Automata and Formal Languages — Homework 1

Due 21.10.2015

Exercise 1.1

Go to http://www.jflap.org/ and download JFLAP. Run it and select the finite automata mode.

- (a) Consider the language $C_n = \Sigma^* a \Sigma^{n-1}$ over $\Sigma = \{a, b\}$. Draw an NFA that recognizes C_3 and determinize it using JFLAP.
- (b) Consider a similar language $D_n = \Sigma^* a(\Sigma \cup \varepsilon)^{n-1}$ over $\Sigma = \{a, b\}$. At least how many states does a DFA require to recognize D_n ? Justify your answer.
- (c) Let $L_n = \{a^k \mid k \text{ is divisible by } n \text{ or } n-1\}$ be a language over $\Sigma = \{a\}$. Draw an NFA A that recognizes L_3 .
- (d) Use JFLAP to determinize A. How many states does A have?
- (e) Show that every DFA recognizing L_n has at least n(n-1) states.

Exercise 1.2

Download a conversion game from https://www7.in.tum.de/tools/jflap-game/. Select the coversion game mode to play the game. Finish the following conversion types:

- (a) Guess DFA from NFA, RE
- (b) Guess NFA from RE
- (c) Guess RE from DFA, NFA

Exercise 1.3

Let A be the following automaton:

- (a) Transform the automaton A into an equivalent regular expression, then transform this expression into an NFA (with ε -transitions), remove the ε -transitions, and determinize the automaton.
- (b) Use JFLAP to perform the same transformations. Is there any difference?
- (c) Use JFLAP to check that your resulting automaton is equivalent to the original one.

Exercise 1.4

Given an alphabet Σ , we say that w is a *shuffle* of words u and v, if there exist $u_i, v_i \in \Sigma^*$ such that $u = u_1 \cdots u_k$, $v = v_1 \cdots v_k$, and $w = u_1 v_1 \cdots u_k v_k$.

Given languages L_1 and L_2 , we define the shuffle of L_1 and L_2 as

 $S(L_1, L_2) = \{ w \mid \exists u \in L_1, v \in L_2 \text{ s.t. } w \text{ is a shuffle of } u \text{ and } v \}$

Show that if L_1 and L_2 are regular, then $S(L_1, L_2)$ is also regular.