Automata and Formal Languages - Homework 2

Due Friday 23rd October (TA: Christopher Broadbent)

Exercise 2.1

Consider two alphabets Σ_{1} and Σ_{2}. Let h be a homomorphism $h: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ that is a map such that
(i) $h(\epsilon)=\epsilon \quad$ and
(ii) $h\left(w_{1} w_{2}\right)=h\left(w_{1}\right) h\left(w_{2}\right)$ for all $w \in \Sigma_{1}^{*}$
(a) Prove that if $L \subseteq \Sigma_{1}^{*}$ is regular, then $h(L) \subseteq \Sigma_{2}^{*}$ is also regular.
(b) Prove that h is injective if and only if the following holds:

For all $L \subseteq \Sigma_{1}^{*}$ it is the case that if $h(L)$ is regular, then L is also regular.
(c) Show that for every finite alphabet Σ, there exists an injective homomorphism $h: \Sigma \rightarrow \mathbb{B}^{*}$, where $\mathbb{B}=\{0,1\}$.
(d) Let Σ be a finite alphabet such that $|\Sigma|>1$. Let $\mathbb{U}=\{\bullet\}$ be the alphabet containing just one element. Prove that there exists no homomorphism $\phi: \Sigma^{*} \rightarrow \mathbb{U}^{*}$ that is injective.

Exercise 2.2

Recall the definition of residual: Given a language $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$, the w-residual of L is the language $L^{w}=\{u \in$ $\left.\Sigma^{*} \mid w u \in L\right\}$. A language $L^{\prime} \subseteq \Sigma^{*}$ is a residual of L if it is a w-residual of L for some $w \in \Sigma^{*}$.

Determine the residuals of the following languages over $\Sigma=\{a, b\}:(a b+b a)^{*},(a a)^{*}$, and $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

Exercise 2.3

Given a language $L \subseteq \Sigma^{*}$ and $w \in \Sigma^{*}$, we denote ${ }^{w} L=\left\{u \in \Sigma^{*} \mid u w \in L\right\}$. A language $L^{\prime} \subseteq \Sigma^{*}$ is an inverse residual of L if $L^{\prime}={ }^{w} L$ for some $w \in \Sigma^{*}$.
(a) Determine the inverse residuals of the first two languages in Exercise 2.2.
(b) Show that a language is regular iff it has finitely many inverse residuals.
(c) Does a language always have as many residuals as inverse residuals?

Exercise 2.4

We consider encodings of the natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$ in respectively \mathbb{B}^{*} and \mathbb{U}^{*} (where \mathbb{B} and \mathbb{U} are as in Exercise 2.1). Observe that the binary encoding $\mathbf{B}(n)$ for each $n \in \mathbb{N}$ can be seen as an element of \mathbb{B}^{*} where trailing 0 s are suppressed. (E.g. $\mathbf{B}(0)=\epsilon, \mathbf{B}(1)=1, \mathbf{B}(2)=10, \mathbf{B}(6)=110)$. The unary encoding $\mathbf{U}(n)$ can be seen as an element of \mathbb{U}^{*} where $\mathbf{U}(n)$ is the word consisting of $n \bullet s$. (E.g. $(\mathbf{U}(0)=\epsilon, \mathbf{U}(1)=\bullet, \mathbf{U}(2)=\bullet \bullet, \mathbf{U}(6)=\bullet \bullet \bullet \bullet \bullet)$.
(a) Consider a language $L \subseteq \mathbb{U}^{*}$ encoding the set of natural numbers $S:=\mathbf{U}^{-1}(L) \subseteq \mathbb{N}$. Describe the sets of the form $T=\mathbf{U}^{-1}\left(L^{\prime}\right) \subseteq \mathbb{N}$ where L^{\prime} is a residual of L.
Do the same for $L \subseteq \mathbb{B}^{*}$ and \mathbf{B}.
(b) Prove that there exists a set of natural numbers $S \subseteq \mathbb{N}$ such that $\mathbf{B}(S)$ is regular but $\mathbf{U}(S)$ is not regular.
[Hint: Recall that regular languages have a finite number of residuals. Consider using exponentiation to define a candidate S.]
(c) Prove that for every $S \subseteq \mathbb{N}$ such that $\mathbf{U}(S)$ is regular, it is also the case that $\mathbf{B}(S)$ is regular.

Exercise 2.5

An NFA $A=\left(Q, \Sigma, \delta, Q_{0}, F\right)$ is reverse-deterministic if $\left(q_{1}, a, q\right) \in \delta$ and $\left(q_{2}, a, q\right) \in \delta \operatorname{implies} q_{1}=q_{2}$, i.e., no state has two input transitions labelled by the same letter. Further, A is trimmed if every state accepts at least one word, i.e., if $L_{A}(q) \neq \emptyset$ for every $q \in Q$.

Let A be a reverse-deterministic, trimmed NFA with one single final state q_{f}. Prove that $\operatorname{NFAtoDFA}(A)$ is a minimal DFA.
[Hint: Show that any two distinct states of $\operatorname{NFAtoDFA}(A)$ recognize different languages.]

Exercise 2.6

Let us fix an alphabet $\Sigma=\left\{a_{i} \mid i \in[1, n]\right\}$ of size n. For each $a_{i} \in \Sigma$ and $w \in \Sigma^{*}$ we define $\#_{a_{i}}(w)$ to be the number of occurrences of a_{i} in w. (E.g. $\#_{a_{2}}\left(a_{1} a_{2} a_{1} a_{2} a_{2}\right)=3$ and $\left.\#_{a_{2}}(\epsilon)=\#_{a_{2}}\left(a_{1} a_{1}\right)=0\right)$. The Parikh vector $\mathcal{P}(w)$ associated with a word $w \in \Sigma^{*}$ is the vector $\vec{v} \in \mathbb{N}^{n}$ that counts the number of occurrences of each symbol in w. That is: $\mathcal{P}(w)=\left\langle \#_{a_{1}}(w), \ldots, \#_{a_{n}}(w)\right\rangle$. For a language $L \subseteq \Sigma^{*}$ we call $\mathcal{P}(L):=\{\mathcal{P}(w) \mid w \in L\}$ the Parikh image of L.
(a) Where $a:=a_{1}$ and $b:=a_{2}$, characterise the sets $\mathcal{P}\left((a b)^{*}\right)$ and $\mathcal{P}\left(\left\{a^{n} b^{n} \mid n \geq 0\right\}\right)$.
(b) For arbitrary languages $L_{1}, L_{2} \subseteq \Sigma^{*}$ (not necessarily regular) describe how $\mathcal{P}(L)$ relates to $\mathcal{P}\left(L_{1}\right)$ and $\mathcal{P}\left(L_{2}\right)$ in each of the following cases: (i) $L=L_{1} \cup L_{2}$, (ii) $L=L_{1} \cap L_{2}$, (iii) $L=L_{1} \cdot L_{2}$, (iv) $L=L_{1}^{*}$, (v) $L=L_{1}^{+}$.
(c) A set of vectors $V \subseteq \mathbb{N}^{n}$ is linear if it takes the form $V=\left\{\vec{v}=\vec{v}_{0}+\lambda_{1} \vec{v}_{1}+\cdots+\lambda_{k} \vec{v}_{k} \mid \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{N}\right\}$ for some vectors $\vec{v}_{0}, \vec{v}_{1}, \ldots, \vec{v}_{k} \in \mathbb{N}^{n}$.
Prove that for every linear set $V \subseteq \mathbb{N}^{n}$ there exists a regular language $L \subseteq \Sigma^{*}$ such that $V=\mathcal{P}(L)$.
(d) A set of vectors $U \subseteq \mathbb{N}^{n}$ is called semi-linear if it is of the form $U=V_{1} \cup \cdots \cup V_{m}$ for some linear sets V_{1}, \ldots, V_{m}. Prove that for every semi-linear set $U \subseteq \mathbb{N}^{n}$ there exists a regular language $L \subseteq \Sigma^{*}$ such that $U=\mathcal{P}(L)$.
(e) Prove that for all regular expressions e_{1}, e_{2} it is the case that $\mathcal{P}\left(\left(e_{1}+e_{2}\right)^{*}\right)=\mathcal{P}\left(e_{1}^{*} e_{2}^{*}\right)$.
(f) We inductively define two operations on regular expressions \hat{e} that do not contain union (addition). Intuitively Ext (\hat{e}) ('extract *') is the regular expression formed by deleting all sub-expressions that are not in the scope of an $*$. Intuitively $S t r_{*}(\widehat{e})$ ('strip $\left.*^{\prime}\right)$ is the regular expression formed by deleting all sub-expressions that are in the scope of an $*$.

$$
\begin{gathered}
\operatorname{Ext}_{*}\left(a_{i}\right)=\epsilon \\
\operatorname{Ext}_{*}\left(\widehat{e_{1}} \widehat{e_{2}}\right)=\operatorname{Ext}_{*}\left(\widehat{e_{1}}\right) \operatorname{Ext}_{*}\left(\widehat{e_{2}}\right) \\
\operatorname{Str}_{*}\left(a_{i}\right)=a_{i} \\
\operatorname{Str}_{*}\left(\widehat{e_{1}}\left(\widehat{e_{2}}\right)=\widehat{e}^{*}\right)=\widehat{e}_{*}\left(\widehat{e_{1}}\right) \operatorname{Str}_{*}\left(\widehat{e_{2}}\right) \\
\operatorname{Str}_{*}\left(\widehat{e^{*}}\right)=\epsilon
\end{gathered}
$$

Prove that for all regular expressions \widehat{e} that do not contain union it is the case that

$$
\mathcal{P}\left(\widehat{e}^{*}\right)=\mathcal{P}\left(\operatorname{Ext}_{*}(\widehat{e}) \operatorname{Str}_{*}(\widehat{e})^{+}+\epsilon\right)
$$

(g) Prove that $\mathcal{P}(L)$ is semi-linear for every regular language $L \subseteq \Sigma^{*}$.
(Observe that combining (g) and (d) tells us that the semi-linear sets are precisely the Parikh images of the regular languages. How cool is that?)

Solution 2.1

We introduce some additional notation that is used throughout this solution. Suppose that Q is a finite set of states and Σ is a finite alphabet.

Given a(n ϵ-free) transition relation $\Delta \subseteq Q \times \Sigma \times Q$ and word $w \in \Sigma^{*}$, we write $q_{1} \xrightarrow[\Delta]{w} q_{2}$ to mean that an NFA with transition relation Δ has a run on w from state q_{1} to state q_{2}. Formally we can define $\xrightarrow[\Delta]{w}$ by induction on the structure of
w :

$$
q \underset{\Delta}{\stackrel{\epsilon}{\longrightarrow}} q \quad \text { and } \quad q_{1} \xrightarrow[\Delta]{w a} q_{2} \text { if for some } p \in Q \text { it is the case that } q_{1} \xrightarrow[\Delta]{w} p \text { and }\left(p, a, q_{2}\right) \in \Delta
$$

for all $q, q_{1}, q_{2} \in Q$.
In a similar vein, for a relation of the form $\Delta^{\prime} \subseteq Q \times \Sigma^{+} \times Q$, which we call a non-empty word transition relation, we also write $q_{1} \xrightarrow[\Delta^{\prime}]{w} q_{2}$ to mean that there is a run on w from q_{1} to q_{2} in a regular automaton with transition relation Δ^{\prime}. Formally this overloads notation since the inductive definition must be modified to reflect the fact that Δ^{\prime} labels its transitions over Σ^{*} instead of Σ :

$$
q \underset{\Delta^{\prime}}{\stackrel{\epsilon}{\longrightarrow}} q \quad \text { and } \quad q_{1} \xrightarrow[\Delta^{\prime}]{w w^{\prime}} q_{2} \text { if for some } p \in Q \text { it is the case that } q_{1} \xrightarrow[\Delta^{\prime}]{w} p \text { and }\left(p, w^{\prime}, q_{2}\right) \in \Delta^{\prime}
$$

By definition, if $A=\left(\Sigma, Q, \Delta, Q_{0}, F\right)$ is an ϵ-free NFA (resp. regular automaton whose transition relation is a non-empty word transition relation) it is the case that

$$
\mathcal{L}(A)=\left\{w \in \Sigma^{*} \mid q_{0} \underset{\Delta}{w} q_{f} \quad \text { for some } q_{0} \in Q_{0} \text { and } q_{f} \in F\right\}
$$

(a) Suppose that $L \subseteq \Sigma_{1}^{*}$ is regular. There must be an ϵ-free finite automaton $A_{1}=\left(\Sigma_{1}, Q, \Delta_{1}, Q_{0}, F\right)$ such that $\mathcal{L}\left(A_{1}\right)=L$. It suffices to show that there is a regular automaton A_{2} such that $\mathcal{L}\left(A_{2}\right)=h(L)$. In fact we will only use the special case of regular automata in which the transition relation is a non-empty word transition relation.
We claim that the regular automaton A_{2} is as required, where $A_{2}=\left(\Sigma_{2}, Q, \Delta_{2}, Q_{0}, F\right)$ with Δ_{2} defined by

$$
\Delta_{2}=\left\{\left(q_{1}, h(a), q_{2}\right) \mid\left(q_{1}, a, q_{2}\right) \in \Delta_{1}\right\}
$$

We now prove that A_{2} is indeed as required
We argue by induction on the length of $w \in \Sigma_{2}^{*}$ that for all $q_{1}, q_{2} \in Q$ it is the case that

$$
q_{1} \xrightarrow[\Delta_{2}]{w} q_{2} \quad \text { if and only if } \quad w=h\left(w_{0}\right) \text { for some } w_{0} \in \Sigma_{1}^{*} \text { such that } q_{1} \xrightarrow[\Delta_{1}]{w_{0}} q_{2}
$$

* The base case is when $w=\epsilon$.

Since A_{1} is ϵ-free and A_{2} has a non-empty word transition relation, it must be the case that

$$
q_{1} \xrightarrow[\Delta_{2}]{\stackrel{\epsilon}{\longrightarrow}} q_{2} \quad \text { iff } \quad q_{1}=q_{2} \quad \text { iff } \quad q_{1} \xrightarrow[\Delta_{1}]{\stackrel{\epsilon}{\longrightarrow}} q_{2}
$$

Since h is a homomorphism, $h(\epsilon)=\epsilon$. Thus taking $w_{0}=\epsilon$ shows us that the hypothesis holds in the base case.

* For the induction step consider $w \in \Sigma_{2}^{+}$and $q_{1}, q_{2} \in Q$. By definition
$q_{1} \xrightarrow[\Delta_{2}]{w} q_{2} \quad$ iff \quad there exist $w_{1} \in \Sigma_{2}^{*}, w_{2} \in \Sigma_{2}^{+}$and $p \in Q$ s.t. $w=w_{1} w_{2}$ and $q_{1} \xrightarrow[\Delta_{2}]{w_{1}} p$ and $\left(p, w_{2}, q_{2}\right) \in \Delta_{2}$
By the induction hypothesis, for $w_{1} \in \Sigma_{2}^{*}$ such that $\left|w_{1}\right|<|w|$ it must be the case that

$$
q_{1} \xrightarrow[\Delta_{2}]{\stackrel{w_{1}}{\longrightarrow}} p \quad \text { iff } \quad w_{1}=h\left(w_{0}\right) \text { for some } w_{0} \in \Sigma_{1}^{*} \text { such that } q_{1} \frac{w_{0}}{\Delta_{1}} p
$$

Moreover, by the definition of $\Delta_{2},\left(p, w_{2}, q_{2}\right) \in \Delta_{2}$ iff there exists $a \in \Sigma_{1}$ such that $w_{2}=h(a)$ and $\left(p, a, q_{2}\right) \in$ Δ_{1}. Combining all of the above gives us
$q_{1} \xrightarrow[\Delta_{2}]{w} q_{2} \quad$ iff \quad there exist $w_{0} \in \Sigma_{1}^{*}$ and $a \in \Sigma_{1}$ and $p \in Q$ s.t. $w=h\left(w_{0}\right) h(a)$ and $q_{1} \xrightarrow[\Delta_{1}]{w_{0}} p$ and $\left(p, a, q_{2}\right) \in \Delta_{1}$
Since h is a homomorphism, $h\left(w_{0}\right) h(a)=h\left(w_{0} a\right)$, and so by additionally considering the inductive definition of $\xrightarrow[\Delta_{1}]{w_{0} a}$ we get the required conclusion:

$$
q_{1} \xrightarrow[\Delta_{2}]{\stackrel{w}{\longrightarrow}} q_{2} \quad \text { iff } \quad q_{1}=q_{2} \quad \text { iff } \quad q_{1} \xrightarrow[\Delta_{1}]{w_{0} a} q_{2} \text { where } w=h\left(w_{0} a\right)
$$

In particular we have for every $q_{0} \in Q_{0}$ and $q_{f} \in F$ and $w \in \Sigma_{2}^{*}$ that

$$
q_{0} \xrightarrow[\Delta_{2}]{w} q_{f} \quad \text { iff } \quad q_{0} \xrightarrow[\Delta_{1}]{w_{0}} q_{f} \text { for some } w_{0} \in \Sigma_{1}^{*} \text { s.t. } w=h\left(w_{0}\right)
$$

That is to say, $w \in \mathcal{L}\left(A_{2}\right)$ iff $w \in h\left(\mathcal{L}\left(A_{1}\right)\right)$, in other words $\mathcal{L}\left(A_{2}\right)=h(L)$, as required.
(b) \Rightarrow Suppose that h is an injective homomorphism and that $L \subseteq \Sigma_{1}^{*}$ is such that $h(L)$ is regular. There must then be a finite automaton $A_{2}=\left(\Sigma_{2}, Q, \Delta_{2}, Q_{0}, F\right)$ such that $\mathcal{L}\left(A_{2}\right)=h(L)$. We construct a finite automaton $A_{1}=\left(\Sigma_{1}, Q, \Delta_{1}, Q_{0}, F\right)$ by defining Δ_{1} by:

$$
\Delta_{1}:=\left\{\left(q_{1}, a, q_{2}\right) \mid a \in \Sigma_{1} \text { and } q_{1} \xrightarrow[\Delta_{2}]{h(a)} q_{2}\right\}
$$

We claim that $\mathcal{L}\left(A_{1}\right)=L$ (and hence that L is indeed regular).
By induction on the length of w (which looks similar to the proof of (a)) we can get that for every $w \in \Sigma_{1}^{*}$ and $q_{1}, q_{2} \in Q$ it is the case that

$$
q_{1} \xrightarrow[\Delta_{1}]{w} q_{2} \quad \text { iff } \quad q_{1} \xrightarrow[\Delta_{2}]{h(w)} q_{2}
$$

Thus in particular, for every $q_{0} \in Q_{0}$, and $q_{f} \in Q_{f}$, and $w \in \Sigma_{1}^{*}$

$$
q_{0} \xrightarrow[\Delta_{1}]{w} q_{f} \quad \text { iff } \quad q_{0} \xrightarrow[\Delta_{2}]{h(w)} q_{f}
$$

We now can finish the proof of the claim that $\mathcal{L}\left(A_{1}\right)=L$.
Suppose first that $w \in L$. Then, of course, $h(w) \in h(L)$ and so by assumption $h(w) \in \mathcal{L}\left(A_{2}\right)$, which is to say that $q_{0} \xrightarrow[\Delta_{2}]{h(w)} q_{f}$ whence $q_{0} \xrightarrow[\Delta_{1}]{w} q_{f}$ and so $w \in \mathcal{L}\left(A_{1}\right)$. Thus we have $L \subseteq \mathcal{L}\left(A_{1}\right)$.
Note that so far we have not used the assumption that h is injective. We now use this assumption to prove that $\mathcal{L}\left(A_{1}\right) \subseteq L$, which combined with the inclusion above completes the proof.
Let $w \in \mathcal{L}\left(A_{1}\right)$. Then $q_{0} \xrightarrow[\Delta_{1}]{w} q_{f}$ for some $q_{0} \in Q_{0}$ and $q_{f} \in F$. It follows that $q_{0} \xrightarrow[\Delta_{2}]{h(w)} q_{f}$ and so $h(w) \in \mathcal{L}\left(A_{2}\right)=$ $h(L)$. It must thus be the case that there exists some $w_{0} \in L$ such that $h\left(w_{0}\right)=h(w)$. Since h is injective, $w_{0}=w$ and so it is also the case that $w \in L$. Thus $\mathcal{L}\left(A_{1}\right) \subseteq L$, as required.
\Leftarrow We prove the contrapositive by showing that if h is not injective then there exists a language $L \subseteq \Sigma_{1}^{*}$ that is not regular but is also such that $h(L)$ is regular.
Suppose that h is not injective. Then there must exist distinct $a, b \in \Sigma_{1}$ such that $h(a)=h(b)$. Let us define $w:=h(a)=h(b) \in \Sigma_{2}^{*}$. The language $L=\left\{\left(a^{n} b^{n}\right) \mid n \in \mathbb{N}\right\}$ is irregular. However, $h(L)=\left\{\left(w^{n} w^{n}\right) \mid n \in \mathbb{N}\right\}=$ $\left\{(w w)^{n} \mid n \in \mathbb{N}\right\}$. This is just the regular language given by $(w w)^{*}$.
(c) Suppose that $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$. Let us write $\mathbf{B}(i)$ to denote the binary representation of the natural number i for $1 \leq i \leq n$. Thus $\mathbf{B}(i) \in \mathbb{B}^{*}$. Let us further define k to be the maximum number of digits appearing in $\mathbf{B}(i)$ for any $1 \leq i \leq n$. We can then define $\hat{h}: \Sigma \rightarrow \mathbb{B}^{*}$ by $\hat{h}\left(a_{i}\right):=0^{k-|\mathbf{B}(i)|} \mathbf{B}(i)$. Observe that for every $1 \leq i \leq n$ it is the case that $\left|a_{i}\right|=k$ (each letter maps to a word in \mathbb{B}^{*} of the same length).
\hat{h} induces a unique homomorphism $h: \Sigma^{*} \rightarrow \mathbb{B}^{*}$ defined inductively by:

$$
h(\epsilon):=\epsilon \text { and } h(w a):=h(w) \hat{h}(a)
$$

We need to check that h is injective. We prove by induction on the total length of words w_{1} and w_{2} in Σ_{1}^{*} that for all such words it is the case that $h\left(w_{1}\right)=h\left(w_{2}\right)$ implies that $w_{1}=w_{2}$.
The base case is when $w_{1}=w_{2}=\epsilon$, which is immediate. For the induction step, suppose that $w_{1}=w_{1}^{\prime} a$ for some letter $a \in \Sigma_{1}$ and that $h\left(w_{1}^{\prime} a\right)=h\left(w_{1}^{\prime}\right) \hat{h}(a)=h\left(w_{2}\right)$. Since $\hat{h}(a) \neq \epsilon$ and so $h\left(w_{1}\right) \neq \epsilon$, it must be the case that $h\left(w_{2}\right) \neq \epsilon$ and so $w_{2} \neq \epsilon$. Thus for some $w_{2}^{\prime} \in \Sigma_{1}^{*}$ and letter $b \in \Sigma_{1}$ it is the case that $w_{2}=w_{2}^{\prime} b$.
Thus we have $h\left(w_{1}^{\prime}\right) \hat{h}(a)=h\left(w_{2}^{\prime}\right) \hat{h}(b)$. Since \hat{h} maps letters to words of length $k,|\hat{h}(a)|=|\hat{h}(b)|=k$. Thus it must be the case that $\hat{h}(a)=\hat{h}(b)$. Since \hat{h} is, by construction, injective, it follows that $a=b$. (Let us set $c:=a=b$). Moreover, we have $h\left(w_{1}^{\prime}\right)=h\left(w_{2}^{\prime}\right)$ and so by the induction hypothesis, $w_{1}^{\prime}=w_{2}^{\prime}$. Let us say $w:=w_{1}^{\prime}=w_{2}^{\prime}$.
Thus $w_{1}=w_{2}=w c$, as required.
(d) Suppose for contradiction that such an injective homomorphism does exist. Since $|\Sigma|>1$, there must exist distinct $a, b \in \Sigma$. It must be the case that for some $m, n \in \mathbb{N}$ we have $h(a)=\bullet^{m}$ and $h(b)=\bullet^{n}$. Thus $h(a) h(b)=h(b) h(a)=$ \bullet^{m+n}. Since h is a homomorphism, we thus get $h(a b)=h(a) h(b)=h(b) h(a)=h(b a)$, which contradicts injectivity, since by assumption $a b \neq b a$.

Solution 2.2

- For $(a b+b a)^{*}$. We give the residuals as regular expressions: $(a b+b a)^{*}$ (residual of $\left.\varepsilon\right) ; b(a b+b a)^{*}$ (residual of $\left.a\right)$; $a(a b+b a)^{*}($ residual of $b) ; \emptyset$ (residual of $\left.a a\right)$. All other residuals are equal to one of these four.
- For $(a a)^{*}$. We give the residuals as regular expressions: $(a a)^{*}$ (residual of ε); $a(a a)^{*}$ (residual of $\left.a\right)$; \emptyset (residual of b). All other residuals are equal to one of these three.
- For $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$: Every prefix of a word of the form $a^{n} b^{n} c^{n}$ has a different residual. For all other words the residual is the empty set. There are infinitely many residuals.

Solution 2.3

(b) Let L^{R} be the reverse of L. Since $u w \in L$ iff $w^{R} u^{R} \in L^{R}$, we have $u \in{ }^{w} L$ iff $u^{R} \in\left(L^{R}\right)^{w}$. So K is an inverse residual of L iff K^{R} is a residual of L^{R}. In particular, the number of inverse residuals of L is equal to the number of residuals of L^{R}.

Now we have:

$$
\begin{array}{ll}
& L \text { is regular } \\
\text { iff } & L^{R} \text { is regular } \\
\text { iff } & L^{R} \text { has finitely many residuals } \\
\text { iff } & L \text { has finitely many residuals }
\end{array}
$$

(c) No. Consider the language L over $\{a, b\}$ containing all words ending with a. The language has two residuals:

$$
L^{w}= \begin{cases}\varepsilon+(a+b)^{*} a & \text { if } w=w^{\prime} a \text { for some } w \in\{a, b\}^{*} \\ (a+b)^{*} a & \text { if } w=w^{\prime} b \text { for some } w \in\{a, b\}^{*} \text { or } w=\varepsilon\end{cases}
$$

However, it has three inverse residuals:

$$
{ }^{w} L= \begin{cases}(a+b)^{*} a & \text { if } w=\varepsilon \\ (a+b)^{*} & \text { if } w=w^{\prime} a \text { for some } w \in\{a, b\}^{*} \\ \emptyset & \text { if } w=w^{\prime} b \text { for some } w \in\{a, b\}^{*}\end{cases}
$$

Solution 2.4

(a) - For the unary encoding the residuals represent sets of numbers of the form $T_{m}=\{n \in \mathbb{N} \mid m+n \in L\}$ for each $m \in \mathbb{N}$.

- For the binary encoding, the residuals represent sets of numbers of the form $T_{m}=\left\{n \in \mathbb{N} \mid m \cdot 2^{\left\lfloor\log _{2}^{\prime} n\right\rfloor+1}+n \in L\right\}$ where we define

$$
\log _{2}^{\prime} k= \begin{cases}\log _{2} k & \text { if } k \geq 1 \\ -1 & \text { if } k=0\end{cases}
$$

Note that $|\mathbf{B}(n)|=\left\lfloor\log _{2}^{\prime} n\right\rfloor+1$ so that $\mathbf{B}\left(m .2^{\left\lfloor\log _{2}^{\prime} n\right\rfloor+1}\right)=\mathbf{B}(m) \underbrace{0 \cdots 0}_{|\mathbf{B}(n)|-\text { times }}$ and $\mathbf{B}\left(m \cdot 2^{\left\lfloor\log _{2}^{\prime} n\right\rfloor+1}+n\right)=\mathbf{B}(m) \mathbf{B}(n)$.
(b) Let $S=\left\{2^{n} \mid n \in \mathbb{N}\right\}$. Then $\mathbf{B}(S)=10^{*}$, and so is regular.

We now prove that $\mathbf{U}(S)$ is irregular. It suffices to show that $\mathbf{U}(S)$ has infinitely many residuals.
The residuals of $\mathbf{U}(S)$ take the form $R_{m}=\left\{\bullet^{k} \mid k+m=2^{n}\right.$ for some $\left.n \in \mathbb{N}\right\}$ for each $m \in \mathbb{N}$. Since we are working over a unary alphabet, words are uniquely determined by their length, and so as in part (a) it is helpful to consider residuals as the set of numbers $\mathbf{U}^{-1}(S)$ that they define:

$$
T_{m}=\left\{|w| \mid w \in U_{m}\right\}=\left\{k \mid k+m=2^{n} \text { for some } n \in \mathbb{N}\right\}
$$

It suffices to show that there are infinitely many such sets T_{m}. Consider the special cases of the form $V_{r}:=T_{2^{r+1}-2^{r}}$ for each $r \in \mathbb{N}$.
Let $r \geq 1$. Since $2^{r}+\left(2^{r+1}-2^{r}\right)=2^{n}$ for $n=r+1$, it must be the case that $2^{r} \in V_{r}$.

Now let $r^{\prime} \in \mathbb{N}$ be such that $0 \leq r^{\prime}<r$. Then $2^{r^{\prime}}+\left(2^{r+1}-2^{r}\right)=2^{r^{\prime}}\left(1+2^{r+1-r^{\prime}} 2^{r-r^{\prime}}\right)$ where $r+1-r^{\prime}>0$ and $r-r^{\prime}>0$. Dividing this number by 2 thus leaves remainder 1 whence it cannot be of the form 2^{n} for $n \in \mathbb{N}$ (since numbers of the latter form leave 0 remainder upon division by 2). We can thus infer that $r^{\prime} \neq V_{r}$.
Putting this together tells us that amongst the sets T_{m} is the infinite collection of sets: $V_{1}, V_{2}, V_{3}, \ldots, V_{r}, \ldots$ for each $r \geq 1$. To see that this collection is indeed infinite we show that $V_{r} \neq V_{r^{\prime}}$ for every $r \neq r^{\prime}$.
Suppose for contradiction that there exist $r \neq r^{\prime}$ such that $V_{r^{\prime}}=V_{r}$. Without loss of generality assume that $r^{\prime}<r$. Then as we have previously seen $2^{r^{\prime}} \in V_{r^{\prime}}$, but $2^{r^{\prime}} \notin V_{r}$, which implies that $V_{r^{\prime}} \neq V_{r}$ after all, a contradiction.
(c) I am going to save this question for a subsequent problem sheet. You will learn some techniques in subsequent lectures that will make for a much more elegant proof than using the apparatus currently at your disposal. (Look out for Presburger Arithmetic).

Solution 2.5

Let $B=\operatorname{NFAtoDFA}(A)$ and let Q_{1}, Q_{2} be two distinct states of B. Then Q_{1} and Q_{2} are sets of states of A, and we have $L_{B}\left(Q_{i}\right)=\bigcup_{q \in Q_{i}} L_{A}(q)$ for $i=1,2$. We prove $L_{B}\left(Q_{1}\right) \neq L_{B}\left(Q_{2}\right)$. Assume the contrary. Then, since $Q_{1} \neq Q_{2}$, there is $q_{1} \in Q_{1} \backslash q_{2}$. Since A is trimmed, the $L_{A}(q)$ contains at least one word w. Since $L_{B}\left(Q_{1}\right)=L_{B}\left(Q_{2}\right)$, we have $w \in L\left(q_{2}\right)$ for some $q_{2} \in Q_{2}$, and further $q_{1} \neq q_{2}$. Since q_{f} is the unique final state of A, the NFA has two paths $q_{1} \delta w q_{f}$ and $q_{2} \delta w q_{f}$. Since these paths start at different states and end at the same state, there is a prefix $w^{\prime} a$ of w, two different states $q_{1}^{\prime}, q_{2}^{\prime}$, and a state q such that $q_{1} \delta w^{\prime} q_{1}^{\prime} \delta a q$ and $q_{2} \delta w^{\prime} q_{2}^{\prime} \delta a q$. So A is not reverse-deterministic, contradicting the assumption.

Solution 2.6

(a) Both languages have the same Parikh images namely the set

$$
\{(n, n) \mid n \in \mathbb{N}\}
$$

(b) (i) $\mathcal{P}(L)=\mathcal{P}\left(L_{1}\right) \cup \mathcal{P}\left(L_{2}\right)$, (ii) $\mathcal{P}(L)=\mathcal{P}\left(L_{1}\right) \cap \mathcal{P}\left(L_{2}\right)$, (iii) $\mathcal{P}(L)=\mathcal{P}\left(L_{1}\right)+\mathcal{P}\left(L_{2}\right)$, (iv) $\mathcal{P}(L)=\bigcup_{k \in \mathbb{N}} \sum_{i=1}^{k} L_{1} \cup$ $\{(0, \ldots, 0)\}\left(\right.$ v) $\mathcal{P}(L)=\bigcup_{k \in \mathbb{N}} \sum_{i=1}^{k} L_{1}$
(c) Suppose that $\vec{v}_{i}=\left(j_{1}^{i}, \ldots, j_{n}^{i}\right)$ for each $0 \leq i \leq k$. Let $w_{i}:=a_{1}^{j_{1}^{i}} \cdots a_{n}^{j_{1}^{n}}$ for each i. By construction $\mathcal{P}\left(w_{i}\right)=v_{i}$. We thus have for each $1 \leq i \leq k$ that $\mathcal{P}\left(w_{i}^{\star}\right)=\left\{\lambda_{i} w_{i} \mid \lambda_{i} \in \mathbb{N}\right\}$. Moreover $\mathcal{P}\left(w_{0} w_{1}^{\star} \cdots w_{n}^{\star}\right)=V$.
(d) This follows from the fact that every linear set is the Parikh image of a regular language and the fact that regular languages are closed under union. That is, for each V_{i} there must exist a regular language L_{i} such that $\mathcal{P}\left(L_{i}\right)=V_{i}$. Then $\mathcal{P}\left(\bigcup_{i=1}^{m} L_{i}\right)=U$.
(e) We have $w \in\left(e_{1}+e_{2}\right)^{*}$ iff $w=e_{i_{1}} \cdots e_{i_{k}}$ for some $0 \leq k$ such that $i_{1}, \ldots, i_{k} \in\{1,2\}$. To compute the Parikh vector for w we must sum the Parikh vectors for each of the i_{j}. That is:

$$
\mathcal{P}(w)=\sum_{j=1}^{k} \mathcal{P}\left(e_{i_{j}}\right)=p_{1} \mathcal{P}\left(e_{1}\right)+p_{2} \mathcal{P}\left(e_{2}\right)=\mathcal{P}\left(e_{1}^{p_{1}} e_{2}^{p_{2}}\right) \in \mathcal{P}\left(e_{1}^{*} e_{2}^{*}\right)
$$

taking $p_{1}:=\left|\left\{r \in[1, k] \mid i_{r}=1\right\}\right|$ and $p_{2}:=\left|\left\{r \in[1, k] \mid i_{r}=2\right\}\right|$, where we take the empty sum to be $(0, \ldots, 0)$ (and consider the sum to be empty when $k=0$).
Thus $\mathcal{P}\left(\left(e_{1}+e_{2}\right)^{*}\right) \subseteq \mathcal{P}\left(e_{1}^{*} e_{2}^{*}\right)$.
A very similar argument in the opposite direction gives the reverse inclusion and thus establishes the required result.
(f) Recall that $\widehat{e}^{*}=\sum_{k=0}^{\infty} \hat{e}^{k}$. Thus $\widehat{e}^{*}=\epsilon+\sum_{k=1}^{\infty} \widehat{e}^{k}$. It thus suffices to prove that

$$
\mathcal{P}\left(\sum_{k=1}^{\infty} \widehat{e}^{k}\right)=\mathcal{P}\left(E x t_{*}(\widehat{e}) \sum_{k=1}^{\infty} \operatorname{Str}_{*}\left(\widehat{e}^{k}\right)\right)
$$

This in turn follows from the claim that for every $k \geq 1$ it is the case that

$$
\mathcal{P}\left(\hat{e}^{k}\right)=\mathcal{P}\left(\operatorname{Ext}_{*}(\widehat{e}) \operatorname{Str}_{*}\left(\hat{e}^{k}\right)\right)
$$

We prove this claim by induction on the structure of \widehat{e}.

- One base case is when $\widehat{e}=a_{i}$ for some $1 \leq i \leq n$ (i.e. when it is a letter). Trivially $a_{i}^{k}=\epsilon a_{i}^{k}=\operatorname{Ext}_{*}\left(a_{i}\right) \operatorname{Str}_{*}\left(a_{i}\right)^{k}$. The situation is similar for the other base cases (when $\widehat{e} \in\{\epsilon, \emptyset\}$.
- Suppose $\widehat{e}=\widehat{e_{1}} \widehat{e_{2}}$. Then (by properties of $\left.\mathcal{P}()_{-}\right)$and the induction hypothesis):

$$
\begin{aligned}
\mathcal{P}\left(\widehat{e}^{k}\right) & =\mathcal{P}\left(\widehat{e}_{1}^{k}\right)+\mathcal{P}\left({\widehat{e_{2}}}^{k}\right)=\mathcal{P}\left(\operatorname{Ext}_{*}\left(\widehat{e_{1}}\right) \operatorname{Str}_{*}\left(\widehat{e_{1}}\right)^{k}\right)+\mathcal{P}\left(\operatorname{Ext}_{*}\left(\widehat{e_{2}}\right) \operatorname{Str}_{*}\left(\widehat{e_{2}}\right)^{k}\right) \\
& =\mathcal{P}\left(\operatorname{Ext}_{*}\left(\widehat{e}_{1}\right)\right)+\mathcal{P}\left(\operatorname{Ext}_{*}\left(\widehat{e}_{2}\right)\right)+\mathcal{P}\left(\operatorname{Str}_{*}\left(\widehat{e}_{1}\right)^{k}\right)+\mathcal{P}\left(\operatorname{Str}_{*}\left(\widehat{e}_{2}\right)^{k}\right) \\
& =\mathcal{P}\left(\operatorname{Ext}_{*}\left(\widehat{e}_{1}\right) \operatorname{Ext}_{*}\left(\widehat{e}_{2}\right)\left(\operatorname{Str}_{*}\left(\widehat{e}_{1}\right) \operatorname{Str}_{*}\left(\widehat{e}_{2}\right)\right)^{k}\right)=\mathcal{P}\left(\operatorname{Ext}_{*}(\widehat{e}) \operatorname{Str}_{*}(\widehat{e})^{k}\right)
\end{aligned}
$$

- Suppose $\widehat{e}=\widehat{e}_{0}^{\star}$. Then since $k \geq 1, \widehat{e}^{k}=\left(\widehat{e}_{0}^{*}\right)^{k}={\widehat{e_{0}}}^{*}=\operatorname{Ext}_{*}(\widehat{e})=\operatorname{Ext}_{*}(\widehat{e}) \epsilon^{k}=\operatorname{Ext}_{*}(\widehat{e}) \operatorname{Str}_{*}(\widehat{e})^{k}$.
(g) Let L be a regular language. Then there must be some regular expression e for L. We first show that for every regular expression e. We will show that for every regular expression e there exists a regular expression e^{\prime} such that $\mathcal{P}(e)=\mathcal{P}\left(e^{\prime}\right)$ where e^{\prime} is of the form

$$
e^{\prime}=W_{1}+W_{2}+\cdots+W_{k}
$$

where each W_{i} has the form

$$
W_{i}=u_{1}^{i} \cdots u_{l}^{i}\left(v_{1}^{i}\right)^{*} \cdots\left(v_{l^{\prime}}^{i}\right)^{*}
$$

where the u_{j}^{i} and v_{j}^{i} are just words in Σ^{*}. It follows quickly from definitions that the Parikh image of a W_{i} of such a form is linear. It thus follows that $\mathcal{P}\left(e^{\prime}\right)=\mathcal{P}(e)$ is semi-linear.
In order to prove the existence of such an e^{\prime}, we will argue by induction on the following properties of e ordered lexicographically: (i) the star height of e [defined below], and (ii) the structure of e.
The principle of induction allows us to apply the induction hypothesis to a structurally bigger term (e.g. a term including more + symbols) so long as the star height (which we give a greater priority) decreases.
The star height sh(e) of a regular expression e intuitively measures the depth of nesting of $*$. More precisely:

$$
\operatorname{sh}\left(a_{i}\right)=0 \quad \operatorname{sh}\left(e^{*}\right)=\operatorname{sh}(e)+1 \quad \operatorname{sh}\left(e_{1} e_{2}\right)=\operatorname{sh}\left(e_{1}+\operatorname{sh} e_{2}\right)=\max \left(\operatorname{sh}\left(e_{1}\right), \operatorname{sh}\left(e_{2}\right)\right)
$$

So let us consider the structure of e

- If e is a letter, ϵ or \emptyset, then we just take $e^{\prime}:=e$.
- If $e=e_{1} e_{2}$, then by the induction hypothesis there exist e_{1}^{\prime} and e_{2}^{\prime} of the required form such that $\mathcal{P}(e)=\mathcal{P}\left(e_{1}^{\prime} e_{2}^{\prime}\right)$. Since in general language concatenation and union are associative, we can just 'multiply out the brackets' in the expression $e_{1}^{\prime} e_{2}^{\prime}$ to get e^{\prime} of the required form.
- If $e=e_{1}+e_{2}$, then by the induction hypothesis there must be e_{1}^{\prime} and e_{2}^{\prime} of the required form such that $\mathcal{P}(e)=$ $\mathcal{P}\left(e_{1}^{\prime}+e_{2}^{\prime}\right)$. But then we can just take $e^{\prime}=e_{1}^{\prime}+e_{2}^{\prime}$.
- If $e=e_{0}^{*}$, then we apply part (f), which tells us that $\mathcal{P}(e)=\mathcal{P}\left(E x t_{*}\left(e_{0}\right) \operatorname{Str}_{*}\left(e_{0}\right)^{+}+\epsilon\right)$. Notice that $\operatorname{sh}\left(E x t_{*}\left(e_{0}\right)\right)=$ $\operatorname{sh}\left(e_{0}\right)=\operatorname{sh}(e)-1$. We may thus apply the induction hypothesis to $\operatorname{Ext}_{*}\left(e_{0}\right)$ (even though it is not necessarily a subterm of e). Let e_{0}^{\prime} be the term of the required form obtained from the induction hypothesis.
Then $\mathcal{P}(e)=\mathcal{P}\left(e_{0}^{\prime}\left(\operatorname{Str}_{*}\left(e_{0}\right)^{*}+\epsilon\right)+\epsilon\right)$. Observe that $\operatorname{Str}_{*}\left(e_{0}\right)$ is just a word (in $\left.\Sigma^{*}\right)$. Thus by associativity of concatenation and union it must be possibly to multiply out the brackets to get an expression e^{\prime} of the required form.

