Basic Notation

Manfred Kufleitner

Automata and Formal Languages WS 2013/2014

- The composition of two mappings $\varphi : X \to Y$ and $\psi : Y \to Z$ is $\psi \circ \varphi : X \to Z$ with $(\psi \circ \varphi)(x) = \psi(\varphi(x))$ for $x \in X$.
- $\mathbb{N} = \{0, 1, 2, ...\}$ natural numbers (i.e. non-negative integers)
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots \}$ integers
- A word is a sequence of letters (aka *string*), a (formal) *language* is a set of words.
- The set of all finite words over the alphabet Σ is $\Sigma^* = \{a_1 \cdots a_n \mid n \ge 0, a_i \in \Sigma\}$. It is the so-called *free* monoid over Σ . The empty word is denoted by ε . The length of a word $u = a_1 \cdots a_n$ with $a_i \in \Sigma$ is |u| = n, its alphabet is the set $alph(u) = \{a_1, \cdots, a_n\} \subseteq \Sigma$. We have $|\varepsilon| = 0$ and $alph(\varepsilon) = \emptyset$. By writing a word $a_1 \cdots a_m$ before a word $b_1 \cdots b_n$ we obtain their concatenation $a_1 \cdots a_m b_1 \cdots b_n$. We have $\varepsilon u = u\varepsilon = u$ for all words $u \in \Sigma^*$.
- A set S with a binary operation $\cdot : S \times S \to S$ (written as $\cdot (u, v) = u \cdot v = uv$) forms a semigroup if \cdot is associative, i.e., $(u \cdot v) \cdot w = u \cdot (v \cdot w)$ for all $u, v, w \in S$. In particular, the notation uvw without brackets is well-defined. When emphasizing the operation, we write (S, \cdot) .
- A semigroup M forms a monoid if there exists a neutral element e ∈ M, i.e., eu = ue = u for all u ∈ M. The neutral element is often denoted by 1 for the operation · and by 0 for +. In the case of ·, the n-fold product of u ∈ M with itself is written as uⁿ; we set u⁰ = 1 for all u ∈ M. Both (N, +) and (N, ·) form monoids (· denotes here multiplication); (N \ {0}, +) forms a semigroup which is not a monoid. The free monoid Σ* with concatenation forms a monoid with neutral element ε.
- A monoid G forms a group if for every $u \in G$ there exists an *inverse* $v \in G$ with uv = vu = 1. The inverse of u is often written as u^{-1} (or as -u if the operation is +). The integers \mathbb{Z} with addition form a group. Note that the inverse of an element u is unique.
- A subset X of a monoid M is a submonoid if $1 \in X$ and X with the operation in M forms a monoid. For example, N is a submonoid of Z. Subsemigroups and subgroups are defined similarly. Let $M = \{1, 0\}$ with multiplication; then both $\{1\}$ and $\{0\}$ are subsemigroups of M which form monoids, but only $\{1\}$ is a submonoid of M.
- Σ ⊆ M generates a monoid M if every element in M can be written as a finite product of elements in Σ; the empty product yields the neutral element 1. In this case we call Σ a generating set or a set of generators.
- Every subset $L \subseteq M$ generates a submonoid of the monoid M, denoted by L^* .
- Examples:
 - -M generates M.
 - $M \setminus \{1\}$ generates M.
 - $\{-1,1\}$ generates \mathbb{Z} and $\{1\} \subseteq \mathbb{Z}$ generates the

submonoid \mathbb{N} of \mathbb{Z} .

- $\{-2, 3, 4\}$ generates \mathbb{Z} and $\{3\}$ generates $3\mathbb{N}$.
- $-\Sigma$ generates Σ^* .
- {aa, aaa} generates the submonoid {a}* \ {a} of {a}*.
- A mapping $\varphi: X \to Y$ is
 - $\begin{array}{ll} \ surjective & (\text{aka onto}) & \text{if the set } \varphi(X) = \\ \{ \varphi(x) \mid x \in X \} & \text{equals } Y, \text{ i.e., if for every } y \in Y \\ \text{there exists } x \in X & \text{with } \varphi(x) = y. \end{array}$
 - *injective* (aka *one-to-one*) if for all $x, x' \in X$ we have $x \neq x' \Rightarrow \varphi(x) \neq \varphi(x')$; this is usually shown as $\varphi(x) = \varphi(x') \Rightarrow x = x'$.
 - bijective (aka one-to-one correspondence) if it is both surjective and injective; in this case there exists a mapping $\varphi^{-1}: Y \to X$ such that both $\varphi^{-1} \circ \varphi: X \to X$ and $\varphi \circ \varphi^{-1}: Y \to Y$ are identity mappings. A bijection is a bijective mapping.
- A mapping $\varphi : M \to N$ between monoids M and N is a homomorphism if $\varphi(1) = 1$ and $\varphi(uv) = \varphi(u)\varphi(v)$ for all $u, v \in M$; note that $\varphi(uv)$ uses the operation in M whereas $\varphi(u)\varphi(v)$ uses the operation in N. Both the length $|.|: \Sigma^* \to \mathbb{N}$ and the alphabet $alph(.): \Sigma^* \to 2^{\Sigma}$ define a homormophisms (here, the operation on \mathbb{N} is addition and the operation on the power set 2^{Σ} of Σ is union).
- If $\varphi : M \to N$ is a homomorphism, then $\varphi(M)$ is a submonoid of N (since $1 = \varphi(1) \in \varphi(M)$ and $\varphi(u)\varphi(v) = \varphi(uv) \in \varphi(M)$). Furthermore, if M is a group, then $\varphi(M)$ is a group, too (since the inverse of $\varphi(u)$ is $\varphi(u^{-1})$). Obviously, $\varphi : M \to \varphi(M)$ is surjective.
- If Σ generates M, then a homomorphism $\varphi: M \to N$ is uniquely determined by the restriction $\varphi: \Sigma \to N$ (since every element $u \in M$ can be written as $u = a_1 \cdots a_n$ with $a_i \in \Sigma$, and we have $\varphi(u) = \varphi(a_1) \cdots \varphi(a_n)$). Not every mapping $\varphi: \Sigma \to N$ induces a homomorphism $\varphi: M \to N$. For example, $\varphi(1) = 2$ and $\varphi(-1) =$ 3 does not yield a homomorphism $\varphi: \mathbb{Z} \to \mathbb{N}$ since $\varphi(1-1) = \varphi(0) = 0$ and $\varphi(1) + \varphi(-1) = 2 + 3 = 5 \neq 0$. On the other hand, every mapping $\varphi: \Sigma \to N$ from a set Σ to a monoid N uniquely extends to a homomorphism $\varphi: \Sigma^* \to N$.
- A bijective homomorphism $\varphi: M \to N$ is an *isomorphism*. Note that in this case $\varphi^{-1}: N \to M$ is a homomorphism, too.
- Two monoids M, N are isomorphic if there exists an isomorphism φ : M → N. Frequently, isomorphic monoids are considered to be identical since the elements are nothing but renamings of one another. For example, ({1,-1},.) is isomorphic to ({1,0},+). On the other hand, ({1,-1},.) is not isomorphic to ({1,0},.) since ({1,-1},.) is a group and ({1,0},.) is not a group.