
Wi =y up(vg) - (vh)
where the u; and v§ are just words in X*. It follows quickly from definitions that the Parikh image of a W; of such a
form is linear. It thus follows that P(e’) = P(e) is semi-linear.

In order to prove the existence of such an e/, we will argue by induction on the following properties of e ordered
lexicographically: (i) the star height of e [defined below], and (ii) the structure of e.

The principle of induction allows us to apply the induction hypothesis to a structurally bigger term (e.g. a term
including more + symbols) so long as the star height (which we give a greater priority) decreases.

The star height sh(e) of a regular expression e intuitively measures the depth of nesting of x. More precisely:

sh(a;) =0 sh(e*) =sh(e)+1 sh(eres) = sh(er + shez) = max(sh(e1), sh(ez))

So let us consider the structure of e

e If e is a letter, € or (), then we just take e’ := e.

e If e = ejey, then by the induction hypothesis there exist €] and e} of the required form such that P(e) = P(e}e).
Since in general language concatenation and union are associative, we can just ‘multiply out the brackets’ in the
expression e} el to get e’ of the required form.

e If e = 1 + e, then by the induction hypothesis there must be €} and €} of the required form such that P(e) =
P(e} + ¢€5). But then we can just take ¢ = e} + e}.

e If e = ¢, then we apply part (f), which tells us that P(e) = P(Ext.(eq)Str.(eo)™ +¢€). Notice that sh(FEzxt.(eg)) =
sh(eg) = sh(e) — 1. We may thus apply the induction hypothesis to Ext.(eg) (even though it is not necessarily a
subterm of e). Let) be the term of the required form obtained from the induction hypothesis.

Then P(e) = P(e((Stri(eo)* + €) + €). Observe that Str.(eg) is just a word (in ¥*). Thus by associativity of
concatenation and union it must be possibly to multiply out the brackets to get an expression e’ of the required
form.

O

