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Exercise 2.1

Consider two alphabets Σ1 and Σ2. Let h be a homomorphism h : Σ∗1 → Σ∗2—that is a map such that

(i) h(ε) = ε and (ii) h(w1w2) = h(w1)h(w2) for all w ∈ Σ∗1

(a) Prove that if L ⊆ Σ∗1 is regular, then h(L) ⊆ Σ∗2 is also regular.

(b) Prove that h is injective if and only if the following holds:

For all L ⊆ Σ∗1 it is the case that if h(L) is regular, then L is also regular.

(c) Show that for every finite alphabet Σ, there exists an injective homomorphism h : Σ→ B∗, where B = { 0, 1 }.

(d) Let Σ be a finite alphabet such that |Σ| > 1. Let U = { • } be the alphabet containing just one element. Prove that
there exists no homomorphism φ : Σ∗ → U∗ that is injective.

Exercise 2.2

Recall the definition of residual : Given a language L ⊆ Σ∗ and w ∈ Σ∗, the w-residual of L is the language Lw = { u ∈
Σ∗ | wu ∈ L }. A language L′ ⊆ Σ∗ is a residual of L if it is a w-residual of L for some w ∈ Σ∗.

Determine the residuals of the following languages over Σ = {a, b}: (ab+ ba)∗, (aa)∗, and {anbncn | n ≥ 0}.

Exercise 2.3

Given a language L ⊆ Σ∗ and w ∈ Σ∗, we denote wL = {u ∈ Σ∗ | uw ∈ L} . A language L′ ⊆ Σ∗ is an inverse residual of L
if L′ = wL for some w ∈ Σ∗.

(a) Determine the inverse residuals of the first two languages in Exercise 2.2.

(b) Show that a language is regular iff it has finitely many inverse residuals.

(c) Does a language always have as many residuals as inverse residuals?

Exercise 2.4

We consider encodings of the natural numbers N = { 0, 1, 2, . . . } in respectively B∗ and U∗ (where B and U are as in Exercise
2.1). Observe that the binary encoding B(n) for each n ∈ N can be seen as an element of B∗ where trailing 0s are suppressed.
(E.g. B(0) = ε, B(1) = 1, B(2) = 10, B(6) = 110). The unary encoding U(n) can be seen as an element of U∗ where U(n) is
the word consisting of n •s. (E.g. (U(0) = ε, U(1) = •, U(2) = ••, U(6) = • • • • ••).

(a) Consider a language L ⊆ U∗ encoding the set of natural numbers S := U−1(L) ⊆ N. Describe the sets of the form
T = U−1(L′) ⊆ N where L′ is a residual of L.

Do the same for L ⊆ B∗ and B.

(b) Prove that there exists a set of natural numbers S ⊆ N such that B(S) is regular but U(S) is not regular.

[Hint: Recall that regular languages have a finite number of residuals. Consider using exponentiation to define a
candidate S.]

(c) Prove that for every S ⊆ N such that U(S) is regular, it is also the case that B(S) is regular.



Exercise 2.5

An NFA A = (Q,Σ, δ, Q0, F ) is reverse-deterministic if (q1, a, q) ∈ δ and (q2, a, q) ∈ δ implies q1 = q2, i.e., no state has two
input transitions labelled by the same letter. Further, A is trimmed if every state accepts at least one word, i.e., if LA(q) 6= ∅
for every q ∈ Q.

Let A be a reverse-deterministic, trimmed NFA with one single final state qf . Prove that NFAtoDFA(A) is a minimal
DFA.

[Hint: Show that any two distinct states of NFAtoDFA(A) recognize different languages.]

Exercise 2.6

Let us fix an alphabet Σ = { ai | i ∈ [1, n] } of size n. For each ai ∈ Σ and w ∈ Σ∗ we define #ai(w) to be the
number of occurrences of ai in w. (E.g. #a2(a1a2a1a2a2) = 3 and #a2(ε) = #a2(a1a1) = 0). The Parikh vector P(w)
associated with a word w ∈ Σ∗ is the vector ~v ∈ Nn that counts the number of occurrences of each symbol in w. That is:
P(w) = 〈#a1(w), . . . ,#an(w)〉. For a language L ⊆ Σ∗ we call P(L) := { P(w) | w ∈ L } the Parikh image of L.

(a) Where a := a1 and b := a2, characterise the sets P((ab)∗) and P({ anbn | n ≥ 0 }).

(b) For arbitrary languages L1, L2 ⊆ Σ∗ (not necessarily regular) describe how P(L) relates to P(L1) and P(L2) in each
of the following cases: (i) L = L1 ∪ L2, (ii) L = L1 ∩ L2, (iii) L = L1 · L2, (iv) L = L∗1, (v) L = L+

1 .

(c) A set of vectors V ⊆ Nn is linear if it takes the form V = { ~v = ~v0 + λ1~v1 + · · · + λk~vk | λ1, . . . , λk ∈ N } for some
vectors ~v0, ~v1, . . . , ~vk ∈ Nn.

Prove that for every linear set V ⊆ Nn there exists a regular language L ⊆ Σ∗ such that V = P(L).

(d) A set of vectors U ⊆ Nn is called semi-linear if it is of the form U = V1 ∪ · · · ∪ Vm for some linear sets V1, . . . , Vm.

Prove that for every semi-linear set U ⊆ Nn there exists a regular language L ⊆ Σ∗ such that U = P(L).

(e) Prove that for all regular expressions e1, e2 it is the case that P((e1 + e2)∗) = P(e∗1e
∗
2).

(f) We inductively define two operations on regular expressions ê that do not contain union (addition). Intuitively Ext∗(ê)
(‘extract ∗’) is the regular expression formed by deleting all sub-expressions that are not in the scope of an ∗. Intuitively
Str∗(ê) (‘str ip ∗’) is the regular expression formed by deleting all sub-expressions that are in the scope of an ∗.

Ext∗(ai) = ε Ext∗(ê1ê2) = Ext∗(ê1)Ext∗(ê2) Ext∗(ê
∗) = ê∗

Str∗(ai) = ai Str∗(ê1ê2) = Str∗(ê1)Str∗(ê2) Str∗(ê
∗) = ε

Prove that for all regular expressions ê that do not contain union it is the case that

P(ê∗) = P(Ext∗(ê)Str∗(ê)
+ + ε)

(g) Prove that P(L) is semi-linear for every regular language L ⊆ Σ∗.

(Observe that combining (g) and (d) tells us that the semi-linear sets are precisely the Parikh images of the regular
languages. How cool is that?)



Solution 2.1

We introduce some additional notation that is used throughout this solution. Suppose that Q is a finite set of states and Σ
is a finite alphabet.

Given a(n ε-free) transition relation ∆ ⊆ Q × Σ × Q and word w ∈ Σ∗, we write q1
w−→
∆

q2 to mean that an NFA with

transition relation ∆ has a run on w from state q1 to state q2. Formally we can define
w−→
∆

by induction on the structure of
w:

q
ε−→
∆

q and q1
w a−−→
∆

q2 if for some p ∈ Q it is the case that q1
w−→
∆

p and (p, a, q2) ∈ ∆

for all q, q1, q2 ∈ Q.
In a similar vein, for a relation of the form ∆′ ⊆ Q×Σ+×Q, which we call a non-empty word transition relation, we also

write q1
w−−→
∆′

q2 to mean that there is a run on w from q1 to q2 in a regular automaton with transition relation ∆′. Formally

this overloads notation since the inductive definition must be modified to reflect the fact that ∆′ labels its transitions over
Σ∗ instead of Σ:

q
ε−−→

∆′
q and q1

ww′

−−−→
∆′

q2 if for some p ∈ Q it is the case that q1
w−−→
∆′

p and (p, w′, q2) ∈ ∆′

By definition, if A = (Σ, Q,∆, Q0, F ) is an ε-free NFA (resp. regular automaton whose transition relation is a non-empty
word transition relation) it is the case that

L(A) = { w ∈ Σ∗ | q0
w−→
∆

qf for some q0 ∈ Q0 and qf ∈ F }

(a) Suppose that L ⊆ Σ∗1 is regular. There must be an ε-free finite automaton A1 = (Σ1, Q,∆1, Q0, F ) such that L(A1) = L.
It suffices to show that there is a regular automaton A2 such that L(A2) = h(L). In fact we will only use the special
case of regular automata in which the transition relation is a non-empty word transition relation.

We claim that the regular automaton A2 is as required, where A2 = (Σ2, Q,∆2, Q0, F ) with ∆2 defined by

∆2 = { (q1, h(a), q2) | (q1, a, q2) ∈ ∆1 }

We now prove that A2 is indeed as required

We argue by induction on the length of w ∈ Σ∗2 that for all q1, q2 ∈ Q it is the case that

q1
w−−→
∆2

q2 if and only if w = h(w0) for some w0 ∈ Σ∗1 such that q1
w0−−→
∆1

q2.

∗ The base case is when w = ε.
Since A1 is ε-free and A2 has a non-empty word transition relation, it must be the case that

q1
ε−−→

∆2

q2 iff q1 = q2 iff q1
ε−−→

∆1

q2

Since h is a homomorphism, h(ε) = ε. Thus taking w0 = ε shows us that the hypothesis holds in the base
case.

∗ For the induction step consider w ∈ Σ+
2 and q1, q2 ∈ Q. By definition

q1
w−−→
∆2

q2 iff there exist w1 ∈ Σ∗2, w2 ∈ Σ+
2 and p ∈ Q s.t. w = w1w2 and q1

w1−−→
∆2

p and (p, w2, q2) ∈ ∆2

By the induction hypothesis, for w1 ∈ Σ∗2 such that |w1| < |w| it must be the case that

q1
w1−−→
∆2

p iff w1 = h(w0) for some w0 ∈ Σ∗1 such that q1
w0−−→
∆1

p

Moreover, by the definition of ∆2, (p, w2, q2) ∈ ∆2 iff there exists a ∈ Σ1 such that w2 = h(a) and (p, a, q2) ∈
∆1. Combining all of the above gives us

q1
w−−→
∆2

q2 iff there exist w0 ∈ Σ∗1 and a ∈ Σ1 and p ∈ Q s.t. w = h(w0)h(a) and q1
w0−−→
∆1

p and (p, a, q2) ∈ ∆1

Since h is a homomorphism, h(w0)h(a) = h(w0a), and so by additionally considering the inductive definition

of
w0a−−→
∆1

we get the required conclusion:

q1
w−−→
∆2

q2 iff q1 = q2 iff q1
w0a−−→
∆1

q2 where w = h(w0a)



In particular we have for every q0 ∈ Q0 and qf ∈ F and w ∈ Σ∗2 that

q0
w−−→
∆2

qf iff q0
w0−−→
∆1

qf for some w0 ∈ Σ∗1 s.t. w = h(w0)

That is to say, w ∈ L(A2) iff w ∈ h(L(A1)), in other words L(A2) = h(L), as required.

(b) ⇒ Suppose that h is an injective homomorphism and that L ⊆ Σ∗1 is such that h(L) is regular. There must
then be a finite automaton A2 = (Σ2, Q,∆2, Q0, F ) such that L(A2) = h(L). We construct a finite automaton
A1 = (Σ1, Q,∆1, Q0, F ) by defining ∆1 by:

∆1 := { (q1, a, q2) | a ∈ Σ1 and q1
h(a)−−−→
∆2

q2 }

We claim that L(A1) = L (and hence that L is indeed regular).

By induction on the length of w (which looks similar to the proof of (a)) we can get that for every w ∈ Σ∗1 and
q1, q2 ∈ Q it is the case that

q1
w−−→
∆1

q2 iff q1
h(w)−−−→
∆2

q2

Thus in particular, for every q0 ∈ Q0, and qf ∈ Qf , and w ∈ Σ∗1

q0
w−−→
∆1

qf iff q0
h(w)−−−→
∆2

qf

We now can finish the proof of the claim that L(A1) = L.

Suppose first that w ∈ L. Then, of course, h(w) ∈ h(L) and so by assumption h(w) ∈ L(A2), which is to say that

q0
h(w)−−−→
∆2

qf whence q0
w−−→
∆1

qf and so w ∈ L(A1). Thus we have L ⊆ L(A1).

Note that so far we have not used the assumption that h is injective. We now use this assumption to prove that
L(A1) ⊆ L, which combined with the inclusion above completes the proof.

Let w ∈ L(A1). Then q0
w−−→
∆1

qf for some q0 ∈ Q0 and qf ∈ F . It follows that q0
h(w)−−−→
∆2

qf and so h(w) ∈ L(A2) =

h(L). It must thus be the case that there exists some w0 ∈ L such that h(w0) = h(w). Since h is injective, w0 = w
and so it is also the case that w ∈ L. Thus L(A1) ⊆ L, as required.

⇐ We prove the contrapositive by showing that if h is not injective then there exists a language L ⊆ Σ∗1 that is not
regular but is also such that h(L) is regular.

Suppose that h is not injective. Then there must exist distinct a, b ∈ Σ1 such that h(a) = h(b). Let us define
w := h(a) = h(b) ∈ Σ∗2. The language L = { (anbn) | n ∈ N } is irregular. However, h(L) = { (wnwn) | n ∈ N } =
{ (ww)n | n ∈ N }. This is just the regular language given by (ww)∗.

(c) Suppose that Σ = { a1, . . . , an }. Let us write B(i) to denote the binary representation of the natural number i for
1 ≤ i ≤ n. Thus B(i) ∈ B∗. Let us further define k to be the maximum number of digits appearing in B(i) for any

1 ≤ i ≤ n. We can then define ĥ : Σ → B∗ by ĥ(ai) := 0k−|B(i)|B(i). Observe that for every 1 ≤ i ≤ n it is the case
that |ai| = k (each letter maps to a word in B∗ of the same length).

ĥ induces a unique homomorphism h : Σ∗ → B∗ defined inductively by:

h(ε) := ε and h(w a) := h(w)ĥ(a)

We need to check that h is injective. We prove by induction on the total length of words w1 and w2 in Σ∗1 that for all
such words it is the case that h(w1) = h(w2) implies that w1 = w2.

The base case is when w1 = w2 = ε, which is immediate. For the induction step, suppose that w1 = w′1a for some letter

a ∈ Σ1 and that h(w′1a) = h(w′1)ĥ(a) = h(w2). Since ĥ(a) 6= ε and so h(w1) 6= ε, it must be the case that h(w2) 6= ε
and so w2 6= ε. Thus for some w′2 ∈ Σ∗1 and letter b ∈ Σ1 it is the case that w2 = w′2b.

Thus we have h(w′1)ĥ(a) = h(w′2)ĥ(b). Since ĥ maps letters to words of length k, |ĥ(a)| = |ĥ(b)| = k. Thus it must

be the case that ĥ(a) = ĥ(b). Since ĥ is, by construction, injective, it follows that a = b. (Let us set c := a = b).
Moreover, we have h(w′1) = h(w′2) and so by the induction hypothesis, w′1 = w′2. Let us say w := w′1 = w′2.

Thus w1 = w2 = wc, as required.



(d) Suppose for contradiction that such an injective homomorphism does exist. Since |Σ| > 1, there must exist distinct
a, b ∈ Σ. It must be the case that for some m,n ∈ N we have h(a) = •m and h(b) = •n. Thus h(a)h(b) = h(b)h(a) =
•m+n. Since h is a homomorphism, we thus get h(ab) = h(a)h(b) = h(b)h(a) = h(ba), which contradicts injectivity,
since by assumption ab 6= ba.

Solution 2.2

• For (ab + ba)∗. We give the residuals as regular expressions: (ab + ba)∗ (residual of ε); b(ab + ba)∗ (residual of a);
a(ab+ ba)∗ (residual of b); ∅ (residual of aa). All other residuals are equal to one of these four.

• For (aa)∗. We give the residuals as regular expressions: (aa)∗ (residual of ε); a(aa)∗ (residual of a); ∅ (residual of b).
All other residuals are equal to one of these three.

• For {anbncn | n ≥ 0}: Every prefix of a word of the form anbncn has a different residual. For all other words the
residual is the empty set. There are infinitely many residuals.

Solution 2.3

(b) Let LR be the reverse of L. Since uw ∈ L iff wRuR ∈ LR, we have u ∈ wL iff uR ∈
(
LR
)w

. So K is an inverse residual
of L iff KR is a residual of LR. In particular, the number of inverse residuals of L is equal to the number of residuals of LR.

Now we have:

L is regular
iff LR is regular
iff LR has finitely many residuals
iff L has finitely many residuals

(c) No. Consider the language L over {a, b} containing all words ending with a. The language has two residuals:

Lw =

{
ε+ (a+ b)∗a if w = w′a for some w ∈ {a, b}∗
(a+ b)∗a if w = w′b for some w ∈ {a, b}∗ or w = ε

However, it has three inverse residuals:

wL =

 (a+ b)∗a if w = ε
(a+ b)∗ if w = w′a for some w ∈ {a, b}∗
∅ if w = w′b for some w ∈ {a, b}∗

Solution 2.4

(a) • For the unary encoding the residuals represent sets of numbers of the form Tm = { n ∈ N | m+ n ∈ L } for each
m ∈ N.

• For the binary encoding, the residuals represent sets of numbers of the form Tm = { n ∈ N | m.2blog′
2 nc+1 +n ∈ L }

where we define

log′2 k =

{
log2 k if k ≥ 1

−1 if k = 0

Note that |B(n)| = blog′2 nc+ 1 so that B(m.2blog′
2 nc+1) = B(m) 0 · · · 0︸ ︷︷ ︸

|B(n)|-times

and B(m.2blog′
2 nc+1 +n) = B(m)B(n).

(b) Let S = { 2n | n ∈ N }. Then B(S) = 10∗, and so is regular.

We now prove that U(S) is irregular. It suffices to show that U(S) has infinitely many residuals.

The residuals of U(S) take the form Rm = { •k | k +m = 2n for some n ∈ N } for each m ∈ N. Since we are working
over a unary alphabet, words are uniquely determined by their length, and so as in part (a) it is helpful to consider
residuals as the set of numbers U−1(S) that they define:

Tm = { |w| | w ∈ Um } = { k | k +m = 2n for some n ∈ N }

It suffices to show that there are infinitely many such sets Tm. Consider the special cases of the form Vr := T2r+1−2r

for each r ∈ N.

Let r ≥ 1. Since 2r + (2r+1 − 2r) = 2n for n = r + 1, it must be the case that 2r ∈ Vr.



Now let r′ ∈ N be such that 0 ≤ r′ < r. Then 2r
′

+ (2r+1 − 2r) = 2r
′
(1 + 2r+1−r′2r−r

′
) where r + 1 − r′ > 0 and

r − r′ > 0. Dividing this number by 2 thus leaves remainder 1 whence it cannot be of the form 2n for n ∈ N (since
numbers of the latter form leave 0 remainder upon division by 2). We can thus infer that r′ 6= Vr.

Putting this together tells us that amongst the sets Tm is the infinite collection of sets: V1, V2, V3, . . . , Vr, . . . for each
r ≥ 1. To see that this collection is indeed infinite we show that Vr 6= Vr′ for every r 6= r′.

Suppose for contradiction that there exist r 6= r′ such that Vr′ = Vr. Without loss of generality assume that r′ < r.
Then as we have previously seen 2r

′ ∈ Vr′ , but 2r
′
/∈ Vr, which implies that Vr′ 6= Vr after all, a contradiction.

(c) I am going to save this question for a subsequent problem sheet. You will learn some techniques in subsequent lectures
that will make for a much more elegant proof than using the apparatus currently at your disposal. (Look out for
Presburger Arithmetic).

Solution 2.5

Let B = NFAtoDFA(A) and let Q1, Q2 be two distinct states of B. Then Q1 and Q2 are sets of states of A, and we have
LB(Qi) =

⋃
q∈Qi

LA(q) for i = 1, 2. We prove LB(Q1) 6= LB(Q2). Assume the contrary. Then, since Q1 6= Q2 , there is
q1 ∈ Q1 \ q2. Since A is trimmed, the LA(q) contains at least one word w. Since LB(Q1) = LB(Q2), we have w ∈ L(q2) for
some q2 ∈ Q2, and further q1 6= q2. Since qf is the unique final state of A, the NFA has two paths q1δwqf and q2δwqf . Since
these paths start at different states and end at the same state, there is a prefix w′a of w, two different states q′1, q

′
2, and a

state q such that q1δw
′q′1δaq and q2δw

′q′2δaq. So A is not reverse-deterministic, contradicting the assumption.

Solution 2.6

(a) Both languages have the same Parikh images namely the set

{ (n, n) | n ∈ N }

(b) (i) P(L) = P(L1) ∪ P(L2), (ii) P(L) = P(L1) ∩ P(L2), (iii) P(L) = P(L1) + P(L2), (iv) P(L) =
⋃
k∈N

∑k
i=1 L1 ∪

{ (0, . . . , 0) } (v) P(L) =
⋃
k∈N

∑k
i=1 L1

(c) Suppose that ~vi = (ji1, . . . , j
i
n) for each 0 ≤ i ≤ k. Let wi := a

ji1
1 · · · a

jn1
n for each i. By construction P(wi) = vi. We

thus have for each 1 ≤ i ≤ k that P(w?i ) = { λiwi | λi ∈ N }. Moreover P(w0w
?
1 · · ·w?n) = V .

(d) This follows from the fact that every linear set is the Parikh image of a regular language and the fact that regular
languages are closed under union. That is, for each Vi there must exist a regular language Li such that P(Li) = Vi.
Then P (

⋃m
i=1 Li) = U .

(e) We have w ∈ (e1 + e2)∗ iff w = ei1 · · · eik for some 0 ≤ k such that i1, . . . , ik ∈ { 1, 2 }. To compute the Parikh vector
for w we must sum the Parikh vectors for each of the ij . That is:

P(w) =

k∑
j=1

P(eij ) = p1P(e1) + p2P(e2) = P(ep11 e
p2
2 ) ∈ P(e∗1e

∗
2)

taking p1 := |{ r ∈ [1, k] | ir = 1 }| and p2 := |{ r ∈ [1, k] | ir = 2 }|, where we take the empty sum to be (0, . . . , 0) (and
consider the sum to be empty when k = 0).

Thus P((e1 + e2)∗) ⊆ P(e∗1e
∗
2).

A very similar argument in the opposite direction gives the reverse inclusion and thus establishes the required result.

(f) Recall that ê∗ =
∑∞
k=0 ê

k. Thus ê∗ = ε+
∑∞
k=1 ê

k. It thus suffices to prove that

P

( ∞∑
k=1

êk

)
= P

(
Ext∗(ê)

∞∑
k=1

Str∗(ê
k)

)

This in turn follows from the claim that for every k ≥ 1 it is the case that

P(êk) = P(Ext∗(ê)Str∗(ê
k))

We prove this claim by induction on the structure of ê.



• One base case is when ê = ai for some 1 ≤ i ≤ n (i.e. when it is a letter). Trivially aki = ε aki = Ext∗(ai)Str∗(ai)
k.

The situation is similar for the other base cases (when ê ∈ { ε, ∅ }.
• Suppose ê = ê1ê2. Then (by properties of P( ) and the induction hypothesis):

P(êk) = P(ê1
k) + P(ê2

k) = P(Ext∗(ê1)Str∗(ê1)k) + P(Ext∗(ê2)Str∗(ê2)k)

= P(Ext∗(ê1)) + P(Ext∗(ê2)) + P(Str∗(ê1)k) + P(Str∗(ê2)k)

= P(Ext∗(ê1)Ext∗(ê2)(Str∗(ê1)Str∗(ê2))k) = P(Ext∗(ê)Str∗(ê)
k)

• Suppose ê = ê?0. Then since k ≥ 1, êk = (ê0
∗)k = ê0

∗ = Ext∗(ê) = Ext∗(ê)ε
k = Ext∗(ê)Str∗(ê)

k.

(g) Let L be a regular language. Then there must be some regular expression e for L. We first show that for every regular
expression e. We will show that for every regular expression e there exists a regular expression e′ such that P(e) = P(e′)
where e′ is of the form

e′ = W1 +W2 + · · ·+Wk

where each Wi has the form
Wi = ui1 · · ·uil(vi1)∗ · · · (vil′)∗

where the uij and vij are just words in Σ∗. It follows quickly from definitions that the Parikh image of a Wi of such a
form is linear. It thus follows that P(e′) = P(e) is semi-linear.

In order to prove the existence of such an e′, we will argue by induction on the following properties of e ordered
lexicographically: (i) the star height of e [defined below], and (ii) the structure of e.

The principle of induction allows us to apply the induction hypothesis to a structurally bigger term (e.g. a term
including more + symbols) so long as the star height (which we give a greater priority) decreases.

The star height sh(e) of a regular expression e intuitively measures the depth of nesting of ∗. More precisely:

sh(ai) = 0 sh(e∗) = sh(e) + 1 sh(e1e2) = sh(e1 + she2) = max(sh(e1), sh(e2))

So let us consider the structure of e

• If e is a letter, ε or ∅, then we just take e′ := e.

• If e = e1e2, then by the induction hypothesis there exist e′1 and e′2 of the required form such that P(e) = P(e′1e
′
2).

Since in general language concatenation and union are associative, we can just ‘multiply out the brackets’ in the
expression e′1e

′
2 to get e′ of the required form.

• If e = e1 + e2, then by the induction hypothesis there must be e′1 and e′2 of the required form such that P(e) =
P(e′1 + e′2). But then we can just take e′ = e′1 + e′2.

• If e = e∗0, then we apply part (f), which tells us that P(e) = P(Ext∗(e0)Str∗(e0)+ +ε). Notice that sh(Ext∗(e0)) =
sh(e0) = sh(e)− 1. We may thus apply the induction hypothesis to Ext∗(e0) (even though it is not necessarily a
subterm of e). Let e′0 be the term of the required form obtained from the induction hypothesis.

Then P(e) = P(e′0(Str∗(e0)∗ + ε) + ε). Observe that Str∗(e0) is just a word (in Σ∗). Thus by associativity of
concatenation and union it must be possibly to multiply out the brackets to get an expression e′ of the required
form.


