Automata and Formal Languages - Homework 1

Due 21.10.2015

Exercise 1.1

Go to http://www.jflap.org/ and download JFLAP. Run it and select the finite automata mode.
(a) Consider the language $C_{n}=\Sigma^{*} a \Sigma^{n-1}$ over $\Sigma=\{a, b\}$. Draw an NFA that recognizes C_{3} and determinize it using JFLAP.
(b) Consider a similar language $D_{n}=\Sigma^{*} a(\Sigma \cup \varepsilon)^{n-1}$ over $\Sigma=\{a, b\}$. At least how many states does a DFA require to recognize D_{n} ? Justify your answer.
(c) Let $L_{n}=\left\{a^{k} \mid k\right.$ is divisible by n or $\left.n-1\right\}$ be a language over $\Sigma=\{a\}$. Draw an NFA A that recognizes L_{3}.
(d) Use JFLAP to determinize A. How many states does A have?
(e) Show that every DFA recognizing L_{n} has at least $n(n-1)$ states.

Exercise 1.2

Download a conversion game from https://www7.in.tum.de/tools/jflap-game/. Select the coversion game mode to play the game. Finish the following conversion types:
(a) Guess DFA from NFA, RE
(b) Guess NFA from RE
(c) Guess RE from DFA, NFA

Exercise 1.3

Let A be the following automaton:

(a) Transform the automaton A into an equivalent regular expression, then transform this expression into an NFA (with ε-transitions), remove the ε-transitions, and determinize the automaton.
(b) Use JFLAP to perform the same transformations. Is there any difference?
(c) Use JFLAP to check that your resulting automaton is equivalent to the original one.

Exercise 1.4

Given an alphabet Σ, we say that w is a shuffle of words u and v, if there exist $u_{i}, v_{i} \in \Sigma^{*}$ such that $u=u_{1} \cdots u_{k}$, $v=v_{1} \cdots v_{k}$, and $w=u_{1} v_{1} \cdots u_{k} v_{k}$.

Given languages L_{1} and L_{2}, we define the shuffle of L_{1} and L_{2} as

$$
S\left(L_{1}, L_{2}\right)=\left\{w \mid \exists u \in L_{1}, v \in L_{2} \text { s.t. } w \text { is a shuffle of } u \text { and } v\right\}
$$

Show that if L_{1} and L_{2} are regular, then $S\left(L_{1}, L_{2}\right)$ is also regular.

