Basic Notation

Manfred Kufleitner

Automata and Formal Languages WS 2013/2014

- The composition of two mappings $\varphi: X \rightarrow Y$ and ψ : $Y \rightarrow Z$ is $\psi \circ \varphi: X \rightarrow Z$ with $(\psi \circ \varphi)(x)=\psi(\varphi(x))$ for $x \in X$.
- $\mathbb{N}=\{0,1,2, \ldots\}$ natural numbers (i.e. non-negative integers)
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ integers
- A word is a sequence of letters (aka string), a (formal) language is a set of words.
- The set of all finite words over the alphabet Σ is $\Sigma^{*}=\left\{a_{1} \cdots a_{n} \mid n \geq 0, a_{i} \in \Sigma\right\}$. It is the so-called free monoid over Σ. The empty word is denoted by ε. The length of a word $u=a_{1} \cdots a_{n}$ with $a_{i} \in \Sigma$ is $|u|=n$, its alphabet is the set $\operatorname{alph}(u)=\left\{a_{1}, \cdots, a_{n}\right\} \subseteq \Sigma$. We have $|\varepsilon|=0$ and $\operatorname{alph}(\varepsilon)=\emptyset$. By writing a word $a_{1} \cdots a_{m}$ before a word $b_{1} \cdots b_{n}$ we obtain their concatenation $a_{1} \cdots a_{m} b_{1} \cdots b_{n}$. We have $\varepsilon u=u \varepsilon=u$ for all words $u \in \Sigma^{*}$.
- A set S with a binary operation $\cdot: S \times S \rightarrow S$ (written as $\cdot(u, v)=u \cdot v=u v)$ forms a semigroup if \cdot is associative, i.e., $(u \cdot v) \cdot w=u \cdot(v \cdot w)$ for all $u, v, w \in S$. In particular, the notation $u v w$ without brackets is well-defined. When emphasizing the operation, we write (S, \cdot).
- A semigroup M forms a monoid if there exists a neutral element $e \in M$, i.e., $e u=u e=u$ for all $u \in M$. The neutral element is often denoted by 1 for the operation. and by 0 for + . In the case of \cdot, the n-fold product of $u \in M$ with itself is written as u^{n}; we set $u^{0}=1$ for all $u \in M . \operatorname{Both}(\mathbb{N},+)$ and ($\mathbb{N}, \cdot)$ form monoids (\cdot denotes here multiplication) ; ($\mathbb{N} \backslash\{0\},+$) forms a semigroup which is not a monoid. The free monoid Σ^{*} with concatenation forms a monoid with neutral element ε.
- A monoid G forms a group if for every $u \in G$ there exists an inverse $v \in G$ with $u v=v u=1$. The inverse of u is often written as u^{-1} (or as $-u$ if the operation is +). The integers \mathbb{Z} with addition form a group. Note that the inverse of an element u is unique.
- A subset X of a monoid M is a submonoid if $1 \in X$ and X with the operation in M forms a monoid. For example, \mathbb{N} is a submonoid of \mathbb{Z}. Subsemigroups and subgroups are defined similarly. Let $M=\{1,0\}$ with multiplication; then both $\{1\}$ and $\{0\}$ are subsemigroups of M which form monoids, but only $\{1\}$ is a submonoid of M.
- $\Sigma \subseteq M$ generates a monoid M if every element in M can be written as a finite product of elements in Σ; the empty product yields the neutral element 1 . In this case we call Σ a generating set or a set of generators.
- Every subset $L \subseteq M$ generates a submonoid of the monoid M, denoted by L^{*}.
- Examples:
- M generates M.
- $M \backslash\{1\}$ generates M.
$-\{-1,1\}$ generates \mathbb{Z} and $\{1\} \subseteq \mathbb{Z}$ generates the
submonoid \mathbb{N} of \mathbb{Z}.
$-\{-2,3,4\}$ generates \mathbb{Z} and $\{3\}$ generates $3 \mathbb{N}$.
$-\Sigma$ generates Σ^{*}.
- \{aa,aaa\} generates the submonoid $\{a\}^{*} \backslash\{a\}$ of $\{a\}^{*}$.
- A mapping $\varphi: X \rightarrow Y$ is
- surjective (aka onto) if the set $\varphi(X)=$ $\{\varphi(x) \mid x \in X\}$ equals Y, i.e., if for every $y \in Y$ there exists $x \in X$ with $\varphi(x)=y$.
- injective (aka one-to-one) if for all $x, x^{\prime} \in X$ we have $x \neq x^{\prime} \Rightarrow \varphi(x) \neq \varphi\left(x^{\prime}\right)$; this is usually shown as $\varphi(x)=\varphi\left(x^{\prime}\right) \Rightarrow x=x^{\prime}$.
- bijective (aka one-to-one correspondence) if it is both surjective and injective; in this case there exists a mapping $\varphi^{-1}: Y \rightarrow X$ such that both $\varphi^{-1} \circ \varphi: X \rightarrow X$ and $\varphi \circ \varphi^{-1}: Y \rightarrow Y$ are identity mappings. A bijection is a bijective mapping.
- A mapping $\varphi: M \rightarrow N$ between monoids M and N is a homomorphism if $\varphi(1)=1$ and $\varphi(u v)=\varphi(u) \varphi(v)$ for all $u, v \in M$; note that $\varphi(u v)$ uses the operation in M whereas $\varphi(u) \varphi(v)$ uses the operation in N. Both the length $||:. \Sigma^{*} \rightarrow \mathbb{N}$ and the alphabet $\operatorname{alph}():. \Sigma^{*} \rightarrow 2^{\Sigma}$ define a homormophisms (here, the operation on \mathbb{N} is addition and the operation on the power set 2^{Σ} of Σ is union).
- If $\varphi: M \rightarrow N$ is a homomorphism, then $\varphi(M)$ is a submonoid of N (since $1=\varphi(1) \in \varphi(M)$ and $\varphi(u) \varphi(v)=\varphi(u v) \in \varphi(M))$. Furthermore, if M is a group, then $\varphi(M)$ is a group, too (since the inverse of $\varphi(u)$ is $\varphi\left(u^{-1}\right)$). Obviously, $\varphi: M \rightarrow \varphi(M)$ is surjective.
- If Σ generates M, then a homomorphism $\varphi: M \rightarrow N$ is uniquely determined by the restriction $\varphi: \Sigma \rightarrow N$ (since every element $u \in M$ can be written as $u=a_{1} \cdots a_{n}$ with $a_{i} \in \Sigma$, and we have $\left.\varphi(u)=\varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)\right)$. Not every mapping $\varphi: \Sigma \rightarrow N$ induces a homomorphism $\varphi: M \rightarrow N$. For example, $\varphi(1)=2$ and $\varphi(-1)=$ 3 does not yield a homomorphism $\varphi: \mathbb{Z} \rightarrow \mathbb{N}$ since $\varphi(1-1)=\varphi(0)=0$ and $\varphi(1)+\varphi(-1)=2+3=5 \neq 0$. On the other hand, every mapping $\varphi: \Sigma \rightarrow N$ from a set Σ to a monoid N uniquely extends to a homomorphism $\varphi: \Sigma^{*} \rightarrow N$.
- A bijective homomorphism $\varphi: M \rightarrow N$ is an isomorphism. Note that in this case $\varphi^{-1}: N \rightarrow M$ is a homomorphism, too.
- Two monoids M, N are isomorphic if there exists an isomorphism $\varphi: M \rightarrow N$. Frequently, isomorphic monoids are considered to be identical since the elements are nothing but renamings of one another. For example, $(\{1,-1\}, \cdot)$ is isomorphic to $(\{1,0\},+)$. On the other hand, $(\{1,-1\}, \cdot)$ is not isomorphic to $(\{1,0\}, \cdot)$ since $(\{1,-1\}, \cdot)$ is a group and $(\{1,0\}, \cdot)$ is not a group.

