
Automata and Formal Languages
Lecture notes WS 2013/2014

Manfred Kufleitner

kufleitn@in.tum.de

January 28, 2014

Contents

I. Finite Words 5

1. Rational Sets 6
1.1. Rational expressions . 6
1.2. Closure properties of rational sets . 7
1.3. Nondeterministic automata . 8
1.4. Conversion of rational expressions into automata 10
1.5. Conversion of automata into rational expressions 12
1.6. Removal of epsilon-transitions . 14
1.7. Equivalence of rational expressions and nondeterministic automata 17
1.8. Semilinear subsets of commutative monoids 17

2. Recognizable Sets 19
2.1. Closure properties of recognizable sets . 20
2.2. Syntactic monoids . 21
2.3. Deterministic automata . 22
2.4. Minimal automata . 23
2.5. Transition monoids and Cayley automata . 24
2.6. The Myhill-Nerode Theorem . 26
2.7. Learning Recognizable Sets . 27

3. Regular Languages 33
3.1. McKnight’s Theorem . 33
3.2. The powerset construction and Kleene’s Theorem 33
3.3. Nondeterministic automata and Boolean matrices 35
3.4. The relation between rational and recognizable sets 37

4. Algorithmic Properties of Automata 42
4.1. Boolean operations . 43
4.2. Homomorphisms and inverse homomorphisms 45
4.3. Residuals and quotients . 46
4.4. Decision problems for automata . 49
4.5. Minimization algorithms . 57

3

Part I.

Finite Words

5

1. Rational Sets

Let M be a monoid. The rational subsets of M are denoted by RAT(M). Their inductive
definition is as follows.

• Every finite subset of M is in RAT(M).

• If K,L ∈ RAT(M), then K ∪ L ∈ RAT(M) and KL ∈ RAT(M).

• If K,L ∈ RAT(M), then KL ∈ RAT(M).

• If L ∈ RAT(M), then L∗ ∈ RAT(M).

This means that RAT(M) is the closure of the finite subsets of M under union, product, and
Kleene star. Note that ∅∗ = {1}.

Example 1.1. Consider the monoid M = N×N×N with componentwise addition. The subset
L = { (`,m, n) | 2(`+m) = n, m ≥ 2 } ⊆M is rational since

L = {(0, 2, 4)} {(0, 1, 2), (1, 0, 2)}∗ .

We note that if the operation inM is addition, then the productKL forK,L ⊆M is sometimes
denoted by K+L. In the above case, L could also be written as {(0, 2, 4)}+{(0, 1, 2), (1, 0, 2)}∗.

3

Proposition 1.1. Let M be a monoid. Then every rational subset of M is contained in a
finitely generated submonoid of M .

Proof. The proof is by induction on the number of operations used for defining L ∈ RAT(M).
If L = {u1, . . . , un}, then L is contained in {u1, . . . , un}∗. Let now K ⊆ {a1, . . . , am}∗ and
L ⊆ {b1, . . . , bn}∗. Then both K ∪ L and KL are contained in {a1, . . . , am, b1, . . . , bn}∗,
and L∗ is contained in {b1, . . . , bn}∗.

Example 1.2. If Σ is an infinite set, then the free monoid M = Σ∗ is not finitely generated. By
Proposition 1.1 we see that in this case we have M 6∈ RAT(M). More generally, a monoid M
is finitely generated if and only if M ∈ RAT(M). 3

1.1. Rational expressions

Let Σ be an arbitrary set. The rational expressions over Σ are purely syntactic object. Their
definition is as follows:

• The empty set ∅ and the symbols a ∈ Σ are rational expressions over Σ.

• If s and t are rational expressions over Σ, then so is (s | t).
• If s and t are rational expressions over Σ, then so is (st).

• If s is a rational expressions over Σ, then so is s∗.

The size of a rational expression is its length as a word over the alphabet Σ together with
the symbols ‘∅’, ‘ | ’, backets ‘(’ and ‘)’, and the star operator ‘∗’. The operator ‘ | ’ is called
choice. Whenever possible, the bracketing is omitted and the usual order of operations is
applied (star before concatenation, before choice).

Remark 1.1. The choice operator is often written as +. We use | in order to avoid confusion
with the operation in commutative monoids. 3

6

1.2. Closure properties of rational sets

If Σ is a subset of a monoid M , then every rational expressions s defines a subset L(s) ⊆M .
For rational expressions s and t we set

L(∅) = ∅
L(a) = {a}

L(s | t) = L(s) ∪ L(t)

L(st) = L(s)L(t)

L(s∗) = L(s)∗,

where L(s) and L(t) are defined inductively. By definition, rational expressions only define
rational sets. If Σ is a generating set, then the converse also holds. In particular, rational
expressions over Σ can be used as finite presentations of all rational sets.

Proposition 1.2. Let M be a monoid and let Σ be a generating set. For every subset L ⊆M
the following conditions are equivalent:

(a) L ∈ RAT(M).

(b) There exists a rational expression s over Σ such that L(s) = L.

Proof. (a)⇒ (b): Since union (product, Kleene star, respectively) is covered by the operation
choice (concatenation, star, respectively), it suffices to show that there exists a rational
expression for every finite set. We have ∅ = L(∅). Thus by closure under union it suffices to
show that every singleton set {u} can be defined by a rational expression. Let u = a1 · · · an
for n ≥ 0 and ai ∈ Σ. We proceed by induction over n. If n = 0, then u = 1 and we have
{1} = ∅∗ = L(∅∗). Let now n > 0. By induction there exists a rational expression s with
L(s) = {a1 · · · an−1}. Then san is the desired rational expression for {u}.

(b)⇒ (a): Both ∅ and {a} are finite sets, and RAT(M) is closed under union, product,
and Kleene star. Thus every rational expression over Σ defines a rational subset of M .

The set {1} containing only the neutral element is defined by the regular expression ∅∗.
Frequently, one allows an additional symbol 1 in rational expressions as a shortcut for ∅∗, i.e.,
the semantics of the rational expression 1 is L(1) = {1}. The idea is that over free monoids,
ε is the neutral element in which case we have L(1) = {ε}.

1.2. Closure properties of rational sets

By definition, rational sets are closed under union, product, and Kleene star. The following
proposition shows that the homomorphic image of a rational set is again rational.

Proposition 1.3. Let M and N be monoids, and let ψ : M → N be a homomorphism.
If L ∈ RAT(M), then ψ(L) ∈ RAT(N). Moreover, if ψ is surjective, then for every
K ∈ RAT(N) there exists L ∈ RAT(M) with ψ(L) = K.

Proof. By Proposition 1.2 it suffices to show that for every rational expression s over M
there exists a rational expression ŝ over N with L(ŝ) = ψ(L(s)). We set ∅̂ = ∅ and â = ψ(a)
for a ∈M . For choice, concatenation and star we define

ŝ | t = ŝ | t̂
ŝt = ŝt̂

ŝ∗ = ŝ∗.

7

1. Rational Sets

The atomic expressions s satisfy L(ŝ) = ψ(L(s)). For the other operations, induction on the
size yields

L(ŝ | t) = L(ŝ | t̂) = L(ŝ) ∪ L(t̂) = ψ
(
L(s)

)
∪ ψ
(
L(t)

)
= ψ

(
L(s) ∪ L(t)

)
= ψ

(
L(s | t)

)
L(ŝt) = L(ŝt̂) = L(ŝ)L(t̂) = ψ

(
L(s)

)
ψ
(
L(t)

)
= ψ

(
L(s)L(t)

)
= ψ

(
L(st)

)
L(ŝ∗) = L(ŝ∗) = L(ŝ)∗ = ψ

(
L(s)

)∗
= ψ

(
L(s)∗

)
= ψ

(
L(s∗)

)
.

This shows that a rational expression for ψ(L(s)) can be obtained by replacing the atomic
terms by their images under ψ and not changing the rest of the expression.

For the second part of the statement, when given a rational expression s over N , then we
replace every atom b ∈ N by some arbitrary preimage b̃ ∈ ψ−1(b). This yields an expression
s̃ with ψ(L(s̃)) = L(s).

Note that if the homomorphism ψ : M → N is surjective and K ∈ RAT(N), then
Proposition 1.3 does not yield an expression for ψ−1(K); it just constructs some rational
preimage of K. The following example shows that ψ−1(K) might be not rational.

Example 1.3. If M is not finitely generated, then by Proposition 1.1 we have M 6∈ RAT(M).
When considering the trivial homomorphism ψ : M → {1} with ψ(u) = 1 for all u ∈ M ,
then M = ψ−1({1}) is the inverse homomorphic image of the rational set {1}. In particular,
rational sets are not closed under inverse homomorphisms. 3

Example 1.4. Let Σ be an infinite set and let M = Σ∗ ∪ {0} be the free monoid over Σ
together with a zero element 0, i.e., we have u0 = 0u = 0 for all u ∈ M . Sets of the
form u−1L = { v ∈M | uv ∈ L } and Lu−1 = { v ∈M | vu ∈ L } for some u ∈ M are called
residuals of L ⊆ M . We have {0} ∈ RAT(M) whereas the residual 0−1 {0} = M is not
rational. This shows that rational sets are not closed under residuals. 3

We will see in Section 3.4 that rational sets are neither closed under intersection and nor
under complement.

1.3. Nondeterministic automata

Automata are a simple machine model for defining sets. They come in two flavors, deterministic
and nondeterministic. In general, finite nondeterministic automata can define more sets than
finite deterministic automata. It will turn out that finite nondeterministic automata can
accept exactly the rational sets. A nondeterministic M -automaton A = (Q, δ, I, F) consists
of

• a set of states Q,

• a transition relation δ ⊆ Q×M ×Q,

• a set of initial states I,

• and a set of final states F .

The elements of δ are called transitions. If (p, u, q) is a transition, then u is called its label.
The notion of a run is the main tool for defining the set accepted by A. A run of the
automaton A is a sequence

r = q1u1q2 · · ·unqn+1

with (qi, ui, qi) ∈ δ for all 1 ≤ i ≤ n. We say that r is a run from q1 to qn+1 on the element
u = u1 · · ·un. If n = 0, then r is a run on the neutral element. One way of how to think
about runs on u ∈M is that the automaton A decorates a factorization of u with states such
that locally the transition relation holds. The run r is accepting if q1 ∈ I and qn+1 ∈ F . The
subset of M accepted by A is

L(A) = {u ∈M | there exists an accepting run of A on u } .

8

1.3. Nondeterministic automata

We write p u q if there exists a run from state p to state q on the element u ∈M . Using this
notation, we have L(A) =

{
u ∈M

∣∣ ∃i ∈ I ∃f ∈ F : i u f
}

. If p u q and q v q′, then
p uv q′.

Automata can be visualized as edge-labeled graphs. The states of the automaton are the
vertices and transition define the edges. Moreover, initial states are marked by an ingoing
arrow (from nowhere), and final states have a double circle. Transitions of the form (q, u, q)
are called loops.

initial state final state

p qu

transition (p, u, q)

q u

loop (q, u, q)

Example 1.5. Let Σ = {a, b}. Consider the nondeterministic Σ∗-automaton A = (Q, δ, I, F)
with states Q = { q1, q2, q3, q4 }, initial and final states I = F = {q1, q3} and transition
relation

δ = { (q1, a, q2), (q2, a, q2), (q2, a, q3), (q3, b, q4), (q4, b, q4), (q4, b, q1) } .

The automaton A can be visualized as follows:

q1

q2

q3

q4

a

a

a

b

b

b

We will see that it is not suprising that L(A) = L((aaa∗ | bbb∗)∗) can be written as a rational
expression. We have q2

aaa q2 and q2
aaa q3. An accepting run of A on aaabbbaa is

q1 a q2 a q2 a q3 b q4 b q4 b q1 a q2 a q3 .

Runs can be obtained from the visualization of an automaton by chasing paths. 3

Two nondeterministic M -automata are equivalent if they accept the same subset. A
nondeterministic M -automaton is deterministic if |I| = 1 and if for every state p ∈ Q and
every element u ∈ M there exists a unique state q ∈ Q with p u q. This means for every
state p ∈ Q and every element u ∈ M , all runs on u starting at p end in a unique state q.
This does not mean that there is only one run on u from p to q.

Example 1.6. We consider the integers Z with addition. The following nondeterministic
Z-automaton is deterministic.

9

1. Rational Sets

q0

q1

q2

q3

q4

2

2

2

2

2

−1

−1

−1

−1−1

It accepts the subset 5Z = { 5k | k ∈ Z }. The following are some of the accepting runs of
0 ∈ Z:

q0

q0 2 q1 (−1) q3 (−1) q0

q0 (−1) q2 2 q3 (−1) q0

q0 2 q1 (−1) q3 2 q4 (−1) q1 (−1) q3 (−1) q0

In particular, the accepting run of 0 is not unique. In fact, there are infinitely many of them
since every presentation of 0 as a sum of 2’s and (−1)’s yields another run. 3

1.4. Conversion of rational expressions into automata

There are many ways for translating rational expressions into automata. The one we use
here is due to Kenneth Lane Thompson who is well-known for his contributions to the unix
operating system. This method is therefore called the Thompson construction.

Theorem 1.4. Let M be a monoid. For every rational expression s over M there exists a
nondeterministic M -automaton As with O(|s|) transitions such that L(As) = L(s).

Proof. Let 1 ∈M be the neutral element. For every rational expression s we construct an
automaton As with the following properties

• L(As) = L(s).

• As has a unique initial state is, and is has no incoming transitions. Incoming transitions
of a state q are transitions of the form (p, u, q).

• As has a unique final state fs, and fs has no outgoing transitions. Outgoing transitions
of a state p are transitions of the form (p, u, q).

The finite subset L = {u1, . . . , un } of M is accepted by the following two-state automaton:

i f

u1

un

...

This covers the cases s = ∅, s = 1, and s = a. For the remaining operations we assume that
we have already constructed automata At and At′ . The automaton As for choice s = t | t′ is:

10

1.4. Conversion of rational expressions into automata

At

At′

it, it′ ft, ft′

This means, we take the disjoint union of At and At′ , except that we identity it with it′

(which yields the initial state is of As) and ft with ft′ (which yields the final state fs). The
automaton As for concatenation s = tt′ is:

At

At′

it ft, it′ ft′

This means we take the union of At and At′ in which we identify the states ft and it′ , other
than that the union is disjoint. The initial state of As is it and the final state is ft′ .

For s = t∗ the construction is as follows:

At
it ftis fs

1 1

1

1

In all cases we have L(As) = L(s).

Remark 1.2. It is tempting to optimize the construction for the star operator by identifying
is with it and fs with ft. This destroys the invariant that is has no incoming transitions and
fs has no outgoing transitions. But without this presumption, none of the constructions for
choice, concatenation, and star is correct. For instance, consider monoid M = {a, b}∗ and
the rational expression s = (a∗b)∗. The resulting automaton would be

a b

1

1

1

1

We have L(s) = {1} ∪ {a, b}∗ b but the above automaton also accepts the word a 6∈ L(s). 3

We note that the Thompson construction does not depend on M . This means that for
every rational expression s over Σ it constructs a nondeterministic automaton As with labels
in Σ ∪ {1} such that over every monoid M with Σ ⊆M , the expression s and the automaton
As define the same subset.

11

1. Rational Sets

Example 1.7. Consider the regular expression s = b(c | a∗)∗ over Σ = {a, b, c}. Then the
Thompson construction yields the following automaton As:

b 1 1 a 1 1

1

1

c

1

1

We will use this automaton as a running example. 3

1.5. Conversion of automata into rational expressions

For translating nondeterministic automata into rational expressions we use a slightly more
general automaton model as an intermediate step. An M-automaton with rational labels
A = (Q, δ, I, F) satisfies δ ⊆ Q× RAT(M)×Q. By using singleton sets as labels we obtain
the usual nondeterministic M -automata. In order to have finite presentations, the rational
labels are frequently given as rational expressions. The automaton A is finite if δ is finite.
Note that if δ is finite, then, for a transition (p, L, q) ∈ δ, the set L can still be infinite. A
sequence q1u1q2 · · ·unqn+1 is a run of A if for every i ∈ {1, . . . , n} there exists a transition
(qi, Li, qi+1) ∈ δ with ui ∈ Li. The following procedure for translating automata into rational
expressions is called state elimination.

Theorem 1.5. Let M be a monoid. For every finite M -automaton A with rational labels we
have L(A) ∈ RAT(M).

Proof. Let A = (Q, δ, I, F) with Q = {q2, . . . , qn}. Since rational sets are closed under union,
we can assume that for any pair of states qi, qj there exists at most one transition (qi, Lij , qj) ∈
δ. If there is no transition (qi, Lij , qj), then we set Lij = ∅. We introduce a new unique initial
state q0 and a new unique final state q1 by setting Qn = { q0, . . . , qn } = Q ∪ {q0, q1} and

δn = δ ∪ { (q0, {1} , i) | i ∈ I } ∪ { (f, {1} , q1) | f ∈ F } .

The automaton Bn = (Qn, δn, {q0} , {q1}) is equivalent to A. Note that q0 has no incom-
ing transitions and that q1 has no outgoing transitions. If n > 1, then we construct an
equivalent automaton Bn−1 = (Qn−1, δn−1, {q0} , {q1}) with n states as follows. We set
Qn−1 = {q0, . . . , qn−1} and

δn−1 = { (qi, Lij ∪ LinL∗nnLnj , qj) | 0 ≤ i, j < n }

This means that we replace every transition (qi, Lij , qj) ∈ δn by (qi, Lij ∪LinL∗nnLnj , qj). This
can be visualized as follows:

qi qn qj
Lin Lnj

Lnn

Lij

In the automaton Bn

qi qj
Lij ∪ LinL∗nnLnj

In the automaton Bn−1

12

1.5. Conversion of automata into rational expressions

All labels in the automaton Bn−1 are rational, and Bn−1 is equivalent to Bn. Note that all
incoming transitions of q0 and all outgoing transitions of q1 have label ∅. By repeated state
elimination we obtain the equivalent automaton B1. If (q0, L01, q1) ∈ δ1, then L(B1) = L01 ∈
RAT(M); otherwise we have L(B1) = ∅ ∈ RAT(M).

Remember ∅∗ = {1}. Note that when giving all labels Lij in the state elimination
algorithm as rational expressions sij , then the above construction does not depend on M .
If A is a nondeterministic M -automaton with n states and labels in Σ, then the state
elimination algorithm constructs a rational expression of size |Σ| 2O(n). At the beginning,
each language Lij has size at most |Σ|n. Then while eliminating one state, the size of the
longest expression at most quadruples (plus some constant for choice, star, and brackets).
This yields |Σ|n2O(n) = |Σ| 2O(n) as an upper bound on the size.

Example 1.8. Consider the following automaton A from Example 1.7.

q0 q6 q2 q5 q4 q3 q1
b 1 1 a 1 1

1

1 | c
1

1

Since q0 has no incoming transitions and q1 has no outgoing transitions, we do not have to
add additions states. We always apply obvious simplifications involving concatenation with 1.
After elimination of q6 we obtain:

q0 q2 q5 q4 q3 q1
b 1 a 1 1

1

1 | c
1

b

Eliminating q5 yields:

q0 q2 q4 q3 q1
b a

a

1 1

1 | c

1

b

After elimination of q4 we have:

13

1. Rational Sets

q0 q2 q3 q1
b 1 | c | aa∗ 1

1

b

By elimination of q3 we obtain:

q0 q2 q1
b 1 | c | aa∗

1 | c | aa∗

b

Finally eliminating q2 yields:

q0 q1
b | b(1 | c | aa∗)∗(1 | c | aa∗)

Therefore, a rational expression for L(A) is b | b(1 | c | aa∗)∗(1 | c | aa∗). Remember that we
constructed A from the expression b(c | a∗)∗ using the Thompson construction. 3

1.6. Removal of epsilon-transitions

Let Σ be a generating set of the monoid M and let A = (Q, δ, I, F) be a nondeterministic
M -automaton. We say that A is a letter-by-letter automaton for Σ if all labels are in Σ, i.e.,
the transition relation satisfies δ ⊆ Q×Σ×Q. Every transition with label u = a1 · · · an with
n ≥ 1 and ai ∈ Σ can easily be split into n transitions. Avoiding transitions with label u = 1
is slightly more involved. Since ε is the neutral element of the free monoid, the following
procedure is called removal of ε-transitions.

Theorem 1.6. Let M be a monoid with generating set Σ. For every finite nondeterministic
M -automaton A there exists an equivalent finite letter-by-letter automaton for Σ with only
one initial state.

Proof. Let A = (Q, δ, I, F). By omitting all unreachable states we can assume that Q is finite.
As long as there are transitions (p, u, q) with label u ∈M \ (Σ ∪ {1}) we write u = a1 · · · an
with ai ∈ Σ and we replace (p, u, q) by

p q2 q3 · · · qn q
a1 a2 an

where q2, . . . , qn are new states. After this step, all labels are in Σ ∪ {1} and the accepted
set did not change. Let q0 be a new state. We add the transitions { (q0, 1, i) | i ∈ I } and we
choose q0 as the only initial state. Next, we make the 1-transitions transitive, i.e., whenever
there are two consecutive transitions (p, 1, q) and (q, 1, r), then we add the transition (p, 1, r).
One can think of this procedure as introducing shortcuts. Let

F ′ = F ∪ { p ∈ Q | (p, 1, q) is a transition with q ∈ F } .

Using F ′ as final sets yields the equivalent automaton B′ = (Q′, δ′, {q0} , F ′). Next, for every
transition (p, 1, q) ∈ δ′ and every generator a ∈ Σ we add the transitions{

(p, a, q′)
∣∣ (q, a, q′) ∈ δ′

}
.

This defines the equivalent automaton B′′ = (Q′, δ′′, {q0} , F ′).

14

1.6. Removal of epsilon-transitions

p q q′
1 a

In the automaton B′

p q q′
1 a

a

In the automaton B′′

Finally, let B be obtained from B′′ by removing all transitions with label 1. It remains to
show L(B) = L(B′′). The inclusion L(B) ⊆ L(B′′) is trivial since every accepting run of B
is also an accepting run of B′′. Let now r = q0u1q1 · · ·unqn be an accepting run of B′′ on
u = u1 · · ·un ∈ L(B′′) with as few 1-transitions as possible. We can assume u 6= 1 since
otherwise r = q0 is an accepting run of B, as desired. By construction of F ′ we have un 6= 1.
If ui = 1, then i < n and ui+1 6= 1 since the 1-transitions are transitive. Now, by construction
of δ′′ there exists a transition (qi−1, ui+1, qi+1). Replacing the segment qi−1uiqiui+1qi+1 of
the run r by qi−1ui+1qi+1 we obtain an accepting run on u with fewer 1-transitions. This is a
contradiction to the choice of r. Therefore, r uses no 1-transitions, i.e., r is an accepting run
of B. This shows L(B′′) ⊆ L(B).

We summarize the algorithm for the removal of ε-transitions. Moverover, we give a rough
estimate of the running time of each step.

(a) Replace labels u ∈M \ (Σ ∪ {1}) by several transitions with labels in Σ. The running
time of this step depends on the number of transitions required for this substitution.

(b) Add a unique initial state. To this end, |I| transitions have to be drawn.

(c) Make the 1-transitions transitive. There are cubic algorithms with respect to the
number of states for computing transitive closures (e.g. Warshall’s algorithm).

(d) All states which can reach a final state using a 1-transition also become final states.
Depending on the implementation of the automaton, this step is linear in the number
of transitions.

(e) For transitions (p, 1, q) and (q, a, r) with a ∈ Σ we introduce a shortcut (p, a, r).
Depending on the implementation of the automaton, this step is quadratic in the
number of transitions.

(f) All 1-transitions are removed. This step is linear in the number of transitions.

(g) As an optimization, one can omit unreachable states in the resulting automaton.

If all labels are in Σ ∪ {1}, then the algorithm can be implemented with a running time
of O(|Q|2 |δ|). This is mainly due to the complexity of step (e) since an upper bound for
the number of 1-transitions after step (c) is |Q|2. Since we can assume that all states are
reachable we have O(|Q|3) ⊆ O(|Q|2 |δ|) which covers the running time of step (c). Also note
that if all labels are in Σ ∪ {1}, then, except for the initial state, no other new states are
required by the construction.

Example 1.9. Let M = {a, b}∗, let Σ = {a, b}, and consider the following automaton from
Example 1.7 in which we replaced c by ab, i.e., the language accepted by the automaton is
defined by the rational expression b(ab | a∗)∗.

b ε ε a ε ε
ε

ε

ab

ε

ε

15

1. Rational Sets

The automaton already has a unique initial state. We proceed by splitting the transition
with label ab into two transitions. This yields the following automaton.

b ε ε a ε ε
ε

ε

a b

ε

ε

In the next step, we make the ε-transitions transitive by successively adding new ε-transitions
as shortcuts for every two consecutive ε-transitions. We thereby omit ε-loops.

b ε ε a ε ε
ε

ε

a b

ε

ε

ε

ε

ε

ε

ε

ε

Now, every state which can reach a final state using an ε-transition becomes a final state
itself.

b ε ε a ε ε
ε

ε

a b

ε

ε

ε

ε

ε

ε

ε

ε

We combine the next two steps. We introduce new transitions with labels from Σ and we
remove all ε-transitions.

b a

a b

a

a

a
a

a

a
a

16

1.7. Equivalence of rational expressions and nondeterministic automata

Finally, by omitting unreachable states (and after some rearrangement) we obtain the following
automaton.

b
b

aa

a

a

a a

The above automaton is letter-by-letter for {a, b} and it has only one initial state. 3

Remark 1.3. By adapting the algorithm for removal of ε-transitions one can also construct
letter-by-letter automata with only one final state; but, in general, these automata then have
more than one initial state. Not for every rational set there exists a letter-by-letter automata
with only one initial state and only one final state. For instance, let Σ = {a, b} and M = Σ∗,
and consider the language L = {ε, a, b}. Assume there were a letter-by-letter automaton A
with L(A) = L such that A has only one initial state q0 and only one final state q1. Then,
since ε ∈ L, we have q0 = q1. From a, b ∈ L we conclude that there are accepting runs for the
words a and b, i.e., there are transitions (q0, a, q0) and (q0, b, q0). Combining these two runs
yields an accepting run for every word in Σ∗. This is a contradiction to L(A) = L. Therefore
such an automaton A for the language L does not exist. 3

1.7. Equivalence of rational expressions and nondeterministic
automaton models

We combine the findings in the previous sections for obtaining the following characterizations
of rational sets.

Theorem 1.7. Let M be a monoid with generating set Σ and let L ⊆ M . The following
conditions are equivalent:

(a) L ∈ RAT(M), i.e., the set L is rational.

(b) There exists a rational expression s over Σ such that L(s) = L.

(c) L is accepted by a finite nondeterministic M -automaton.

(d) L is accepted by a finite letter-by-letter M -automaton for Σ with a single initial state.

(e) L is accepted by a finite M -automaton with rational labels.

Proof. The equivalence of (a) and (b) is Proposition 1.2. (b)⇒ (c): This follows from
the Thompson construction in Theorem 1.4. (c)⇒ (d): The removal of ε-transitions in
Theorem 1.6 shows this implication. (d)⇒ (e): Trivial. (e)⇒ (a): This translation is achieved
by state elimination, see Theorem 1.5.

In Figure 1.1 we summarize the conversions between the different descriptions of rational
sets. The numbers after the name of the construction indicate the maximal blow-up in size.
For automata we count the number of states. For better readability the given bounds we
assume that the set of generators Σ is fixed.

1.8. Semilinear subsets of commutative monoids

A monoid M is commutative if uv = vu for all u, v ∈ M . The operation in commutative
monoids is usually written as addition. This means we write u + v instead of uv, and

17

1. Rational Sets

rational expression
over Σ

nondeterministic automaton
with labels in Σ ∪ {1}

letter-by-letter
automaton for Σ

Thompson construction, O(n)

state elimination, 2O(n)

state
elim

ination, 2 O
(n)

re
m

ov
al

of
ε-

tr
an

sit
io
ns

, n

tr
iv

ia
l

Figure 1.1.: Transformation between rational expressions and nondeterministic automata.

the neutral element is denoted by 0. Similarly, for subsets K,L ⊆ M we write K + L =
{u+ v | u ∈ K, v ∈ L } instead of concatenation KL. Typical commutative monoids are Nk
and Zk with componentwise addition. Let M be an arbitrary commutative monoid, let
u ∈M , and let n ∈ N. Then the term nu denotes the n-fold sum of u, i.e.,

nu = u+ · · ·+ u︸ ︷︷ ︸
n terms

In particular, 0u = 0 is the neutral element of M . A subset L ⊆ M is linear if L =
u0 + {u1, . . . , uk}∗ for k ≥ 0 and u0, . . . , uk ∈ M . We have u ∈ L if and only if there exist
n1, . . . , nk ∈ N with

u = u0 + n1u1 + · · ·+ nkuk.

A subset L ⊆M is semilinear if L is a finite union of linear sets. Every semilinear set L can
be written as L =

⋃`
j=1(vj + C∗j) for vi ∈M and finite subsets Ci ⊆M . We show that the

semilinear and the rational subsets coincide.

Theorem 1.8. Let M be a commutative monoid and let L ⊆M . The subset L is semilinear
if and only if L ∈ RAT(M).

Proof. By definition, every semilinear set is rational. Every finite subset of M is semilinear;
and semilinear sets are closed under union. For the remaining inclusion it therefore suffices to
show that semilinear sets are closed under addition and Kleene star. Let K =

⋃k
i=1(ui +B∗i)

and L =
⋃`
j=1(vj + C∗j) for ui, vj ∈M and for finite subsets Bi, Cj ⊆M . We have

K + L =
k⋃
i=1

⋃̀
j=1

(
(ui + vj) + (Bi ∪ Cj)∗

)
.

This shows that K +L is semilinear. For all subsets X,Y ⊆M we have (X ∪Y)∗ = X∗+Y ∗.
It therefore remains to show that the Kleene star of a linear set yields a semilinear set. We
have (

u0 + {u1, . . . , uk}∗
)∗

= {0} ∪
(
u0 + {u0, u1, . . . , uk}∗

)
.

Thus the Kleene star of the linear set u0 + {u1, . . . , uk}∗ is semilinear.

18

2. Recognizable Sets

Throughout this chapter, the letters M and N denote monoids. Let ϕ : M → N be a
homomorphism. The homomorphism ϕ recognizes a subset L ⊆ M if ϕ−1(ϕ(L)) = L. We
also say that a monoid N recognizes L ⊆ M if there exists a homomorphism ϕ : M → N
which recognizes L. A subset L ⊆ M is recognizable if it is recognized by a finite monoid.
The class of all recognizable subsets of M is denoted by REC(M). For any homomorphism
ϕ : M → N and any subset L ⊆M we have L ⊆ ϕ−1(ϕ(L)) since

u ∈ L ⇒ ϕ(u) ∈ ϕ(L).

Thus, if ϕ−1(ϕ(L)) ⊆ L, then ϕ−1(ϕ(L)) = L and the following equivalence holds:

u ∈ L ⇔ ϕ(u) ∈ ϕ(L).

This means that for checking whether or not u ∈ L holds, it suffices to test ϕ(u) ∈ ϕ(L);
and the latter can be considerably easier. For example, if N is a finite monoid (i.e., if L is
recognizable), then this is just a lookup in a finite table. Moreover, the computation of ϕ(u)
can be easily parallelized if u is given as a sequence of generators u = a1 · · · an:

a1 a2 a3 a4 · · · an

ϕ(a1) ϕ(a2) ϕ(a3) ϕ(a4) · · · ϕ(an)

ϕ(a1)ϕ(a2) ϕ(a3)ϕ(a4)

ϕ(a1) · · ·ϕ(a4)

ϕ(a1) · · ·ϕ(an)

ϕ(u)

=

With this scheme the parallel computation of h(u) with n processors requires log n steps, it
computes n images of letters under ϕ, and it evaluates n− 1 products in N .

The following lemma shows that recognition can also be defined in terms of accepting sets
P ⊆ N . In particular, this gives a way for presenting recognizable subsets of M using the
following three ingredients: a finite monoid N , a homomorphism ϕ : M → N , and a subset
P ⊆ N .

Lemma 2.1. Let ϕ : M → N be a homomorphism and let L ⊆M . Then ϕ recognizes L if
and only if there exists P ⊆ N with L = ϕ−1(P).

Proof. For the implication from left to right we can set P = ϕ(L). Let now L = ϕ−1(P).
Then ϕ−1(ϕ(L)) = ϕ−1(ϕ(ϕ−1(P))) ⊆ ϕ−1(P) = L.

If ϕ : M → N is a homomorphism, then ϕ(M) is a submonoid of N . Therefore, by replacing
N by ϕ(M) one can assume that ϕ is surjective. If a surjective homomorphism ϕ : M → N
recognizes L ⊆M , then P = ϕ(L) is the only accepting set for L.

19

2. Recognizable Sets

2.1. Closure properties of recognizable sets

If M is finite, then every subset of M is recognizable since it is recognized by the identity
mapping id : M →M . For groups, also the converse statement is true.

Proposition 2.2. A group G is finite if and only if {1} ∈ REC(G).

Proof. It suffices to show the implication from right to left. Let N be a finite monoid and
let ϕ : G → N be a homomorphism recognizing {1}. We can assume that ϕ is surjective
and hence, N is a group. Suppose ϕ(u) = ϕ(v). Then ϕ(uv−1) = ϕ(u)ϕ(v)−1 = 1 and thus
uv−1 ∈ ϕ−1(1). Since ϕ−1(1) = {1} we conclude uv−1 = 1 and thus u = v. Therefore, ϕ is
injective, which shows that G and N are isomorphic. In particular, G is finite.

If M is finitely generated, then only countably many subsets of M are recognizable. Even
though, quite few subsets of infinite monoids are recognizable, this class provides a nice
collection of closure properties. Let L ⊆ M . A left residual of L is a set of the form
u−1L = { v ∈M | uv ∈ L } for u ∈ M . Symmetrically, a right residual of L is Lu−1 =
{ v ∈M | vu ∈ L }. The following theorem summarizes some important closure properties of
recognizable subsets.

Theorem 2.3. Let M and M ′ be monoids and let ψ : M ′ →M be a homomorphism. The
following properties hold:

(a) REC(M) is closed under finite union, finite intersection, and complement.

(b) REC(M) is closed under left and right residuals.

(c) If L ∈ REC(M), then ψ−1(L) ∈ REC(M ′), i.e., the recognizable sets are closed under
inverse homomorphisms.

Moreover, for effective presentations of M , M ′ and ψ, all of the above closure properties are
effective.

Proof. (a): If a homomorphism ϕ recognizes L ⊆M , then it also recognizes M \L. The trivial
monoid {1} recognizes both M and ∅. This covers the empty intersection and the empty
union. Consider homomorphism ϕi : M → Ni with Li = ϕ−1i (Pi). Let ϕ : M → N1×N2 with
ϕ(u) = (ϕ1(u), ϕ2(u)). Then L1∩L2 = ϕ−1(P1×P2) and L1∪L2 = ϕ−1((P1×N2)∪(N1×P2)).

(b): Let u ∈ M and let ϕ : M → N be a homomorphism with L = ϕ−1(P) for P ⊆ N .
The subset P ′ = ϕ(u)−1P = {x ∈ N | ϕ(u)x ∈ P } satisfies

ϕ(v) ∈ P ′ ⇔ ϕ(u)ϕ(v) ∈ P ⇔ ϕ(uv) ∈ P ⇔ uv ∈ L ⇔ v ∈ u−1L.

This shows u−1L = ϕ−1(P ′). Right residuals are symmetric.
(c): Let K = ψ−1(L). If ϕ : M → N recognizes L, then ϕ◦ψ : M ′ → N recognizes K since

u ∈ K ⇔ ψ(u) ∈ L ⇔ ϕ(ψ(u)) ∈ ϕ(L).

We now show that recognizable sets are not closed under homomorphic images.

Example 2.1. Let ψ : {a, b}∗ → Z be the homomorphism defined by a 7→ 1 and b 7→ −1. We
have {ε} ∈ REC({a, b}∗) but ψ({ε}) = {0} is not in REC(Z) by Proposition 2.2. 3

The following example of Shmuel Winograd shows that, in general, recognizable sets are
neither closed under concatenation nor under Kleene-star.

Example 2.2. We extend the addition of Z to M = Z ∪ {e, a} by setting e+m = m for all
m ∈M , a+ a = 0 and a+ k = k for all k ∈ Z. Now, M forms a commutative monoid with
neutral element e.

We claim that L ∈ REC(M) implies L ∩ Z ∈ REC(Z). Suppose ϕ : M → N is a
homomorphism recognizing L ⊆ M , and let ϕ̃ : Z→ N be the restriction of ϕ to Z. Then
F = ϕ(L) satisfies ϕ̃−1(F) = ϕ−1(F) ∩ Z = L ∩ Z. This proves the claim.

20

2.2. Syntactic monoids

Next we show {a} ∈ REC(M). Let N = {e, a, z} be a commutative monoid with neutral
element e with zero element z and with a+ a = z. Let ϕ : M → N be the homomorphism
defined by e 7→ e, a 7→ a, and k 7→ z for all k ∈ Z. It satisfies ϕ−1(a) = {a}. The product
of {a} with itself is {a} + {a} = {0} and its Kleene-star is {a}∗ = {e, a, 0}. Neither {0}
nor {e, a, 0} is in REC(M), since in both cases the intersection with Z yields {0} which by
Proposition 2.2 is not in REC(Z). 3

2.2. Syntactic monoids

The syntactic monoid Synt(L) of a subset L ⊆ M is the unique minimal monoid which
recognizes L. It is naturally equipped with a homomorphism ϕL : M → Synt(L) which
recognizes L, the so-called syntactic homomorphism. In order to formally define the syntactic
monoid of L, we first introduce the syntactic congruence ≡L over M . We set u ≡L v if, for
all x, y ∈M , the following equivalence holds:

xuy ∈ L ⇔ xvy ∈ L.

One can think of (x, y) as a context, and then u ≡L v means that u and v have the same
behaviour with respect to all contexts. In particular, ≡L forms an equivalence relation and
the equivalence class of u is denoted by [u]. Suppose u ≡L u′ and v ≡L v′. For all x, y ∈M
we have

xuvy ∈ L ⇔ xu′vy ∈ L ⇔ xu′v′y ∈ L,

where the first equivalence uses the context (x, vy) and the second equivalence uses the
context (xu′, y). This shows uv ≡L u′v′ and thus ≡L is a congruence. The quotient
M/≡L = { [u] | u ∈M } is called the syntactic monoid of L, denoted by Synt(L). It is the
set of all equivalence classes and the operation on Synt(L) is defined by [u][v] = [uv]. This
is well-defined since ≡L is a congruence. The natural projection ϕL : M → Synt(L) with
ϕL(u) = [u] forms a homomorphism, the syntactic homomorphism of L. It recognizes L since

[u] ∈ ϕL(L) ⇔ u ≡ v for some v ∈ L ⇔ u ∈ L.

The second equivalence uses the context (1, 1). The following theorem shows that Synt(L)
indeed is the minimal monoid recognizing L.

Theorem 2.4. Let M and N be monoids, and let ϕ : M → N be a homomorphism recognizing
L ⊆M . Then ϕ(u) 7→ [u] defines a surjective homomorphism from the submonoid ϕ(M) of
N onto Synt(L). In particular, the following diagram commutes:

M ϕ(M)

Synt(L)

ϕ

ϕ(u) 7→ [u]ϕL

Proof. We first show that ϕ(u) 7→ [u] is well-defined. Suppose ϕ(u) = ϕ(v). For all x, y ∈M
we have

xuy ∈ L ⇔ ϕ(xuy) ∈ L ⇔ ϕ(xvy) ∈ L ⇔ xvy ∈ L.

Thus [u] = [v] as desired. Trivially, ϕ(M)→ Synt(L), ϕ(u) 7→ [u] is surjective, and it forms
a homomorphism since 1 = ϕ(1) 7→ [1] and ϕ(u)ϕ(v) = ϕ(uv) 7→ [uv] = [u][v].

The above theorem says that Synt(L) is the homomorphic image of a submonoid of every
monoid which recognizes L. If N is a finite monoid, then |Synt(L)| ≤ |N |. Therefore, Synt(L)
is the unique minimal monoid which recognizes L.

21

2. Recognizable Sets

Suppose ϕ : M → N is a surjective homomorphism which recognizes L ⊆M . Let P = ϕ(L).
The syntactic congruence of P satsifies

u ≡L v ⇔
(
∀x, y ∈M : xuy ∈ L⇔ xvy ∈ L

)
⇔
(
∀x, y ∈M : ϕ(xuy) ∈ ϕ(L)⇔ ϕ(xvy) ∈ ϕ(L)

)
⇔
(
∀x′, y′ ∈ N : x′ϕ(u)y′ ∈ P ⇔ x′ϕ(v)y′ ∈ P

)
⇔ ϕ(u) ≡P ϕ(v).

Here, the second equivalence holds since ϕ recognizes L, and the third equivalence holds
since ϕ is surjective and since P = ϕ(L). This shows that the syntactic monoids Synt(L)
and Synt(P) are identical. Note that Synt(L) is a quotient of M and Synt(P) is a quotient
of N . In particular, the homomorphism N → Synt(L), ϕ(u) 7→ [u] given by Theorem 2.4 is
the syntactic homomorphism of P . As a consequence, there exists a monoid M and a subset
L ⊆M such that N = Synt(L) if and only if there exists P ⊆ N such that N is the syntactic
monoid of P .

2.3. Deterministic automata

There is a tight connection between homomorphisms and deterministic automata. In contrast
to nondeterministic M -automata, the transition relation of a deterministic automaton defines
a function Q×M → Q; and the easiest way for introducing deterministic M -automata (or
just M -automata for short) is to rely on this function. The main technical advantage of
this approach is that we do not have to deal with runs of the automaton. An M -automaton
A = (Q, ·, q0, F) consists of a set of states Q, of an initial state q0 ∈ Q, of a set of final states
F ⊆ Q, and of a transition function · : Q×M → Q satisfying

q · 1 = q

(q · u) · v = q · (uv)

for all q ∈ Q and all u, v ∈ M . The subset accepted by A is L(A) = {u ∈M | q0 · u ∈ F }.
Remember that the subset accepted by a nondeterministic automaton is defined slightly more
technical since it relies on the notion of a run. Suppose Σ ⊆M is a generating set. Then we
can define the transition relation

δ = { (p, a, p · a) ∈ Q× Σ×Q | p ∈ Q, a ∈ Σ } .

The transition function · can be retrieved from δ since q · u is the unique state p such that
there exists a run qa1q1 · · · an−1qn−1anp in the (a priori) nondeterministic M -automaton
(Q, δ, {q0} , F) with u = a1 · · · an, ai ∈ Σ. In particular, M -automata can be graphically
represented in the same way as nondeterministic M -automata. An M -automaton A =
(Q, ·, q0, F) is finite if it can be represented by a finite transition relation δ. If Q is finite, we
say that the set of states of A is finite. If M is finitely generated and the set of states of A is
finite, then A is finite. Conversely, if A is finite, then

{ a ∈M | (p, a, q) ∈ δ for some p, q ∈ Q }

is a finite generating set of M and, moreover, we can replace the set of states Q by the finite
set

{q0} ∪ { p, q ∈ Q | (p, a, q) ∈ δ for some a ∈M } .

Frequently, we assume that all states are reachable, i.e., for all q ∈ Q there exists u ∈ M
with q0 · u = q (otherwise we can replace Q by the reachable states).

22

2.4. Minimal automata

Example 2.3. The set {1,−1, } generates the integers Z with addition as operation. The
Z-automaton A = ({ 0, 1, 2, 3, 4, 5 } , ·, 0, { 1, 4 }) with q · k = (q + k) mod 6 has the following
graphical presentation:

0

1 2

3

45

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

It accepts the set L(A) = { k + 6` | k ∈ {1, 4} , ` ∈ Z }. 3

2.4. Minimal automata

The minimal automaton of a subset L ⊆ M is the unique smallest automaton accepting
L. It can be seen a one-sided version of the syntactic monoid. Let L(u) = u−1L =
{ y ∈M | uy ∈ L }. Note that L(1) = L. We have L(u) = L(v) if and only if for all y ∈M
the following equivalence holds:

uy ∈ L ⇔ vy ∈ L.

The minimal automaton AL = (QL, ·, q0L, FL) of L has states QL = {L(u) | u ∈M }, its
initial state is q0L = L(1) = L, its set of final states is FL = {L(u) | 1 ∈ L(u) }, and the
transition function is defined by L(u) · v = L(uv). Suppose L(u) = L(u′). Then for all y ∈M
we have

y ∈ L(uv) ⇔ uvy ∈ L ⇔ vy ∈ L(u) = L(u′) ⇔ u′vy ∈ L ⇔ y ∈ L(u′v).

Thus L(uv) = L(u′v) and the transition function of AL is well-defined. Note that L(u) · 1 =
L(u) and (L(u) · v) ·w = L(uvw) = L(u) · (vw), i.e., the mapping · indeed defines a transition
function. The minimal automaton AL accepts the set L(AL) = L since L(1) · u = L(u) and

u ∈ L ⇔ 1 ∈ L(u).

Example 2.4. We consider the subset L = { k + 6` | k ∈ { 1, 4 } , ` ∈ Z } from Example 2.3.
Adding or subtracting multiples of 3 does not change membership in L. It therefore suffices
to determine L(0), L(1), and L(2):

L(0) = 1 + 3Z = { 1 + 3k | k ∈ Z }
L(1) = 3Z
L(2) = −1 + 3Z

Thus, the minimal automaton AL of L is given by

L(0)

L(1)

L(2)

1

1

1

−1

−1

−1

23

2. Recognizable Sets

The initial state is L(0) and not L(1) since 0 is the neutral element of (Z,+). Also note
that, for example, the transition L(0) · 1 yields the set L(0)− 1 = L(1) since L(0)− 1 is the
residual of L(0) by 1. 3

The following theorem shows that the minimal automaton of L is the unique minimal
automaton which accepts L.

Theorem 2.5. Let M be a monoid and let A = (Q, ·, q0, F) be an M-automaton with
L(A) = L. Then q0 · u 7→ L(u) defines a surjective mapping from the reachable states of A
onto the states QL of the minimal automaton.

Proof. If p = q0 · u, then L(u) = { v ∈M | p · v ∈ F }. Since { v ∈M | p · v ∈ F } does not
depend on u, the mapping q0 · u 7→ L(u) is well-defined. Some preimage of L(u) is the state
q0 · u.

For an M -automaton A = (Q, ·, q0, F) and a state p ∈ Q one can define the set L(p) =
{ v ∈M | p · v ∈ F }. It is the subset of M accepted by the M -automaton Ap = (Q, ·, p, F)
with initial state p. The proof of Theorem 2.5 shows that for every reachable state p of A,
the set L(p) is a state of the minimal automaton. The Myhill-Nerode equivalence relation ≡A
on Q is defined by p ≡A q if L(p) = L(q). The minimal automaton for L(A) can be obtained
by identifying Myhill-Nerode equivalent states. This fact is often used by minimization
algorithms. Moreover, an M -automaton A = (Q, ·, q0, F) is minimal if and only if the
following two properties hold:

• All states in Q are reachable, i.e., we have q0 ·M = Q.

• For any two distinct states states p, q ∈ Q we have L(p) 6= L(q).

2.5. Transition monoids and Cayley automata

In this section we show that every M -automaton A can be transformed into a homomorphism
ϕA : M → TA which recognizes L(A). Conversely, for every homomorphism ϕ : M → N
and every subset P ⊆ N one can construct an M -automaton Aϕ such that L(Aϕ) = ϕ−1(P).
Moreover, both translations preserve finiteness in the sense that the automaton has finitely
many states if and only if the monoid N (resp. TA) is finite.

Let A = (Q, ·, q0, F) be an M -automaton. Every element u ∈ M defines a mapping
δu : Q → Q by setting δu(q) = q · u. When defining the product of two such functions
as δuδv = δuv = δv ◦ δu, then TA = { δu | u ∈M } forms a monoid, the transition monoid
of A. It is a submonoid of the set of all functions Q→ Q. In particular, if Q is finite, then
the transition monoid of A is finite. The mapping ϕA : M → TA defined by ϕA(u) = δu
recognizes L(A):

u ∈ L(A) ⇔ q0 · u ∈ F ⇔ δu(q0) ∈ F ⇔ δu ∈ { δv | δv(q0) ∈ F } .

This shows that L(A) is the inverse image of { δv | δv(q0) ∈ F } ⊆ TA under the homomorphism
ϕA. Note that both the initial state and the final states are encoded in the accepting set for
ϕA.

Theorem 2.6. Let L ⊆M , let AL be its minimal M -automaton, and let TL be the transition
monoid of AL. Then TL → Synt(L), δu 7→ [u] defines an isomorphism between TL and the
syntactic monoid Synt(L).

Proof. By Theorem 2.4 the mapping δu 7→ [u] is a surjective homomorphism. It remains to
show injectivity. Suppose u ≡L v. For x ∈M we have δu(L(x)) = L(x) · u = L(xu). Thus for
all y ∈M we have

y ∈ δu(L(x)) = L(xu) ⇔ xuy ∈ L ⇔ xvy ∈ L ⇔ y ∈ L(xv) = δv(L(x))

and thus δu(L(x)) = δv(L(x)). Since this holds for all x ∈M we conclude δu = δv.

24

2.5. Transition monoids and Cayley automata

If A is a finite automaton with n states, then its transition monoid has at most nn elements.
The following example of Holzer and König shows that this bound is tight [?].

Example 2.5. We define an automaton with states Q = {1, . . . , n}. We use the notation

τ =

(
1 2 · · · n

τ(1) τ(2) · · · τ(n)

)
to define a mapping τ : Q→ Q. Such mappings are also called transformations on Q. Let

α =

(
1 2 · · · n− 1 n
2 3 · · · n 1

)
,

β =

(
1 2 3 · · · n
2 1 3 · · · n

)
,

γ =

(
1 2 3 · · · n
2 2 3 · · · n

)
.

Every permutation on Q is generated by the two permutations α and β. The mapping γ
allows to identify two elements. Thus the set of all transformations on Q is generated by
{α, β, γ}. Let A = (Q, ·, 1, {1}) be the {a, b, c}∗-automaton defined by i ·a = α(i), i · b = β(i),
and i · c = γ(i) for i ∈ Q. Its graphic representations is

1

2
3

n-1
n

··
··
··
··
··
··
··
··

a, b, c

a
a

a
a

a

b

c

b, c

b, c

b, c

The automaton A is minimal since all states are reachable, and for states i 6= j in Q we
have i · an−i+1 = 1 and j · an−i+1 6= 1. The transition monoid of A has nn elements because
there are exactly nn transformations on Q. By Theorem 2.6, the transition monoid of A is
the syntactic monoid of L(A). In particular, by Theorem 2.4 there is no smaller monoid
recognizing L(A). 3

The step from homomorphisms to automata is straightforward. Suppose ϕ : M → N is a
homomorphism and P is a subset of N . The Cayley automaton of ϕ and P is Aϕ = (N, ·, 1, P)
with transition function n · u = nϕ(u) for n ∈ N and u ∈M . We have

u ∈ L(Aϕ) ⇔ ϕ(u) = 1 · u ∈ P,

i.e., the M -automaton Aϕ accepts ϕ−1(P). In particular, for L = ϕ−1(P) it accepts the
subset L ⊆ M . If ϕ : M → Synt(L) is the syntactic homomorphism of L ⊆ M , then in
general the Cayley automaton Aϕ is not the minimal automaton of L. This means that if we
first construct a homomorphism ϕ for some given automaton A and afterwards translate ϕ
into an automaton Aϕ, then in general we have A 6= Aϕ.

Example 2.6. Let M = {a, b}∗ and let L = (ab)∗. The minimal automaton of L is:

25

2. Recognizable Sets

q0 q1

q2

a

b
b a

a, b

We have L(q0) = (ab)∗, L(q1) = b(ab)∗ and L(q2) = {a, b}∗. The state q2 is called a sink state
since q2 · u = q2 for all u ∈ {a, b}∗. The syntactic monoid of L can be represented by shortest
words in their respective ≡L-classes. Using this notation we have Synt(L) = { 1, a, b, ab, ba, 0 }.
As usual, 1 is the neutral element, and the element 0 satisfies 0x = x0 = 0 for all x ∈ Synt(L).
We have 0 = aa = bb. The remaining entries of the multiplication table are given by
the rules aba = a and bab = b since aba ≡L a and bab ≡L b. For instance, we have
ab · ba = a · bb · a = a · 0 · a = 0 or ab · ab = aba · b = a · b = ab. Suppose ϕ : {a, b}∗ → Synt(L)
is the syntactic homomorphism of L, i.e., we have a 7→ a and b 7→ b. Then L = ϕ−1({1, ab})
and the Cayley automaton Aϕ is:

1

a ab

0

bab

a

b

b

b

a

a

a b

ab

a, b

In particular Aϕ is not the minimal automaton of L. 3

On the other hand, let ϕ : M → N be a surjective homomorphism and let Aϕ be its Cayley
automaton. Then the transition monoid of Aϕ is N since the mapping δu 7→ ϕ(u) is an
isomorphism between the transtition monoid of Aϕ and N . This can be seen as follows. It
is well-defined because δu = δv implies ϕ(u) = δu(1) = δv(1) = ϕ(v); it injective because
ϕ(u) = ϕ(v) implies δu(n) = n · u = nϕ(u) = nϕ(v) = n · v = δv(n) for all n ∈ N , i.e., we
have δu = δv. The mapping δu 7→ ϕ(u) trivially defines a homomorphism and it is surjective
because ϕ is surjective.

Remark 2.1. Let N be a monoid and let Σ ⊆ N be a generating set. Then the Cayley graph
of N is GN = (N,E) with Σ-labeled edges { (n, a, n · a) | n ∈ N, a ∈ Σ }. Sometimes GN is
called the right Cayley graph of N , whereas the edges { (n, a, a · n) | n ∈ N, a ∈ Σ } define
the left Cayley graph. If id : N → N is the identity mapping, then (after forgetting about
initial and final states) the Cayley automaton Aid can be identified with the Cayley graph GN .
If we only draw Σ-transitions, then the graph structure of Aid is GN . 3

2.6. The Myhill-Nerode Theorem

We are now ready to prove that recognition by finite monoids and acceptance by deterministic
automata with finitely many states define the same subsets. Moreover, one can restate this
property in terms of minimal automata and syntactic monoids. This following result is known
as the Myhill-Nerode Theorem.

26

2.7. Learning Recognizable Sets

Theorem 2.7 (Myhill, Nerode). Let M be monoid and let L ⊆M . The following conditions
are equivalent:

(a) L ∈ REC(M), i.e., L is recognized by a finite monoid.

(b) L is accepted by an M -automaton with finitely many states.

(c) The minimal automaton of L has finitely many states.

(d) The syntactic monoid of L is finite.

Proof. (a)⇒ (b): If the homomorphism ϕ : M → N for some finite monoid N recognizes L,
then the Cayley automaton Aϕ has finitely many states and it accepts L. (b)⇒ (c): By
Theorem 2.5, the minimal automaton of L is the smallest automaton recognizing L. (c)⇒ (d):
By Theorem 2.6, the syntactic monoid is the transition monoid of the minimal automaton.
(d)⇒ (a): The syntactic monoid Synt(L) recognizes L.

As a corollary we obtain the following characterization of subsets accepted by finite
M -automata.

Corollary 2.8. Let M be monoid and let L ⊆M . The following conditions are equivalent:

(a) M is finitely generated and L ∈ REC(M).

(b) L is accepted by a finite M -automaton.

Proof. (a)⇒ (b): Suppose M is generated by a finite set Σ. By the Myhill-Nerode Theorem,
the set L is accepted by an M -automaton A = (Q, ·, q0, F) with finitely many states. By
representing the transition function · by δ = { (p, a, p · a) | p ∈ Q, a ∈ Σ } we see that A is
finite.

(b)⇒ (a): If L is accepted by a finite M -automaton A = (Q, δ, q0, F), then by replacing Q
by the reachable states q0 ·M we obtain an automaton for L with finitely many states. By
the Myhill-Nerode Theorem, we have L ∈ REC(M). Moreover, the finite set

Σ = { a ∈M | (p, a, q) ∈ δ for some p, q ∈ Q }

generates M (since, for instance, δ defines the transition function q0 · u for all u ∈M).

Figure 2.1 summarizes the transformations between automata and monoids; the terms n
and nn indicate the maximal blow-up relative to the number of states and the size of the
monoid.

automatonmonoid

minimal automatonsyntactic monoid

transition monoid, nn

Cayley automaton, n

transition monoid, nn

Cayley
automaton, n

Theorem 2.5trivialTheorem 2.4 trivial

Figure 2.1.: Transformation between automata and monoids.

2.7. Learning Recognizable Sets

We present Angluin’s L∗-learning algorithm [?]. The setting is as follows. Let M be generated
by Σ. A teacher knows a recognizable set L ⊆M and a learner wants to learn the minimal

27

2. Recognizable Sets

automaton of L. The learner knows M and Σ and he can ask two kinds of questions to the
teacher:

Membership queries: For u ∈ M the learner can ask whether u ∈ L. The answer of the
teacher is either yes or no.

Equivalence queries: For an M -automaton A the learner can ask whether L(A) = L. The
answer of the teacher is either yes or he provides a element u = a1 · · · ak with ai ∈ Σ in
the symmetric difference of L(A) and L.

Let n be the number of states of the minimal automaton of L. A naive approach for the
learner could be enumerating all M -automata and using each of them for an equivalence
query; eventually, the teacher will say yes. This approach is exponential in n due to the large
number of automata with at most n states. Angluin’s L∗-algorithm yields an algorithm using
a polynomial number of queries (at least if the teacher provides counter-examples of small
length in his answers to equivalence queries). For elements u, v ∈M we define u ≈L v if for
all y ∈M we have

uy ∈ L ⇔ vy ∈ L.
The relation ≈L defines an equivalence relation on M and its classes are the states of the
minimal automaton. The learner tries to approximate ≈L. A set of extensions is a subset
E ⊆M with 1 ∈ E. For a set of extensions E we set u ∼E v if for all e ∈ E we have

ue ∈ L ⇔ ve ∈ L.

Note that u ≈L v implies u ∼E v for all sets of extensions E. If u ∼E v, then

u ∈ L ⇔ v ∈ L

since 1 ∈ E. A subset S ⊆ M is a set of samples if 1 ∈ S and S prefix-closed. A subset
S ⊆M is prefix-closed if every element u ∈ S can be written as u = a1 · · · ak for ai ∈ Σ such
that { a1 · · · ai | 0 ≤ i ≤ k } ⊆ S. A pair P = (S,E) consisting of samples S and extensions E
is complete if for all elements s ∈ S and for all generators a ∈ Σ there exists t ∈ S with

sa ∼E t.

The pair P is consistent if for all elements s, t ∈ S and for all generators a ∈ Σ we have

s ∼E t ⇒ sa ∼E ta.

For a set of extensions E and an element u ∈ M we define [u]E = { v ∈M | u ∼E v }. If
P = (S,E) is both complete and consistent, then we obtain an automatonAP = (QP , ·, qP , FP)
with

QP = { [s]E | s ∈ S } ,
[s]E · a = [sa]E for s ∈ S,

qP = [1]E ,

FP = { [s]E | s ∈ S ∩ L } .

If s ∈ S and a ∈ Σ, then [sa]E ∈ QP since P is complete. If [s]E = [t]E for s, t ∈ S, then
by consistency of P we obtain [sa]E = [ta]E . This shows that the transition function is
well-defined.

Lemma 2.9. If P = (S,E) is both complete and consistent, then L(AP) ∩ S = L ∩ S.

Proof. Let u ∈ S. Since S is prefix-closed we can write u = a1 · · · ak with ai ∈ Σ such that
a1 · · · ai ∈ S for all 0 ≤ i ≤ k. Therefore, there exists a run

[1]E
a1 [a1]E

a2 [a1a2]E
a3 · · · ak−1 [a1 · · · ak−1]E

ak [a1 · · · ak]E

in AP . This run is accepting if and only u ∈ L.

28

2.7. Learning Recognizable Sets

We can consider the states QP = { [u]E | u ∈ S } also for pairs P = (S,E) which are not
complete or not consistent. If P = (S,E) and P ′ = (S′, E) for S ⊆ S′, then QP ⊆ QP ′ . If
P = (S,E) and P ′ = (S,E′) for E ⊆ E′, then for every [s]E′ ∈ QP ′ with s ∈ S we have
[s]E ∈ QP and [s]E′ ⊆ [s]E , i.e., QP ′ refines QP . This shows that by increasing S or E, the
number of states never decreases.

Lemma 2.10. Let P = (S,E) be complete and consistent, and let u = a1 · · · ak with
ai ∈ Σ be an element in the symmetric difference of L(AP) and L. Then P ′ = (S′, E) with
S′ = S ∪ { a1 · · · ai | 1 ≤ i ≤ k } is not consistent.

Proof. Suppose P ′ were consistent. For all i ∈ {1, . . . , k} there exists si ∈ S with

[1]E · (a1 · · · ai) = [si]E .

In particular, we have siai ∼E si+1. By induction on i, consistency of P ′ yields si ∼E a1 · · · ai.
In particular sk ∼E u. This leads to the following contradiction:

u ∈ L(AP) ⇔ sk ∈ L(AP) since [1]E · u = [1]E · sk
⇔ sk ∈ L by Lemma 2.9

⇔ u ∈ L by sk ∼E u and 1 ∈ E
⇔ u 6∈ L(AP) by choice of u.

Therefore, P ′ is not consistent.

The algorithm

Angluin’s learning algorithm now proceeds as follows. We start with some arbitrary pair
P = (S,E) of samples and extensions; for instance we could use S = E = {1}. Then we
successively replace P by the pair P ′ defined by the following procedure:

The pair P is not complete: Let s ∈ S and a ∈ Σ with [sa]E 6∈ QP . Then we set P ′ = (S′, E)
with S′ = S ∪ {sa}. This yields |QP ′ | > |QP | since [sa]E ∈ QP ′ .

The pair P is not consistent: Let s, t ∈ S and a ∈ Σ with s ∼E t and sa 6∼E ta. There
exists e ∈ E with sae ∈ L ⇔ tae 6∈ L. Then we set P ′ = (S,E′) with E′ = E ∪ {ae}.
This yields |QP ′ | > |QP | since [s]E′ 6= [t]E′ .

The pair P is complete and consistent, but L(AP) 6= L: Let u = a1 · · · ak with ai ∈ Σ be
an element in the symmetric difference of L(AP) and L. Then we set P ′ = (S′, E)
with S′ = S ∪ { a1 · · · ai | 1 ≤ i ≤ k }. By Lemma 2.10, the pair P ′ is not consistent.
Therefore, the set of states increases in the next iteration.

Note that we preserve the invariant that the set of samples S is prefix-closed. It is sufficient
for the learner to represent the restriction of the relation ∼E to the set S ∪ SΣ.

The number of queries

The learner asks membership queries for all elements se with s ∈ S ∪ SΣ and e ∈ E. This
suffices for checking whether the current pair P is complete and consistent and for computing
the automaton AP . In the case that the current pair is both complete and consistent, he
asks an equivalence query.

We assume that the learner starts with the pair ({1} , {1}). Throughout the number of
states |QP | is bounded by n. Since increasing the extensions also increases the number
of states, we have |E| ≤ n. If all counter-examples u = a1 · · · ak of the teacher satisfy
k ≤ m, then after adding at most m+ 1 elements to S, the number of states increases. Thus
|S| ≤ (m+ 1)n. This shows that the learner asks at most(

(m+ 1)n+ |Σ| (m+ 1)n
)
n ∈ O(|Σ|mn2)

29

2. Recognizable Sets

membership queries. If the teacher provides counter-examples of minimal length, then by
Corollary 4.6 we will see that m ≤ |QP |+n−2 ≤ 2n−2. In particular, the algorithm requires
at most O(|Σ|n3) membership queries. The number of equivalence queries is at most n since
every equivalence query causes an increase in the number of states.

Example 2.7. We apply Angluin’s algorithm for learning the language L = b {ab, a}∗ ⊆ Σ∗

for Σ = {a, b}, see Example 1.7. We represent the restriction of the relation ∼E to the set
S ∪ SΣ as a table. The top rows correspond to S, the bottom rows correspond to SΣ \ S,
and the columns correspond to E. At coordinate (s, e) for s ∈ S ∪ SΣ and e ∈ E we write 1
if se ∈ E and 0 otherwise. Two elements in S ∪ SΣ are ∼E-equivalent if and only if they
have identical 0-1 rows. The initial table for the pair P = ({ε} , {ε}) is as follows.

ε

ε 0

a 0
b 1

The pair P is not complete since the 0-1-row for b in the lower half does not occur in the
upper half. We thus add b to S which yields the following situation.

ε

ε 0
b 1

a 0
ba 1
bb 0

Now, the pair is complete and consistent and the learner asks an equivalence query with the
following automaton.

[ε] [b]
b

b

a

a

Since the automaton is not correct, the teacher returns the counter-example ab. Incorporating
ab and its prefix a into S yields the following table.

ε

ε 0
a 0
b 1
ab 0

aa 0
ba 1
bb 0
aba 0
abb 0

The current pair P is not consistent since ε and a are ∼E-equivalent (they have the same
0-1-row) but ε · b 6∼E a · b. Therefore, we add b to E.

30

2.7. Learning Recognizable Sets

ε b

ε 0 1
a 0 0
b 1 0
ab 0 0

aa 0 0
ba 1 1
bb 0 0
aba 0 0
abb 0 0

This table is not complete since the 0-1-row of ba does not occur in the upper half. We
therefore add ba to S.

ε b

ε 0 1
a 0 0
b 1 0
ab 0 0
ba 1 1

aa 0 0
bb 0 0
aba 0 0
abb 0 0
baa 1 1
bab 1 0

This table is both complete and consistent. Therefore, the learner uses the following automaton
for an equivalence query.

[ε] [b] [ba]

[a]

b
a

b

a

a
b

a, b

The teacher answers yes since this automaton accepts L. 3

Learning Boolean functions with few terms

Let B = {1, 0} be the Boolean lattice. As usual, 1 is for true and 0 is for false. A Boolean
function is a mapping of the form f : Bn → B for some n ∈ N. Boolean formulas are one
way of defining Boolean functions. We assume to have a set of variables x1, . . . , xn. A
literal is a variable or the negation of a variable. A term is a conjunction of literals, but it
never contains both a variable and its negation. We consider formulas ϕ which are Boolean
combinations of terms t1, . . . , tk. For b1, . . . , bn ∈ B we let ϕ(b1, . . . , bn) be the value obtained
when interpreting the variable xi by bi. This way, every formula ϕ defines a Boolean function
fϕ : b1 · · · bn 7→ ϕ(b1, . . . , bn). Suppose the teacher knows a Boolean function fϕ for some
Boolean combination ϕ of terms t1, . . . , tk and the learner wants to learn the function fϕ.
The learner can ask two kinds of queries.

• He can ask the teacher for the value fϕ(b1, . . . , bn) for bi ∈ B.

31

2. Recognizable Sets

• Or he can ask whether g = fϕ for some Boolean function g. We do not care about the
presentation of g at this point. If g 6= fϕ, then the teacher provides b1 · · · bn ∈ Bn with
g(b1, . . . , bn) 6= fϕ(b1, . . . , bn).

We present Kushilevitz’s reduction to Angluin’s L∗-algorithm [?]. To this end, we represent
g : Bn → B as the language

Lg = { b1 · · · bn ∈ Bn | g(b1, . . . , bn) = 1 } ⊆ B∗.

If g = fϕ, then we write Lϕ instead of Lfϕ . Now, the learner wants to learn the minimal
automaton of Lϕ. This uniquely defines fϕ. Membership queries and equivalence queries
immediately translate into queries of the above type. Note that the answer to membership
queries for u ∈ B∗ \ Bn is always no and that the learner can provide counter-examples for
himself if the current language is not contained in Bn.

Next, we give an automaton Aϕ = (Q, ·, q0, F) for the language Lϕ. Let Q be the disjoint
union {0, . . . , n} × 2{1,...,k} and {qsink}. The semantics of a state (i, R) ∈ Q is that the
automaton has read i bits and that the terms in R are not yet false. The state qsink for
processing more than n bits. The initial state is q0 = (0, {1, . . . , k}) and the final states F
are those pairs (n,R) such ϕ is true when setting ti = 1 if i ∈ R. The transition function is
defined by

(i− 1, R) · a =

{(
i, R \ { j | tj contains the literal xi }

)
if a = 0(

i, R \ { j | tj contains the negation of xi }
)

if a = 1

and qsink ·a = qsink for all a ∈ B. The automaton Aϕ accepts Lϕ and it has (n+1)2k+1 states.
By Angluin’s L∗-algorithm, the number queries is polynomial in n and 2k. In particular, if
k ∈ O(log n), then the resulting algorithm requires only polynomially many queries.

32

3. Regular Languages

Kleene’s Theorem states that, for free monoids over finite alphabets, the rational and the
recognizable languages coincide. It is therefore common to refer to this language class as the
regular languages. Rational sets have some closure properties and recognizable sets have other
closure properties, see Table 3.1. An important consequence of Kleene’s Theorem is that
regular languages have both the closure properties of rationals sets and the closure properties
of recognizable sets.

3.1. McKnight’s Theorem

Essentially, McKnight’s Theorem gives the first half of Kleene’s Theorem. Every finite
deterministic M -automaton is also a finite nondeterministic M -automaton. This does not
immediately show that all recognizable sets are rational since the automaton model for
recognizability relies on a slightly different notion of finiteness, namely on a finite number
of states. On the other hand, finite nondeterministic automata have a finite number of
transitions. We have already seen that for finitely generated monoids these two aspects of
finiteness coincide. This observations yields the following theorem.

Theorem 3.1 (McKnight). Let M be a monoid. Then M is finitely generated if and only if
REC(M) ⊆ RAT(M).

Proof. Suppose M is finitely generated. If L ∈ REC(M), then by Corollary 2.8 the set L is
accepted by a finite M -automaton. Theorem 1.7 then yields L ∈ RAT(M).

For the other inclusion let REC(M) ⊆ RAT(M). Since M ∈ REC(M), this yields
M ∈ RAT(M). Now, by Proposition 1.1 the monoid M is finitely generated.

3.2. The powerset construction and Kleene’s Theorem

We will give two different proofs of Kleene’s Theorem. The first proof relies on the so-called
powerset construction for nondeterministic automata whereas the second proof uses an
implementation of nondeterministic automata in terms of Boolean matrices. This second
proof will be given in the next section.

Here, we show that for every nondeterministic word automaton there exists an equivalent
deterministic automaton, the so-called powerset construction. Let Σ be an alphabet and let
A = (Q, δ, I, F) be a nondeterministic Σ∗-automaton with δ ⊆ Q× Σ×Q. We introduce a
transition function on the powerset 2Q of Q as follows. For P ⊆ Q and a ∈ Σ we define

P · a = { q ∈ Q | ∃p ∈ P : (p, a, q) ∈ δ } .

That is, P · a consists of the states which are reachable from P using an a-transition. The
transition function is extended to words by defining P · au = (P · a) · u for a ∈ Σ and u ∈ Σ∗.
The powerset construction of A is P(A) = (Q′, ·, I, F ′) with states

Q′ = {P ⊆ Q | ∃u ∈ Σ∗ : I · u = P }

and final states F ′ = {P ∈ Q′ | P ∩ F 6= ∅ }. This means that the states of P(A) are the
reachable subsets of Q and the final states are those which contain some final state of A.

33

3. Regular Languages

Proposition 3.2. Let Σ be an alphabet and let A = (Q, δ, I, F) be a nondeterministic Σ∗-
automaton with δ ⊆ Q × Σ × Q. Then the powerset construction P(A) is a deterministic
Σ∗-automaton with L(P(A)) = L(A).

Proof. Let P(A) = (Q′, ·, I, F ′). Since the first letter in every nonempty word is unique, the
transition function · : Q′×Σ∗ → Q′ is well-defined. Moreover, P ·ε = P and P ·uv = (P ·u) ·v.
Thus P(A) is a Σ∗-automaton. By induction on the length of u we show

I · u =
{
q ∈ Q

∣∣ ∃q0 ∈ I : q0
u q

}
.

For u = ε, the claim is true. Let now u = u′a for u′ ∈ Σ∗ and a ∈ Σ. By induction, I · u′ has
the desired form. This yields

I · u = (I · u′) · a =
{
q′ ∈ Q

∣∣∣ ∃q0 ∈ I : q0
u′ q′

}
· a

=
{
q ∈ Q

∣∣∣ ∃q0 ∈ I ∃q′ ∈ Q : q0
u′ q′ and (q′, a, q) ∈ δ

}
=
{
q ∈ Q

∣∣ ∃q0 ∈ I : q0
u q

}
.

Therefore I · u ∈ F ′ if and only if A has an accepting run on u. This shows that P(A) and A
accept the same language.

The proof of Proposition 3.2 would not work for arbitrary monoids M generated by Σ
since the factorization of u ∈M \ {1} in terms of u = u′a with u′ ∈M and a ∈ Σ might not
be unique. Also note that we did not require that Σ are A are finite. If A has n states, then
its powerset construction P(A) has at most 2n states.

Theorem 3.3 (Kleene). For every finite alphabet Σ we have REC(Σ∗) = RAT(Σ∗).

Proof. The inclusion REC(Σ∗) ⊆ RAT(Σ∗) follows from McKnight’s Theorem 3.1. Consider
a language L ∈ RAT(Σ∗). By Theorem 1.7 there exists a finite letter-by-letter Σ∗-automaton
A = (Q, δ, {q0} , F) with L(A) = L. The powerset construction P(A) has finitely many states,
and it satisfies L(P(A)) = L by Proposition 3.2. By the Myhill-Nerode Theorem 2.7 we
conclude L ∈ REC(Σ∗).

Example 3.1. Let Σ = {a, b}. The automaton on the left is the Σ∗-automaton from Exam-
ple 1.9. On the right is its powerset construction.

1 2

3

4

5

b
b

aa

a

a

a a

{1}

{2}

∅

{3, 5}

{4}

b

a

b

a

b

ba

a, b

a

Note that the empty set ∅ also occurs as a state in the powerset construction. Otherwise the
powerset construction would not be complete. 3

Example 3.2. Let Σ = {a, b} and consider the language L = Σ∗aΣn−1. The following
nondeterministic automaton with n+ 1 states accepts L.

0 1 2 3 · · · n-1 n

a, b

a a, b a, b a, b a, b a, b

34

3.3. Nondeterministic automata and Boolean matrices

The powerset construction of the above automaton has 2n states. For any word u = an · · · a1
with ai ∈ Σ we have 0 u j for j ∈ {1, . . . , n} if and only if aj = a. Therefore every word
of length n uniquely determines a subset P ⊆ {1, . . . , n}. Thus the powerset construction
has at least 2n states (given by the sets P ∪ {0}). Since 0 is contained in all states of the
powerset construction, the powerset construction cannot have more than 2n states.

Consider two distinct states P, P ′ ⊆ Q of the powerset construction. Without loss of
generality, there exists j ∈ P \ P ′. We have 1 ≤ j ≤ n. Thus n = j · bn−j ∈ P · bn−j , but
n 6∈ P ′ · bn−j . This shows that the powerset construction yields the minimal automaton of
the language L. 3

The above example shows that in the worst case, the powerset construction of an n-state
automaton can have at least 2n−1 states. We refer to Example 4.6 for a proof the bound 2n

on the powerset construction of an n-state automaton is tight.

3.3. Nondeterministic automata and Boolean matrices

By the Myhill-Nerode Theorem 2.7 we have two equivalent characterizations of the recognizable
languages, finite monoids and deterministic automata with finitely many states. The powerset
construction translates a nondeterministic automaton with n states into a deterministic
deterministic one with up to 2n states. The transition monoid of a deterministic n-state
automaton can have up to nn elements. Therefore, when starting with a nondeterministic
n-state automaton, using the powerset construction, and building its transition monoid, then
the resulting upper bound for the size of this monoid is (2n)2

n
= 2n2

n
. In this section we

show that, instead of this doubly exponential bound, the singly exponential bound 2n
2

is
sufficient.

There are two different views on the following result. First, it can be seen as a generalization
of transition monoids to nondeterministic automata. And second, it can be interpreted as an
implementation of nondeterministic automata using Boolean matrices.

Theorem 3.4. Let Σ be an alphabet. If L ⊆ Σ∗ is accepted by a nondeterministic Σ∗-
automaton A = (Q, δ, I, F) with |Q| = n and δ ⊆ Q × Σ × Q, then L is recognized by a
monoid with at most 2n

2
elements.

Proof. We assume Q = { 1, . . . , n }. Let B = {1, 0} denote the Boolean lattice. The n × n
Boolean matrices are denoted by Bn×n. There are 2n

2
Boolean matrices. The entry of the

matrix A ∈ Bn×n in row i and column j is written as Aij . For every letter a ∈ Σ we define
the matrix Aa ∈ Bn×n by

Aaij = 1 ⇔ (i, a, j) ∈ δ.

This yields the homomorphism ψ : Σ∗ → Bn×n with

ψ(a1 · · · an) = Aa1 · · ·Aan

for letters ai ∈ Σ. The term Aa1 · · ·Aan denotes the matrix product of Aa1 , . . . , Aan in which
we use the bitwise OR (denoted by ∨) for addition, and the bitwise AND (denoted by ∧) for
multiplication. Suppose ψ(u) = B. We claim that

Bij = 1 ⇔ i u j.

The proof of the claim is by induction on the length of u. If u = ε, then B is the identity
matrix and the claim is true since A has no ε-transitions. Let now u = u′a for a ∈ Σ. By
induction, we can assume that the matrix B′ = ψ(u′) has the desired property for u′. We

35

3. Regular Languages

have B = B′Aa and thus

Bij = 1 ⇔
n∨
k=1

(
B′ik ∧Aakj

)
⇔ i u

′
k and (k, a, j) ∈ δ for some k ∈ {1, . . . , n}

⇔ i u j.

This proves the claim. We conclude L = ψ−1(P) for

P =
{
B ∈ Bn×n

∣∣ ∃i ∈ I ∃j ∈ F : Bij = 1
}
.

This shows that ψ recognizes the language L.

Several remarks regarding the proof of Theorem 3.4 are in order. First, note that when
replacing Σ∗ by some arbitrary Σ-generated monoid M , then ψ would not be well-defined in
general: An element u ∈M could be written as both u = a1 · · · an and u = b1 · · · bm which
might result in two different matrices for u. Second, instead of considering all Boolean matrices
one usually obtains considerably smaller monoids by only using the image ψ(Σ∗) ⊆ Bn×n. The
third remark is that Boolean matrices can be used as a way of implementing nondeterministic
automata; instead of handling the automaton as a labeled graph one could alternatively rely
on the matrices {Aa ∈ Bn×n | a ∈ Σ } together with the initial states I and the final states F .

Example 3.3. Let Σ = {a, b}. We again consider the Σ∗-automaton from Example 1.9.

1 2

3

4

5

b
b

aa

a

a

a a

We have

Aa =

0 0 0 0 0
0 0 1 0 1
0 0 1 0 1
0 0 1 0 1
0 0 0 0 0

 Ab =

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

By matrix multiplication one obtains for instance the following matrices.

AbAa =

0 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 1

 AaAb =

0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 0

 AbAaAaAb =

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

Note that the matrix B = AbAaAaAb was obtained by multiplication of the two matrices
AbAa and AaAb. The entry 1 of the matrix B in row 1, column 4 shows that baab is accepted
by the automaton since it indicates a run from the initial state 1 to the final state 4. 3

The following example shows that the bound 2n
2

in Theorem 3.4 is tight.

Example 3.4. Let Σ = {a, b, c, d}. We extend the automaton in Example 2.5 by some
nondeterministic action d. This leads to the following n-state automaton A.

36

3.4. The relation between rational and recognizable sets

1

2
3

n-1
n

··
··
··
··
··
··
··
··

a, b, c, d

a
a

a
a

a

b

d

c, d

b, c, d

b, c, d

b, c, d

Let L = L(A). The automaton A generates all binary relations R ⊆ {1, . . . , n}2; that is, for
every such relation R there exists a word uR ∈ Σ∗ such that i

uR j if and only if (i, j) ∈ R.
There are 2n

2
binary relations on {1, . . . , n}2. Therefore, the monoid M constructed in the

proof of Theorem 3.4 has size 2n
2
. For showing that this bound cannot be improved, we

verify that the syntactic congruence ≡L of the language L satisfies uR 6≡L uS for all different
relations R,S ⊆ {1, . . . , n}2. Without loss of generality, we can assume (i, j) ∈ R \ S. Then
ai−1uRa

j ∈ L but ai−1uS a
j 6∈ L. Hence uR 6≡L uS as desired. 3

Remark 3.1. An immediate consequence of Theorem 3.4 is another proof of Kleene’s Theo-
rem 3.3, which states that REC(Σ∗) = RAT(Σ∗) for finite alphabets Σ. The inclusion from
left to right is McKnight’s Theorem 3.1. Let now L ∈ RAT(Σ∗). By Theorem 1.7 there exists
a finite letter-by-letter automaton accepting L. By Theorem 3.4, the language L is recognized
by a finite monoid, i.e., we have L ∈ REC(Σ∗). 3

3.4. The relation between rational and recognizable sets

We have more tools at hand for proving that sets are not recognizable than for proving that
sets are not rational. For showing that a given set is not recognizable it suffices to show that
its syntactic monoid is infinite. Kleene’s Theorem therefore also yields an additional method
for showing that some given subset (of a finitely generated free monoid) is not rational, simply
by showing that it is not recognizable. We apply this technique in the next example for
showing that, in general, rationals sets are not closed under intersection.

Example 3.5. Consider the monoid M = {a, b}∗× c∗. We define the following rational subsets
of M :

K1 = {(a, c), (b, ε)}∗

K2 = {(a, ε), (b, c)}∗ .

The set K1 consists of the elements (u, cn) such that the word u ∈ {a, b}∗ has exactly n
occurrences of the letter a. Similarly, K2 contains those elements (u, cn) such that u has
exactly n occurrences of the letter b. We want to show that K1 ∩K2 is not rational. By
contradiction, we assume that K1 ∩K2 is rational. We have

K1 ∩K2 = { (u, cn) | u has n occurrences of the letter a and n occurrences of b } .

Consider the homomorphism ψ : M → {a, b}∗ defined by ψ(u, cn) = u. Since rational sets are
closed under homomorphic images (Proposition 1.3), the language L = ψ(K1 ∩K2) ⊆ {a, b}∗
is rational. Note that

L = {u ∈ {a, b}∗ | u has the same number of a’s as b’s } .

37

3. Regular Languages

rational sets recognizable sets regular languages

union: " (by definition) " (Theorem 2.3) "

intersection: # (Example 3.5) " (Theorem 2.3) "

complement: # (Example 3.5) " (Theorem 2.3) "

residuals: # (Example 1.4) " (Theorem 2.3) "

inverse homomorphisms: # (Example 1.3) " (Theorem 2.3) "

homomorphisms: " (Proposition 1.3) # (Example 2.1) "

product: " (by definition) # (Example 2.2) "

Kleene star: " (by definition) # (Example 2.2) "

Table 3.1.: Closure properties of rational sets, recognizable sets, and regular languages.

The syntactic monoid of L is infinite. For instance, we have am 6≡L an for m 6= n since
ambm ∈ L and anbm 6∈ L. This shows that L is not recognizable, and by Kleene’s Theorem L
is not rational. This is a contradiction. Therefore, the assumption is wrong and K1 ∩K2 is
not rational. In particular, RAT(M) is not closed under intersection. Moreover, RAT(M)
cannot be closed under complement since otherwise by DeMorgan’s law it would also be
closed under intersection (by definition RAT(M) is closed unter union). 3

We have seen in Example 1.3 that in general RAT(M) is not closed under inverse homo-
morphism. The example used non-finitely generated monoids. The following example shows
that RAT(M) is not closed under inverse homomorphisms even if M is finitely generated.

Example 3.6. Let M = N× N with componentwise addition and consider the set {(1, 1)}∗ =
{ (n, n) | n ∈ N }. The mapping ψ : {a, b}∗ → N with ψ(a) = (1, 0) and ψ(b) = (0, 1) defines
a homomorphism. We have ψ−1(L) = {u ∈ {a, b}∗ | u has the same number of a’s as b’s }
which is not rational (as we have seen in Example 3.5. 3

Table 3.1 summarizes the closure properties of rational sets, recognizable sets, and regular
languages. By Kleene’s Theorem, the regular languages have the closure properties of both
the rational and the recognizable sets.

For regular languages we can combine Figures 1.1 and 2.1 into Figure 3.1. The terms after
the names of the constructions indicate the maximal blop-up relative to the number of states,
the size of expressions, and the size of monoids. As in Figure 1.1, we assume that the set of
generators Σ is fixed.

Recognizable and rational sets in direct products

Suppose M = M1 ×M2. We are interested in the relation between REC(M) and REC(Mi)
for i ∈ {1, 2}. As it turns out, REC(M) is fully determined by REC(M1) and REC(M2).

Theorem 3.5 (Mezei). Let M1 and M2 be monoids. Then L ∈ REC(M1 ×M2) if and only
if L is a finite union of sets of the form K1 ×K2 for K1 ∈ REC(M1) and K2 ∈ REC(M2).

Proof. ⇒: Let ϕ : M1×M2 → N be a homomorphism to a finite monoid N which recognizes
the set L. We define homomorphisms ψ1 : M1 → N and ψ2 : M2 → N by ψ1(m1) = ϕ(m1, 1)
and ψ2(m2) = ϕ(1,m2). This yields the homomorphism ψ : M1 × M2 → N × N with
ψ(m1,m2) = (ψ1(m1), ψ2(m2)). The homomorphism ψ recognizes L since the set P =
{ (n1, n2) ∈ N ×N | n1n2 ∈ ϕ(L) } satisfies

ψ−1(P) = { (m1,m2) | ψ(m1,m2) ∈ P }
= { (m1,m2) | ψ1(m1)ψ2(m2) ∈ ϕ(L) }
= { (m1,m2) | ϕ(m1, 1)ϕ(1,m2) ∈ ϕ(L) }
= { (m1,m2) | ϕ(m1,m2) ∈ ϕ(L) } = ϕ−1

(
ϕ(L)

)
= L.

38

3.4. The relation between rational and recognizable sets

rational expression
over Σ

nondeterministic automaton
with labels in Σ ∪ {1}

letter-by-letter
automaton for Σ

Thompson construction, O(n)

state elimination, 2O(n)

state elim
ination, 2 O

(n)

re
m

ov
al

of

ε-
tr

an
sit

io
ns,
ntri

vi
al

automatonmonoid

minimal automatonsyntactic monoid

transition monoid, nn

Cayley automaton, n

transition monoid, nn

Cayley
automaton, n

Theorem 2.5trivialTheorem 2.4 trivial

powerset construction, 2 n

trivial
Boo

lea
n

m
at

ric
es

, 2
n
2

Figure 3.1.: Transformations between descriptions of regular languages.

39

3. Regular Languages

We conclude

L = ψ−1
(
ψ(L)

)
=

⋃
(n1,n2)∈ψ(L)

ψ−1(n1, n2) =
⋃

(n1,n2)∈ψ(L)

ψ−11 (n1)× ψ−12 (n2)

showing that L has the desired form.

⇐: Let L = K1 ×K2, and for i ∈ {1, 2} let ϕi : Mi → Ni to a finite monoid Ni which
recognizes Ki. We define ψ : M1 ×M2 → N1 ×N2 by ψ(m1,m2) = (ϕ1(m1), ϕ2(m2)). Then

ψ−1
(
ψ(L)

)
= ψ−1

(
ϕ1(K1)× ϕ2(K2)

)
= ϕ−11

(
ϕ1(K1)

)
× ϕ−12

(
ϕ2(K2)

)
= K1 ×K2 = L.

Thus L ∈ REC(M1 ×M2). The implication from right to left now follows from the fact that
REC(M1 ×M2) is closed under union.

The following example shows that the implication from left to right in Mezei’s Theorem 3.5
becomes false when replacing REC by RAT.

Example 3.7. Consider M = a∗ × b∗. The subset L = (a, b)∗ = { (an, bn) | n ≥ 0 } is rational.
Assume L can be written as a finite union of sets of the form K1 ×K2 with K1 ∈ RAT(a∗)
and K2 ∈ RAT(b∗). By Kleene’s Theorem, the languages Ki are recognizable and by Mezei’s
Theorem L is recognizable. This is a contradiction since the syntactic monoid of L is infinite
(and isomorphic to Z). Therefore, L has no presentation of the above form. 3

The implication from right to left in Mezei’s Theorem can be extended to rational sets.

Proposition 3.6. Let M1 and M2 be monoids. If K1 ∈ RAT(M1) and K2 ∈ RAT (M2),
then K1 ×K2 ∈ RAT(M1 ×M2).

Proof. Let si be a rational expression for Ki. We replace every atom a ∈ M1 in the
expression s1 by (a, 1). This yields the expression t1. Symmetrically, we replace every atom
b ∈ M2 in the expression s2 by (1, b) which yields t2. We have u ∈ L(s1) if and only if
(u, 1) ∈ L(t1) ⊆ M1 ×M2. Similarly, v ∈ L(s2) if and only if (1, v) ∈ L(t2). Thus the
concatenation t1t2 defines K1 ×K2.

Even though REC(M) is not closed under product in general, the following consequence of
Mezei’s Theorem shows that direct products preserve this closure property.

Proposition 3.7. Let M1 and M2 be monoids such that both REC(M1) and REC(M2) are
closed under product. Then REC(M1 ×M2) is closed under product, too.

Proof. Let K,L ∈ REC(M1 ×M2). By Mezei’s Theorem, we can write K =
⋃
kK1,k ×K2,k

and L =
⋃
` L1,` × L2,` for languages Ki,k, Li,` ∈ REC(Mi) and each of the unions is finite.

Since REC(Mi) is closed under product, we have Ki,kLi,` ∈ REC(Mi). Again by Mezei’s
Theorem we see that the products (K1,k ×K2,k)(L1,` × L2,`) = K1,kL1,` ×K2,kL2,` are in
REC(M1 ×M2). This yields

KL =
⋃
k,`

(
K1,kL1,` ×K2,kL2,`

)
∈ REC(M1 ×M2).

In particular, by Kleene’s Theorem and Proposition 3.7, for finite alphabets Σi we see that
REC(Σ∗1 × · · · × Σ∗n) is closed under product. We note that if both REC(M1) and REC(M2)
are closed under Kleene star, then REC(M1 ×M2) does not have to be closed under Kleene
star. For example, we have {(a, b)} ∈ REC(a∗ × b∗) but (a, b)∗ is not recognizable.

40

3.4. The relation between rational and recognizable sets

Intersections of rational and reconizable sets

We have seen in Example 3.5 that rational sets are not closed under intersection. Under this
aspect, it is surprising that the intersection of a rational set and a recognizable set is rational
again.

Proposition 3.8. Let M be a monoid, let K ∈ RAT(M), and let L ∈ REC(M). Then
K ∩ L ∈ RAT(M).

Proof. By Proposition 1.1, the set K is contained in a finitely generated submonoid M ′. Let
M ′ ⊆M be generated by the finite set Σ. The inclusion Σ ⊆M ′ induces a homomorphism
ψ : Σ∗ → M (with ψ(a) = a for all a ∈ Σ). Note that Σ∗ denotes the free monoid over Σ.
Since the restriction ψ : Σ∗ →M ′ is surjective, by Proposition 1.3 there exists K ′ ∈ RAT(Σ∗)
with ψ(K ′) = K. Let L′ = ψ−1(L). Theorem 2.3 shows L′ ∈ REC(Σ∗). By Kleene’s Theorem,
both K ′ and L′ are regular. Hence K ′ ∩ L′ ∈ RAT(Σ∗), and by Proposition 1.3 we obtain
ψ(K ′ ∩ L′) ∈ RAT(M). We obtain

ψ(K ′ ∩ L′) = ψ
(
K ′ ∩ ψ−1(L)

)
= ψ

(
K ′ ∩ ψ−1(L ∩M ′)

)
= ψ(K ′) ∩ (L ∩M ′)
= K ∩ L ∩M ′ = K ∩ L.

The third equality holds since the restriction ψ : Σ∗ →M ′ is surjective.

41

4. Algorithmic Properties of Automata

Regular languages have a great number of important closure properties. One reason for
the success of the regular languages is that these closure properties are effective. This
means that for given automata one can actually compute an automaton for the union (resp.
intersection, complement, residual, homomorphism, inverse homomorphism, concatenation,
Kleene star). In addition, for many decision problems such as emptiness, universality,
inclusion, or equivalence there exist efficient algorithms when the input languages are given
as deterministic automata.

As operations in an automaton (Q, δ, I, F) with δ ⊆ Q× Σ×Q we consider membership
queries of the form “Is state q in F ?” or “Is (p, a, q) a transition in δ?”. Moreover, we assume
that we can efficiently enumerate all states in Q, I, or F as well as all transitions in δ. In the
case of deterministic automata, the computation of the transition function q · a is a typical
operation.

In some situations it is important that automata are “deadlock-free”. This is formalized
by the following notion. An automaton A = (Q, δ, I, F) with δ ⊆ Q× Σ×Q is complete if
for every state p ∈ Q and every letter a ∈ Σ there exists a transition of the form (p, a, q) ∈ δ,
i.e., we always have an outgoing transition for every letter. An automaton can always be
made complete by adding a new state and redirecting all missing transtions to this new state.
By definition, deterministic automata are complete.

Example 4.1. Let A be the following {a, b}∗-automaton for L = b(ab)∗.

q0

q1 q2

q5

q4q3

a

b

a

b

a
b

a
b

It is not complete since, for instance, there is no outgoing a-transition in state q1. An equivalent
complete automaton can be obtained by adding an new sink state ⊥ and introducing additional
transitions as depicted below.

⊥q0

q1 q2

q5

q4q3

a

b

a

b

a b

ab

a b

b a

a, b

This complete automaton contains several “unproductive” states which do not contribute to
accepting runs. In particular the state ⊥ is unproductive in this sense. 3

42

4.1. Boolean operations

The counterpart of being complete is being trim. A state which is not reachable from an
initial state or which cannot reach a final state cannot occur on an accepting run. Thus
removing such a state does not change the accepted language. This leads to the following
definition. A Σ∗-automaton A = (Q, δ, I, F) is trim if for every state p there exist words
u, v ∈ Σ∗, an initial state i ∈ I and a final state f ∈ F such that i u p v f . Every
automaton can be trimmed by removing all states which either are unreachable from an
initial state or which cannot reach a final state.

Example 4.2. The automaton A in Example 4.1 is not trim. When trimming A (or equivalently
its complete counterpart) we obtain the following automaton.

q0 q3 q4

b

a

b

Note that this automaton is not complete. 3

The automaton A in Example 4.1 is neither complete nor trim. Of course there also exist
automata which are both complete and trim at the same time. The simplest example is the
one state automaton for the language L = Σ∗.

4.1. Boolean operations

Complementing automata

Complementing an automaton over Σ∗ is the computation of the following function.

Input: A finite Σ∗-automaton A.

Output: A finite automaton B with L(B) = Σ∗ \ L(A).

Suppose the given automaton A = (Q, ·, q0, F) is deterministic. Its complement automa-
ton A is defined as

A = (Q, ·, q0, Q \ F),

and we have L(A) = Σ∗ \L(A). Note that this construction works for deterministic automata
over arbitrary monoids. Depending on the implementation of A, computing the complement
automaton usually is linear (or even constant with an adequate data structure for sets of
states; for instance, one could use an additional bit indicating whether or not to invert the
output of a membership query).

In general, RAT(M) is not closed under complement. Therefore, this is a strong indication
that when A is nondeterministic, then applying Kleene’s Theorem in some form cannot really
be avoided. In particular, for complementing a nondeterministic automaton over Σ∗, we
compute the complement automaton of the powerset construction of A. The following example
shows that simply interchanging final and non-final states does not work for nondeterministic
automata.

Example 4.3. Consider the following two nondeterministic a∗-automata.

a

a

A :
a

a

B :

The automaton B is obtain from A by interchanging final and non-final states. We have
L(A) = a∗a and L(B) = a∗. In particular, L(A) is a subset of L(B) whereas the complement
is a∗ \ L(A) = {ε}. 3

43

4. Algorithmic Properties of Automata

Complementing the powerset construction can yield a deterministic automaton of expo-
nential size. The following example is due to Holzer and Kutrib [?]; it shows that even for
nondeterministic outputs, one cannot avoid the exponential blow-up.

Example 4.4. Let Σ = {a, b}. We show that for every n ≥ 1 there exists a language L ⊆ Σ∗

accepted by a nondeterministic automaton with n+ 2 states such that every letter-by-letter
automaton for the complement of L has at least 2n − 1 states. Let L = Σ∗aΣn−1bΣ∗. The
language L is accepted by the following nondeterministic automaton with n+ 2 states.

0 1 2 · · · n-1 n n+1

Σ

a Σ Σ Σ Σ b

Σ

Let B = (Q, δ, I, F) be a nondeterministic automaton with δ ⊆ Q× Σ×Q accepting Σ∗ \ L.
We consider words in K = Σn \ {bn}. For every word u ∈ K we have uu ∈ L(B). Thus for
every word u ∈ K there exist states q0,u ∈ I, qu ∈ Q, and q1,u ∈ F such that q0,u

u qu
u q1,u.

Suppose qu = qv for two different words u, v ∈ K. By looking at the first difference between
u and v, we see that there exists a position i such that one of the following holds:

(a) Either the i-th letter in u is a and the i-th letter of v is b,

(b) or the i-th letter in u is b and the i-th letter of v is a.

We can assume that (a) holds (since otherwise we interchange u and v). In particular, uv ∈ L.
We have q0,u

u qu = qv
v q1,v and thus uv ∈ L(B). This is a contradiction. Therefore, for

different words u, v ∈ K we have qu 6= qv, which yields

2n − 1 = |K| = |{ qu ∈ Q | u ∈ K }| ≤ |Q| .

This also shows that the minimal deterministic automaton of L has at least 2n − 1 states
since the minimal automaton of L and the minimal automaton of its complement Σ∗ \L only
differ in the final states. 3

The union operation for automata

We consider the following problem for automata over Σ∗.

Input: Two finite Σ∗-automata A1 and A2.

Output: A finite automaton B with L(B) = L(A1) ∪ L(A2).

Let A1 = (Q1, δ1, I1, F1) and A2 = (Q2, δ2, I2, F2) with Q1 ∩Q2 = ∅. There are two different
constructions for the union of L(A1) and L(A2). The first construction is the union automaton

A1 ∪ A2 = (Q1 ∪Q2, δ1 ∪ δ2, I1 ∪ I2, F1 ∪ F2).

We trivially have L(A1 ∪A2) = L(A1)∪L(A2). With |Q1|+ |Q1| states, the size of the union
automaton is linear. Also note that the union automaton construction works for automata
over arbitrary monoids. The union automaton A1 ∪ A2 is nondeterministic even if A1 and
A2 are deterministic.

Next, we consider product automata. This construction yields bigger automata but it
preserves determinism. Moreover, by an appropriate choice of the final states it can be used
for other Boolean operations, too. If δi ⊆ Qi × Σ×Qi for i ∈ {1, 2}, then one can also use
the product automaton

A1 ×A2 = (Q1 ×Q2, δ, I1 × I2, F)

where
(
(p1, p2), a, (q1, q2)

)
∈ δ if both (p1, a, q1) ∈ δ1 and (p2, a, q2) ∈ δ2. It is often convenient

to write a state (p, q) ∈ Q1 ×Q2 as
[
p
q

]
. There exists a run[

p1
q1

]
a1
[
p2
q2

]
a2
[
p3
q3

]
a3 · · · an−1

[
pn
qn

]
an
[
pn+1

qn+1

]

44

4.2. Homomorphisms and inverse homomorphisms

in the product automaton A1 ×A2 if and only if there exist runs

p1
a1 p2

a2 p3
a3 · · · an−1 pn

an pn+1 in A1,

q1
a1 q2

a2 q3
a3 · · · an−1 qn

an qn+1 in A2.

For the union L(A1) ∪ L(A2) of complete automata A1 and A2, we can use the product
automaton construction with final states F = (F1 ×Q2) ∪ (Q1 × F2). If A1 = (Q1, ·, q01, F1)
and A2 = (Q2, ·, q02, F2) are given as deterministic automata, then the transistion function
· : Q1 × Q2 × Σ∗ → Q1 × Q2 of the product automaton is defined componentwise by
(p, q) · u = (p · u, q · u), and the initial state is (q01, q02). The product automaton construction
over nondeterministic automata only works for free monoids whereas over deterministic
automata, one can apply this construction for arbitrary monoids. The size of the product
automaton is quadratic. As usual, it suffices to consider reachable states, only. This can
result in smaller automata.

Intersections of regular languages

There exist monoids M such that the rational subsets of M are not closed under intersection,
see Example 3.5. Therefore, we only consider the intersection of regular languages. The
intersection problem is the following.

Input: Two finite Σ∗-automata A1 and A2.

Output: A finite automaton B with L(B) = L(A1) ∩ L(A2).

Let Ai = (Qi, δi, Ii, Fi) with δi ⊆ Qi×Σ×Qi. Let B be the product automaton A1×A2 with
final states F1 × F2. Then L(B) accepts L(A1) ∩ L(A2), even if A1 and A2 are not complete.
Note that in the case of deterministic automata A1 and A2, the product automaton A1 ×A2

can accept any Boolean combination of L(A1) and L(A2), depending on the choice of the
final states.

4.2. Homomorphisms and inverse homomorphisms

Homomorphic images

The computation of homomorphic images of automata is the following problem.

Input: A finite Σ∗-automaton A and a homomorphism ψ : Σ∗ → Γ∗.

Output: A finite Γ∗-automaton B with L(B) = ψ(L(A)).

As usual, ψ(L) = {ψ(u) | u ∈ L }. We mimic the proof of Proposition 1.3. For a nondeter-
ministic automaton A = (Q, δ, I, F) we set B = (Q, δ′, I, F) with

δ′ =
{ (
p, ψ(u), q

) ∣∣ (p, u, q) ∈ δ
}
.

Now, if q1u1q2 · · ·unqn+1 is a run of A on u if and only if q1 ψ(u1) q2 · · ·ψ(un) qn+1 is a run
of B on ψ(u). Thus L(B) = ψ(L(A)) as desired. If δ ⊆ Q × Σ × Q, then, by replacing a
single transition by many as in the proof of Theorem 1.6, we obtain an automaton B̃ with
transition relation δ̃ ⊆ Q× Γ×Q. If n = |Q| and m = max |ψ(a)|a ∈ Σ, then B̃ has at most
nm states. If A is deterministic, then B does not have to be deterministic. Moreover, even if
ψ(a) ∈ Γ for all a ∈ Σ, the minimal automaton of ψ(L(A)) for a deterministice automaton A
can have exponential size.

Example 4.5. Let Γ = {a, b}, let Σ = {a, b, c}, and consider the following deterministic
Σ∗-automaton A with n+ 2 states.

45

4. Algorithmic Properties of Automata

0 1 2 3 · · · n-1 n n+1

b, c

a Σ Σ Σ Σ Σ Σ

Σ

Let ψ : Σ∗ → Γ∗ be the homomorphism defined by ψ(a) = ψ(c) = a and ψ(b) = b. Then
ψ(L(A)) ⊆ {a, b}∗ is the language from Example 3.2. Since its minimal deterministic
automaton has 2n states, this shows that one cannot avoid the exponential blow-up when
computing deterministic automata for homomorphic images, even if the input automaton is
deterministic. 3

Inverse homomorphisms

We consider the following problem.

Input: A finite Σ∗-automaton A and a homomorphism ψ : Γ∗ → Σ∗.

Output: A finite Γ∗-automaton B with L(B) = ψ−1(L(A)).

As usual, ψ−1(L) = {u | ψ(u) ∈ L }. Let A = (Q, δ, I, F) be a nondeterministic automaton
with δ ⊆ Q× Σ×Q. We set B = (Q, δ′, I, F) with

δ′ =

{
(p, a, q) ∈ Q× Γ×Q

∣∣∣∣ p ψ(a)
q in A

}
.

Let u = a1 · · · an with ai ∈ Γ. There exists a run q1a1q2 · · · anqn+1 in B if and only if we have

q1
ψ(a1)

q2
ψ(a2) · · · qn

ψ(a2)
qn+1

in A. The latter condition is equivalent to q1
ψ(u)

qn+1 in A. Note that the implication
from right to left of this equivalence would not hold if we had labels of length greater than 1;
moreover, this implication does not hold for automata over arbitrary monoids. We conclude
that L(B) = ψ−1(L(A)) as desired.

If A = (Q, ·, q0, F) is a deterministic Σ∗-automaton, then translating the above construction
from transition relations to transition functions yields the Γ∗-automaton B = (Q, ◦, q0, F)
with q ◦ u = q · ψ(u). In particular, B is deterministic, too.

4.3. Residuals and quotients

We have already seen in Theorem 2.3 that regular languages are closed under residuals.
Quotients are generalizations of residuals. In this section we give constructions on automata
for computing residuals and quotients.

Residuals

The languages u−1L = { v ∈ Σ∗ | uv ∈ L } is called the left residual of L ⊆ Σ∗ by the word
u ∈ Σ∗. Symmetrically, Lu−1 = { v ∈ Σ∗ | vu ∈ L } is a right residual. We say that K is a
residual of L if it is either a left or a right residual. Computing residuals is the following
problem.

Input: A finite Σ∗-automaton A and a word u ∈ Σ∗.

Output: A finite Σ∗-automaton B with L(B) = u−1L(A) in the case of left residuals (or
with L(B) = L(A)u−1 in the case of right residuals).

We first consider left residuals. If A = (Q, δ, I, F) is a nondeterministic automaton with
δ ⊆ Q× Σ×Q, we set B = (Q, δ, I ′, F) with

I ′ =
{
q ∈ Q

∣∣ ∃p ∈ I : p u q
}
.

46

4.3. Residuals and quotients

Let r ∈ Q and v ∈ Σ∗. Then the following conditions are equivalent:

• There exists q ∈ I ′ with q v r.

• There exist q ∈ I ′ and p ∈ I with p u q v r.

• There exists p ∈ I with p uv r.

This shows v ∈ L(B) if and only if uv ∈ L(A) and thus L(B) = u−1L(A). If A = (Q, ·, q0, F)
is deterministic, then the above constructions yields the automaton B = (Q, ·, q′0, F) with
initial state q′0 = q0 · u.

Next we consider right residuals. Suppose A = (Q, δ, I, F) is a nondeterministic automaton
with δ ⊆ Q× Σ×Q. In this case we define B = (Q, δ, I, F ′) with

F ′ =
{
p ∈ Q

∣∣ ∃q ∈ F : p u q
}
.

By a similar reasoning as for left residuals we see that L(B) = L(A)u−1. In summary, the
constructions for residuals are obtained by adapting initial and final states; moreover, if A is
deterministic, then B is deterministic, too.

Quotients

The left quotient of a language L ⊆ Σ∗ by K ⊆ Σ∗ is

K−1L = { v ∈ Σ∗ | uv ∈ L for some u ∈ K } .

Thus, quotients are generalizations of residuals. Right quotients LK−1 are defined symmet-
rically, that is LK−1 = {u ∈ Σ∗ | uv ∈ L for some v ∈ K }. We say that a language L′ is a
quotient of L if it is either a left or a right quotient of L. We have

K−1L =
⋃
u∈K

u−1L. (4.1)

Every regular language has only finitely many left residuals (and symmetrically it has only a
finite number of right residuals) since all residuals are accepted by the same automaton with
varying initial states. Thus, if L is regular, then the union in Equation (4.1) is finite. This
shows that for a regular language L and an arbitrary language K the quotient K−1L (and
symmetrically LK−1) is regular. This does not mean that we can always compute K−1L
since the condition “u ∈ K ” in Equation (4.1) might be undecidable. As an intermediate
step between left residuals and arbitrary left quotients we consider the following problem.

Input: Finite Σ∗-automata A1 and A2.

Output: A finite Σ∗-automaton B with L(B) = L(A2)
−1L(A1).

Let Ai = (Qi, δi, Ii, Fi) with δi ⊆ Qi × Σ ×Qi. Consider the product automaton A1 × A2.
Using

I ′ = { q ∈ Q1 | ∃f ∈ F2 : (q, f) is reachable in A1 ×A2 }

as the initial states we obtain the automaton B = (Q1, δ1, I
′, F1), i.e., B is obtained from

A1 by modifying the initial states and the product automaton A1 ×A2 was only used for
computing the new set of initial states. Let r ∈ Q and v ∈ Σ∗. Then the following conditions
are equivalent:

• There exists q ∈ I ′ with q v r in B.

• There exists q ∈ Q1 with q v r in A1 and there exists f ∈ F2 such that (q, f) is a
reachable state of the product automaton A1 ×A2.

• There exist pairs of states (q, f) ∈ Q1×F2 and (i1, i2) ∈ I1× I2 and there exists a word
u ∈ Σ∗ such that (i1, i2)

u (q, f) in A1 ×A2 and q v r in A1.

• There exists u ∈ L(A2) and there exists i1 ∈ I1 with i1
uv q.

47

4. Algorithmic Properties of Automata

This shows L(B) = L(A2)
−1L(A1). If A1 is deterministic, then L(B) can be nondeter-

ministic due to multiple initial states. Thus, for computing a deterministic automaton for
L(A2)

−1L(A1) one might need to apply the powerset construction which for an n-state
automaton A1 yields a deterministic automaton for the quotient L(A2)−1L(A1) with at most
2n − 1 states (the empty set ∅ is no state of the powerset construction of B). The following
example shows that this bound is tight. It is a slight modification of an example of Yu,
Zhuang and Salomaa [?].

Example 4.6. Let Σ = {a, b} and Q = {1, . . . , n}. We consider the following deterministic
n-state Σ∗-automaton A = (Q, ·, n, {n}) for the language L =

(
b∗ ∪ aΣn−1)∗.

n

1
2

n-2
n-1

··
··
··
··
··
··
··
··

a

Σ
Σ

Σ
Σ

Σ

b

A nondeterministic automaton for the left quotient (Σ∗)−1L of L by Σ∗ is obtained from A by
making all states initial, i.e., we consider the nondeterministic automaton B = (Q, δ,Q, {n})
with transition relation δ = { (i, u, j) ∈ Q× Σ×Q | i · u = j } such that every state of B is
initial. We claim that the powerset construction P(B) of B has 2n − 1 states and that it is
the minimal automaton of (Σ∗)−1L. Consider a word u = an · · · a1 6= bn with ai ∈ Σ and
suppose Q · u = P in the powerset construction P(B). Then we have j ∈ P if and only if
aj = a. Therefore, every nonempty subset of Q is a reachable state in P(B). Consider now
two distinct states P, P ′ ⊆ Q of P(B). Without loss of generality there exists j ∈ P \ P ′.
Then n ∈ P · an−j whereas n 6∈ P ′ · an−j . This shows that P(B) is minimal. Its states are the
nonempty subsets of Q. In particular, the minimal automaton of (Σ∗)−1L has 2n − 1 states.

We also note the interpretation of B as an automaton over {a, b, c}∗ yields a powerset
construction with 2n states since ∅ becomes a reachable state (for instance, using the word c
of length 1). Therefore, the bound 2n on the number of states in the powerset construction is
tight. 3

Computing automata for right quotients is easier in the sense that there is no exponential
blow-up for deterministic automata. In the remainder of this section we consider the following
problem:

Input: Finite Σ∗-automata A1 and A2.

Output: A finite Σ∗-automaton B with L(B) = L(A1)L(A2)
−1.

Let Ai = (Qi, δi, Ii, Fi) with δi ⊆ Qi×Σ×Qi. Consider the product automaton A1×A2 with
states Q1 ×Q2 (even if not all states are reachable). We say that a state (p1, p2) ∈ Q1 ×Q2

is co-reachable if there exists (f1, f2) ∈ F1 × F2 and v ∈ Σ∗ such that (p1, p2)
v (f1, f2) in

A1 ×A2. Using

F ′ = { q ∈ Q1 | ∃i2 ∈ I2 : (q, i2) is co-reachable in A1 ×A2 }

as the final states we obtain the automaton B = (Q1, δ1, I1, F
′). As for left quotients one

can verify that L(B) = L(A1)L(A2)
−1. The main difference to left quotients is that B is

deterministic whenever A1 is deterministic.

48

4.4. Decision problems for automata

Other operations

We do not discuss algorithmic aspects of the operations concatenation and Kleene star. The
reason is that the approach suggested by the Thompson construction (followed by removal of
ε-transitions and possibly determinization) yields automata of asymptotically optimal size
for these constructions, see e.g. [?].

4.4. Decision problems for automata

The word problem

For an automaton A over Σ∗ the word problem is the following.

Input: A word u = a1 · · · an with ai ∈ Σ.

Question: Is u ∈ L(A)?

If A is deterministic, then we compute the state p = q0 · u letter by letter and then we check
whether or not p ∈ F . We have p ∈ F if and only if u ∈ L(A). In pseudocode, the algorithm
is as follows.

Algorithm 1 The word problem for a deterministic automaton on input a1 · · · an
1: p← q0
2: for i← 1, . . . , n do p← p · ai
3: if p ∈ F then return true
4: else return false

The algorithm also works if Σ is the generating set of an arbitrary monoid M , and A is a
deterministic M -automaton. The running time of the algorithm can be estimated by O(n)
operations in the automaton A.

If A = (Q, δ, I, F) is a nondeterministic automaton with δ ⊆ Q × Σ × Q, then we can
implicitely use the powerset construction, i.e., we set P · a = { q ∈ Q | ∃p ∈ P : (p, a, q) ∈ δ }.
The word problem for A is solved by computing P = I · u, and then checking P ∩ F 6= ∅.
Thus the algorithm is as follows.

Algorithm 2 The word problem for a nondeterministic automaton on input a1 · · · an
1: P ← I
2: for i← 1, . . . , n do P ← P · ai
3: if P ∩ F 6= ∅ then return true
4: else return false

If |Q| = m, then this algorithm requires at most O(m2n) operations in the automaton A.
We note that the above algorithm for nondeterministic automata does not work for arbitrary
monoids. There exist monoids M such that when given two sequences of generators a1 · · · an
and b1 · · · bm it is undecidable whether a1 · · · an and b1 · · · bm represent the same element
in M . Note that some factorization of an element might yield an accepting path whereas
another factorization has no accepting path.

The emptiness problem

The emptiness problem is the following.

Input: A finite nondeterministic automaton A.

Question: Is L(A) = ∅?

49

4. Algorithmic Properties of Automata

For every initial state we check if there exists a path to some final state. This can be done
in linear time, e.g., by depth-first search. We note that non-emptiness is essentially graph
reachability which is complete for nondeterministic logarithmic space (nl), a complexity class
within deterministic polynomial time. The nl-algorithm for the Σ∗-automatonA = (Q, δ, I, F)
with δ ⊆ Q× Σ×Q can sketched as follows:

Algorithm 3 The emptiness problem for a nondeterministic automaton

1: nondeterministically guess some initial state p ∈ I
2: while p 6∈ F do
3: nondeterministically guess a ∈ Σ and q ∈ Q with (p, a, q) ∈ δ
4: p← q

5: return “L(A) is nonempty”

For a deterministic automaton A = (Q, ·, q0, F), the algorithm can easily be adapted:

Algorithm 4 The emptiness problem for a deterministic automaton
1: p← q0
2: while p 6∈ F do
3: nondeterministically guess a ∈ Σ
4: p← p · a
5: return “L(A) is nonempty”

Since only the graph structure of the automaton matters, each of the algorithms can also
be applied to automata over arbitrary monoids.

The intersection of a list of deterministic automata

When proving pspace lower bounds for decision problems on automata, the following theorem
is very useful.

Theorem 4.1. The following problem is pspace-complete.

Input: A list of deterministic {a, b}∗-automata A1, . . . ,A`.
Question: Is L(A1) ∩ · · · ∩ L(A`) 6= ∅?

Proof. For membership in pspace we consider the following algorithm. The algorithm works
for automata Ai over some arbitrary alphabet Σ. Let qi0 be the initial state of Ai and let Fi
be its set of final states.

Algorithm 5 The intersection problem for a list of deterministic Σ∗-automata A1, . . . ,A`
1: (p1, . . . , p`)← (q10, . . . , q

`
0)

2: while (p1, . . . , p`) 6∈ F1 × · · · × F` do
3: nondeterministically guess c ∈ Σ
4: (p1, . . . , p`)← (p1 · c, . . . , p` · c)
5: return “L(A1) ∩ · · · ∩ L(A`) 6= ∅”

For showing pspace-hardness we use a reduction from the word problem for linearly
bounded Turing machines, a pspace-complete problem. A linearly bounded Turing machine
is a nondeterministic Turing machine which, on its tape, only uses the space of the input.
Let M be a linearly space bounded nondeterministic Turing machine with input alphabet
Σ and tape alphabet Γ. Let Q be the states of M and let δ ⊆ Q× Γ×Q× Γ× {L,R} be
the transition relation. As usual, the letters L and R indicate the direction of the head.
Suppose M has a unique initial state qinit and a unique accepting state qacc.

50

4.4. Decision problems for automata

Consider some input word u ∈ Σ∗ of length n− 1. A configuration of M can be written
as c1 · · · cn with ci ∈ Γ ∪Q such that cj ∈ Q for exactly one index j, meaning that M is in
state cj when reading symbol cj+1 at position j of the tape. Consider two configurations
C = c1 · · · cn and D = d1 · · · dn with C `M D. Then the validity of the letter di only depends
on ci−1cici+1 and di−1, di+1 (where ci−1, ci+1, di−1, or di+1 might be empty), i.e., for verifying
C `M D at position i it suffices to remember a fixed number of elements in Γ ∪Q.

C

D

a p b
a b′ q

· · · · · ·
· · · · · ·

transition (p, b, q, b′, R)

C

D

a p b
q a b′

· · · · · ·
· · · · · ·

transition (p, b, q, b′, L)

By using some binary encoding of elements in Γ∪Q by words in {a, b}k for k ∈ O(log(|Σ|+|Q|)),
we can write down configurations as elements of {a, b}m form = kn. We consider computations
as sequences of (encodings of) configurations C1, . . . , C` with Cj `M Cj+1 for all j < `. The
integer ` is unknown. We use the concatenation C1 · · ·C` ∈ {a, b}∗ as the input for some
automata. Let Ai be a deterministic automaton which checks consitency at position i, that
is, the automaton Ai verifies Cj `M Cj+1 at position i for all j ≥ `. This can be done with

an automaton of polynomial size since it only has to remember some word in {a, b}3k from
positions i− 1, i, i+ 1 in Cj until reading these positions in Cj+1. This can be achieved by
an automaton of polynomial size. Let Ainit be a deterministic automaton for encodings of
qinitu (Γ∪Q)∗ and let Aacc be a deterministic automaton for encodings of (Γ∪Q)∗ qacc (Γ∪Q)∗;
both automata have polynomial size.

· · · · · ·c11 c1i c1nC1

· · · · · ·c21 c2i c2nC2

...
...

...

· · · · · ·cj1 cji cjnCj

· · · · · ·cj+1
1 cj+1

i cj+1
nCj+1

...
...

...

· · · · · ·c`1 c`i c`nC`

A1 Ai An

Ainit

Aacc

The list of automata Ainit,A1, . . . ,An,Aacc has the following property:

u ∈ L(M) ⇔ there exists an accepting computation of M on input u

⇔ L(Ainit) ∩ L(A1) ∩ · · · ∩ L(An) ∩ L(Aacc) 6= ∅.

Therefore, deciding the emptiness of the intersection of Ainit,A1, . . . ,An,Aacc cannot be
easier than deciding whether u ∈ L(M).

A naive approach to solving the problem in Theorem 4.1 might be the application of the
product automaton construction, but this would yield an automaton which is exponential in
the parameter `.

51

4. Algorithmic Properties of Automata

The universality problem for deterministic automata

The universality problem for automata over Σ∗ is defined as follows.

Input: A finite automaton A over Σ∗.

Question: Is L(A) = Σ∗?

An automaton A with L(A) = Σ∗ is called universal. If A is deterministic, then we can
solve the emptiness problem for the complement automaton, i.e., we check if there exists a
path from the initial state to some non-final state. Therefore, the universality problem for
deterministic automata can be solved in nondeterministic logarithmic space (i.e. in nl) as
well as in deterministic linear time.

The universality problem for nondeterministic automata

Let A = (Q, δ, I, F) with δ ⊆ Q × Σ × Q be a nondeterministic Σ∗-automaton. The non-
universality problem on input A can be solved using the following nondeterministic polynomial
space (pspace) algorithm:

Algorithm 6 The non-universality problem for a nondeterministic automaton

1: P ← I
2: while P ∩ F 6= ∅ do
3: nondeterministically guess a ∈ Σ
4: P ← P · a
5: return “A is not universal”

Remember that P · a = { q ∈ Q | (p, a, q) ∈ δ for some p ∈ P }. This algorithm is nothing
but the nl-algorithm for non-emptiness of P(A), but polynomial space is required for
writing down some state of the powerset construction. Note that nondeterministic pspace
and deterministic pspace coincide by Savitch’s Theorem, see e.g. [?]. Thus universality
(and not just non-universality) of nondeterministic automata is in pspace, even if the
alphabet Σ is part of the input. The following Theorem is an intermediate step towards
pspace-completeness of the universality problem for nondeterministic automata.

Theorem 4.2. The universality problem for finite nondeterministic automata over {a, b}∗ is
pspace-complete.

Proof. We have seen in Algorithm 6 that the problem is in pspace. For showing pspace-
hardness we use a reduction from problem in Theorem 4.1. In fact we use the emptiness
rather than non-emptiness, but this problem is also pspace-hard since pspace is closed
under complemenation. Consider a list A1, . . . ,A` of deterministic {a, b}∗-automata. Let
B = A1 ∪ · · · ∪ A` be the union automaton of the respective complement automata. The
automaton B has polynomial size and it satisfies:

L(A1) ∩ · · · ∩ L(An) ∩ L(Aacc) = ∅
⇔ L(A1) ∪ · · · ∪ L(A`) = {a, b}∗

⇔ L(B) = {a, b}∗ .

Note that, due to the union automaton construction, B is nondeterministic even though the
complement automata Ai are deterministic.

We note that the algorithm above and the hardness result in Theorem 4.2 immediately
yields pspace-completeness of the universality problem for nondeterministic automata even
if the alphabet is part of the input. This result is surprising since for deterministic automata
the problem is in nl and it is known that nl is a proper subset of pspace (we have

52

4.4. Decision problems for automata

nl ⊆ p ⊆ np ⊆ pspace, but to date only the inclusion nl (pspace is known to be
strict). In particular, the universality problem for nondeterministic automata is provably
more difficult than the universality problem for deterministic automata.

The inclusion problem

The inclusion problem for automata over Σ∗ is defined as follows.

Input: Two finite automata A and B over Σ∗.

Question: Is L(A) ⊆ L(B)?

Suppose A and B have m and n states, respectively. By using the deterministic single-
state automaton for Σ∗ as A, we see that the inclusion problem cannot be easier than the
universality problem. If B is deterministic, then one can check for emptiness of L(A) ∩ L(B)
on the product automaton A × B. This can be done using O(mn) automaton operations.
If B is nondeterministic, then the problem is pspace-hard by Theorem 4.2 and the above
reduction. The following nondeterministic pspace-algorithm for non-inclusion shows that
the problem is pspace-complete if B is allowed to be nondeterministic. Let A = (Q, δ, I, F)
and let B = (Q′, δ′, I ′, F ′) such that all labels in δ and δ′ are in Σ.

Algorithm 7 The non-inclusion problem for nondeterministic automata

1: (P, P ′)← (I, I ′)
2: while P ∩ F = ∅ or P ′ ∩ F ′ 6= ∅ do
3: nondeterministically guess a ∈ Σ
4: (P, P ′)← (P · a, P ′ · a)

5: return “L(A) 6⊆ L(B)”

Since pspace is closed under complement, this also yields an algorithm for inclusion (and
not just “non-inclusion”).

The equivalence problem

The equivalence problem for automata over Σ∗ is the following.

Input: Two finite automata A and B over Σ∗.

Question: Is L(A) = L(B)?

One can think of the equivalence problem as both directions L(A) ⊆ L(B) and L(B) ⊆ L(A).
In particular, the equivalence problem is at most twice as difficult as the inclusion problem.
Moreover, in the case that at least one of the automata is nondeterministic, Theorem 4.2
shows that equivalence is pspace-complete; for completeness, we explicitely give the pspace-
algorithm for inequivalence on automata A = (Q, δ, I, F) and B = (Q′, δ′, I ′, F ′).

Algorithm 8 The inequivalence problem for nondeterministic automata

1: (P, P ′)← (I, I ′)
2: while P ∩ F = ∅ ⇔ P ′ ∩ F ′ = ∅ do
3: nondeterministically guess a ∈ Σ
4: (P, P ′)← (P · a, P ′ · a)

5: return “L(A) 6= L(B)”

Naturally, the same approach leads to an nl-algorithm for deterministic automata; and
this algorithm can easily be implemented as a reachability problem on the product automaton
A × B. One just hast to answer the question, whether there exists a reachable state in
(F ×Q′ \ F ′) ∪ (Q \ F × F ′). If A has m states and B has n states, then the running time
would be O(mn), i.e. quadratic.

53

4. Algorithmic Properties of Automata

The Hopcroft-Karp equivalence test

In this section, we consider the “almost linear” equivalence test by Hopcroft and Karp for
deterministic automata [?]. It relies on two operations on sets: Union and Find. The idea is
that the algorithm starts with the partition where every element forms a singleton, and during
the run of the algorithm partition classes are successively united. Then Find(x) = Find(y)
holds if and only if, in the current situation, x and y belong to the same class. The operation
Union(x, y) unites the classes of x and y. Suppose A = (Q, ·, q0, F) and B = (Q′, ·, q′0, F ′)
are the given deterministic automata. Let Q̃ = Q ∪ Q′ be the disjoint union of the state
sets. The algorithm starts with the partition where every element has its own class. The
algorithm either returns that the automata are equivalent, or it computes a word u with
either u ∈ L(A) \ L(B) or u ∈ L(B) \ L(A). Let L be a list of elements (p, p′, u) with p ∈ Q,
p′ ∈ Q′ and u ∈ Σ∗.

Algorithm 9 Hopcroft-Karp equivalence test for deterministic automata

1: L ← {(q0, q′0, ε)}
2: while L 6= ∅ do
3: Choose (p, p′, u) ∈ L and remove this triple from L
4: if Find(p) 6= Find(p′) then
5: if (p, p′) ∈ (F ×Q′ \ F ′) ∪ (Q \ F × F ′) then
6: return u
7: else
8: Union(p, p′)
9: for all a ∈ Σ do add (p · a, p′ · a, ua) to L

10: return “L(A) = L(B)”

Note that the algorithm executes Union(p, p′) only for states with Find(p) 6= Find(p′).
An important invariant is that all triples (p, p′, u) which at some point occur in L satisfy
p = q0 · u and p′ = q′0 · u. Hence, if the algorithm returns u ∈ Σ∗, then we have u ∈(
L(A) \ L(B)

)
∪
(
L(B) \ L(A)

)
and thus L(A) 6= L(B). For the correctness of the above

algorithm it therefore remains to prove the following proposition.

Proposition 4.3. If the Hopcroft-Karp equivalence test returns “L(A) = L(B)”, then the
automata A and B are equivalent.

Proof. We write Findi(p) = Findi(p
′), if we have Find(p) = Find(p′) after the i-th iteration

of the while-loop. Similarly, Find(p) = Find(p′) says that this query is true at the end of the
algorithm.

Claim 1. If Find(p) = Find(p′), then Find(p · a) = Find(p′ · a) for all a ∈ Σ.

Proof of Claim 1: Suppose the contrary. Let i be minimal such that for some (p, p′, a) ∈
Q×Q′×Σ we have Findi(p) = Findi(p

′) and Find(p · a) 6= Find(p′ · a). Note that i > 0 since
otherwise p = p′ and this would contradict Find(p · a) 6= Find(p′ · a). Since Findi−1(p) 6=
Findi−1(p

′), we have Findi(p) = Findi(p
′) due to some instruction Union(r, s) in the i-th

iteration. We assume Findi−1(r) = Findi−1(p) and Findi−1(s) = Findi−1(p
′) since otherwise

we may interchange the roles of r and s. After the operation Union(r, s) we add some element
(r · a, s · a, ua) to the list L, and for all elements (q, q′, u) on the list L we eventually have
Find(q) = Find(q′). This shows Find(r · a) = Find(s · a). By choice of i we have

Find(p · a) = Find(r · a) = Find(s · a) = Find(p′ · a),

contradicting the assumption. This concludes the proof of Claim 1.

As usual, let L(q) = {u ∈ Σ∗ | q · u is a final state }. This allows us to describe an impor-
tant property of the state partition computed by the algorithm.

54

4.4. Decision problems for automata

Claim 2. If Find(p) = Find(p′), then L(p) = L(p′).

Proof of Claim 2: For all states p, p′ with Find(p) = Find(p′) we show u ∈ L(p) ⇔ u ∈ L(p′)
by induction on |u|. If u = ε, then this is true since we never unite final and non-final states.
Let now u = au′ with a ∈ Σ and consider the states q = p · a and q′ = p′ · a. Claim 1 yields
Find(q) = Find(q′), and by induction we see that u′ ∈ L(q) ⇔ u′ ∈ L(q′). Thus

au′ ∈ L(p) ⇔ u′ ∈ L(q) ⇔ u′ ∈ L(q′) ⇔ au′ ∈ L(p′).

This concludes the proof of Claim 2.

Since (q0, q
′
0, ε) is an element in the list L, we eventually have Find(q0) = Find(q′0). By

Claim 2 we obtain L(A) = L(q0) = L(q′0) = L(B) as desired.

The following proposition yields an upper bound on the number of Union and Find
operations. Suppose |Q| = m and |Q′| = n.

Proposition 4.4. The algorithm executes at most

(a) m+ n− 1 Union operations, and

(b) 1 + |Σ| (m+ n− 1) Find comparisons.

Moreover, if it returns a word u ∈ Σ∗ after k Union operations, then |u| ≤ k.

Proof. Property (a) is trivial since we only unite disjoint subsets. Property (b): Every Find
comparison is due to some triple in the list L. After every Union operations, we add |Σ|
triples to L. Together with the initial element (q0, q

′
0, ε) in the list L, this yields the desired

bound. For the last statement, note that every Union operation increases the length of the
longest word in the list L at most by 1.

Proposition 4.4 immediately yields the following corollary.

Corollary 4.5. The Hopcroft-Karp equivalence test requires at most O(|Σ| (m+ n)) Union-
Find operations.

Another consequence of Proposition 4.4 is a linear bound on the length of a shortest witness
for the inequivalence of automata. Moreover, this bound does not depend on the size of the
alphabet.

Corollary 4.6. Let A and B be deterministic Σ∗-automata with m and n states, respectively.
If L(A) 6= L(B), then there exists a word u ∈ Σ∗ of length at most m + n − 2 with u ∈(
L(A) \ L(B)

)
∪
(
L(B) \ L(A)

)
.

Proof. If L(A) 6= L(B), then by Proposition 4.3 the Hopcroft-Karp equivalence test returns a
word u ∈

(
L(A) \ L(B)

)
∪
(
L(B) \ L(A)

)
. This can only happen before the (m− n+ 1)-th

Union operation (since after m−n+ 1 Union operations, all states have the same Find-value).
Proposition 4.4 yields the desired bound.

The following example shows that the bound in Corollary 4.6 is tight.

Example 4.7. Let m ≤ n be two positive integers. First suppose m < n. Then we consider
the following two deterministic a∗-automata A and B with m+ 2 and n states, respectively.
The automaton A is:

0 1 · · · m -1 m m+1
a a a a a

a

It accepts the singleton language {am}. The automaton B is given by:

55

4. Algorithmic Properties of Automata

n

1

n -1

m -1

m

m+1

· · · · ·

· · · · ·

a

a a

a

a

aa

a

We have L(B) =
{
am+kn

∣∣ k ≥ 0
}

. In particular L(A) (L(B) and am+n is the shortest
word in L(B) \ L(A). In the case m = n, we also choose the state 0 of the automaton A is
final, i.e., we then have L(A) = {ε, an} and L(B) = (an)∗. 3

In the remainder of this section, we briefly sketch one possible implementation of the
operations Union and Find. Every class of the partition is represented by a tree in which the
nodes have a pointer to their parents. Moreover, at every root we remember the number of
nodes in the tree. The operation Find(x) returns the root of the tree containing x. All we
have to do in order to compute Find(x) is to chase the pointers from nodes to their parent,
starting with node x. For instance, in the following example, Find(x) would return r.

r

•

•

• •

•

•

•

•

• •

• •

•

• •

•

•

•

• • •

• x

• •

•

• •

• •

•

Let size(x) denote the number of nodes in the tree of x. Remember that we store size(x)
at the node Find(x). Consider elements x, y with Find(x) = r 6= s = Find(y) and suppose
size(x) ≥ size(y). Then for the operation Union(x, y) we introduce a pointer from s to r,
i.e., we attach the smaller tree to the bigger one. In particular, after this operation we have
Find(y) = r.

Let height(x) denote the length of a longest path in the tree of x. We claim that when
starting with singleton sets for all elements and then executing successive Union operations,
then at any time 2height(x) ≤ size(x). This is true at the beginning since singletons have height
0. Let now size(x) ≥ size(y) and consider the operation Union(x, y). Let height′ and size′

denote the respective values after the execution of this operation. If height′(x) = height(x),
then there is nothing to show. Let now height′(x) > height(x). Then height′(x) = height(y)+
1. Since size(x) ≥ size(y), we have

2height
′(x) = 2 · 2height(y) ≤ 2 · size(y) ≤ size(x) + size(y) = size′(x),

as desired.
Let n be the number of elements. The above estimate shows that (at any time) the running

time of both operations Union(x, y) and Find(x) is in O(log n).

56

4.5. Minimization algorithms

There is a big improvement to the above algorithm which is called path compression. The
idea is that after every execution of the procedure Find, we redirect the pointers of all
nodes we see during this execution directly to the root. This is done by chasing the path
a second time. The effect is that the subsequent Find operations for some elements having
a predecessor on this path will be faster. An amortized analysis shows that this yields the
inverse Ackermann function as an asymptotic running time for both Union and Find [?].
Since for all reasonable values, this function is less than 5, this coins the term “almost linear”
in the running time of the Hopcroft-Karp equivalence test.

Identity testing

Identity testing addresses the question whether two given automata are identical, i.e., can
one automaton be obtained from the other by renaming the states. For two deterministic
Σ∗-automata with n states each, this can be solved in time O(|Σ|n): We can assume that
Σ = {a1, . . . , am}. Now, we number the states from 1 to n using a depth-first traversal; during
this traversal, we always visit outgoing ai-transition before considering ai+1-transitions. Then
for the two states p, q with number i in both automata, we have to check whether the number
of p · a and of q · a is the same for all a ∈ Σ, and whether p is final if and only if q is final.

We note that this algorithm would not work for non-deterministic automata since for
different outgoing a-transitions there is no uniform tie-breaker which one to process first in
a depth-first traversal. If all transitions have the same label all states are both initial and
final, then identity testing is nothing but graph isomorphism, a problem with an unresolved
complexity to date.

The main application of identity testing for deterministic automata is the use of minimization
algorithms for equivalence tests. This can be done as follows. Given two deterministic
automata A and B, we minimize both A and B and then we check whether the resulting
automata are identical. The complexity of this procedure is dominated by the complexity of
the minimization algorithm in use. In particular, minimizing automata cannot be faster than
equivalence testing.

4.5. Minimization algorithms

The problem of minimization is the following. Given a finite deterministic automaton A
we want to compute the minimal automaton accepting L(A). As it turns out, many of the
known algorithms can also be applied in the general setting of M -automata.

Moore’s algorithm

Let M be an arbitrary monoid, let A = (Q, ·, q0, F) be an M -automaton, and let L = L(A).
We can assume that all states are reachable, i.e., we have Q = q0 ·M . For a state p ∈ Q
we define L(p) = { v ∈M | p · v ∈ F }. For p ∈ Q we set [p] = { q ∈ Q | L(p) = L(q) }. We
define the automaton BA with states { [p] | p ∈ Q }. The initial state of BA is [q0] and the
final states are { [f] | f ∈ F }. Note that L(p) = L(q) implies L(p ·u) = L(q ·u) for all u ∈M .
Therefore, the transition function [p] · u = [p · u] is well-defined. Remember that the states of
the minimal automaton AL are the sets L(u) = { v ∈M | uv ∈ L }. For every u ∈M we have

v ∈ L(q0 · u) ⇔ q0 · uv ∈ F ⇔ uv ∈ L ⇔ v ∈ L(u)

and thus L(q0 · u) = L(u). In particular, BA is the the minimal automaton of L; the only
difference is that we use different names for the states. In order to minimize A, it remains
to identify those states p, q ∈ Q with L(p) = L(q). This can be done with the following
algorithm. Let M be generated by Σ.

57

4. Algorithmic Properties of Automata

(a) We start with the complete graph with vertices Q and edges E = { {p, q} | p 6= q ∈ Q }.
(b) We mark all edges {p, q} ∈ E with p ∈ F and q 6∈ F .

(c) As long as there exist marked edges in E, we repeat the following procedure. We choose
some marked edge {p′, q′} ∈ E. Then we mark all unmarked edges {p, q} ∈ E with
{p′, q′} = {p · a, q · a} for some a ∈ Σ. Afterwards we remove the edge {p′, q′} from E.

Note that all marked edges are eventually removed.

Lemma 4.7. We have L(p) = L(q) if and only if {p, q} is an edge in the remaining graph.

Proof. ⇒: We show that whenever an edge {p, q} is marked, then we have L(p) 6= L(q). If
{p, q} is marked in step (b), then 1 ∈ L(p) \L(q). Let now {p, q} be marked in step (c). Then
there exists a previously marked edge {p′, q′} and a generator a ∈ Σ with {p · a, q · a} = {p′, q′}.
By induction we have L(p′) 6= L(q′). W.l.o.g. there exits v ∈ L(p · a) \ L(q · a); otherwise we
interchange the roles of p and q. It follows av ∈ L(p) \ L(q) and L(p) 6= L(q).

⇐: We say that an element v ∈M is a witness, if v ∈ L(p) \ L(q) for some edge {p, q} in
the remaining graph. By contradiction, we assume that there exists a witness. Let n ≥ 0
be minimal such that v = a1 · · · an for some generators ai ∈ Σ is a witness. Then there
exists an edge {p, q} in the remaining graph with v ∈ L(p) \ L(q). The case n = 0 is not
possible since then v = 1 and {p, q} would have been marked in step (b). Thus n > 0 and
a2 · · · an ∈ L(p · a1) \ L(q · a1). By minimality of n, the edge {p · a1, q · a1} was removed.
Before removal it was marked, and therefore in step (c) the edge {p, q} was marked, too.
Since marked edges are eventually removed, {p, q} is not an edge in the remaining graph.
This is a contradiction, showing that there exist no witnesses. This shows that every edge
{p, q} with L(p) 6= L(q) is eventually removed.

One can think of the above algorithm as a traversal of the following graph. The set of
vertices is { {p, q} | p 6= q ∈ Q }, and for every generator a ∈ Σ and every vertex {p, q} there
exists an edge from {p · a, q · a} to {p, q}. If Q and Σ are finite, then this graph has O(|Q|2 |Σ|)
edges. Therefore the running time of the above algorithm is O(|Q|2 |Σ|).

When implementing automata, one usually does not want to have sets [p] as states. Instead,
in every class [p] one chooses some state as a representative. For any state p ∈ Q let p̂ be the
representative of [p]. The transition function is then given by p̂ · a = p̂ · a. With O(|Q| |Σ|),
the running time of this step is negligible.

We note that we do not have to prove that the resulting automaton indeed is an M -
automaton since it coincides with the minimal automaton of L which is already known to be
an M -automaton.

Example 4.8. In Example 3.1 we constructed the following deterministic {a, b}∗-automaton
for the language L = b {ab, b}∗.

1

2

5

3

4

b

a

b

a

b

ba

a, b

a

We apply Moore’s minization algorithm to this automaton. The procedure starts with the
complete graph on the set of states:

58

4.5. Minimization algorithms

5

4

32

1

In the beginning we mark all edges between final and non-final states.

5

4

32

1

In the next step, we (arbitrarily) choose the marked edge {4, 5} which causes us to mark
edges {2, 3} and {3, 4} since (2 · b, 3 · b) = (5, 4) and (3 · b, 4 · b) = (4, 5). Then we remove the
edge {4, 5}. This leads to the following graph:

5

4

32

1

In the next iteration, we choose {2, 5} and we mark the edge {1, 5} since (1 · b, 5 · b) = (2, 5);
then we remove the edge {2, 5}.

5

4

32

1

In the remaining iterations, all marked edges are removed without causing additional marked
edges.

5

4

32

1

Finally, the minimal automaton is obtained by combining the states 2 and 4 into a single
state.

1

2,4

5

3
b

a

b

b

a

a, b

a

Note that only the “future” behavior of states counts for minimization (even though Moore’s
algorithm looks for predecessor edges). The states 2 and 4 have the same outgoing transitions
which makes them identical in some rather obvious way; on the other hand the two states do
not share the same incoming edges. 3

59

4. Algorithmic Properties of Automata

Hopcroft’s algorithm

We present Hopcroft’s algorithm for minimizing a Σ∗-automatonA = (Q, ·, q0, F) with n states.
Even though the algorithm works for deterministic automata over arbitrary Σ-generated
monoids, for simplicity we only present it for finitely generated free monoids. The running
time of Hopcroft’s minimization algorithm is in O(|Σ|n log n); to date, no asymptotically
faster algorithm is known. The algorithm computes the Myhill-Nerode equivalence relation
≡A. Remember that reachable states p, q ∈ Q satisfy p ≡A q if L(p) = L(q), i.e., if we have

p · u ∈ F ⇔ q · u ∈ F

for all u ∈ Σ∗. Let [p] = { q ∈ Q | p ≡A q } be the equivalence class of p. Representing ≡A as
a subset of Q×Q is quadratic. Instead, it is more efficient to use the partition { [p] | p ∈ Q }
which can be stored in space O(n). In order to avoid unnecessary case distinctions, we
frequently identify { ∅, P1, . . . , Pk } with {P1, . . . , Pk }. For P = {P1, . . . , Pk } and R =
{R1, . . . , R` } with Pi, Rj ⊆ Q we define

P ∧R = {Pi ∩Rj | 1 ≤ i ≤ k, 1 ≤ j ≤ `, Pi ∩Rj 6= ∅ } .

If P and R are partitions, then so is P ∧R. A partition R refines P if for all R ∈ R there
exists P ∈ P with R ⊆ P , i.e., if R∧ P = R.

Lemma 4.8. If P = P1 ∪P2 for P ⊆ Q, then {P1, Q \ P1}∧ {P2, Q \ P2} refines {P,Q \ P}.

Proof. This immediately follows from P1, P2 ⊆ P and (Q \ P1) ∩ (Q \ P2) = Q \ P .

A set S splits a set P if ∅ 6= P ∩ S 6= P . The split of P by S is (P1, P2) with {P1, P2} =
{P ∩ S, P \ S} and |P1| ≤ |P2|, i.e., P1 is the smaller one of the sets P∩S and P \S; if both sets
have the same size, then the choice is arbitrary. For S ⊆ Q let S · a−1 = { q ∈ Q | q · a ∈ S }
be the states which have an outgoing a-transition to some state in S. For a partition P of Q,
a subset S ⊆ Q and a letter a ∈ Σ we define

(S, a) | P =
{
S · a−1, Q \ S · a−1

}
∧ P.

Another view on (S, a) | P is as follows. The pair (S, a) defines the set S · a−1 which is used
for splitting each class of P. Note that Q \ (S · a−1) = (Q \ S) · a−1 and thus Q \ S · a−1 is
well-defined. Let A be a Σ∗-automaton such that all states are reachable. Then Algorithm 10
is Hopcroft’s minimization algorithm on input A.

Algorithm 10 Hopcroft’s algorithm for minimizing a Σ∗-automaton A = (Q, ·, q0, F)

1: P ← {F,Q \ F}
2: L ← { (F, a) | a ∈ Σ }
3: while L 6= ∅ do
4: Remove some pair (S, a) from L
5: for all P ∈ P which are split by S · a−1 do
6: Let (P1, P2) be the split of P by S · a−1 . P = P1 ∪ P2, |P1| ≤ |P2|
7: P ← (P \ {P}) ∪ {P1, P2} . Replace P by P1, P2

8: for all b ∈ Σ do
9: if (P, b) ∈ L then

10: L ← (L \ {(P, b)}) ∪ {(P1, b), (P2, b)} . Replace (P, b) by (P1, b), (P2, b)
11: else
12: L ← L ∪ {(P1, b)}
13: return PP

←
(S
,a

)
|P

;
U

p
d

at
e
L

As indicated, the instructions in lines 5 to 12 refine P by (S, a) | P and update the list L.
At some point, the current partition cannot be refined any further, and then the instruction in

60

4.5. Minimization algorithms

line 4 empties the list L. Thus the while-loop terminates on all inputs. After every iteration
of the while-loop one can consider the partition one obtains when using all pairs in L for
refining P . An important property of the resulting partitions is given by the following lemma.

Lemma 4.9. Let Pi be the partition P after the i-th iteration of the while loop; in particular
P0 = {F,Q \ F}. Let Li be the list L after the i-th iteration, and let Ri =

∧
(S,a)∈Li(S, a) | Pi.

Then Ri refines Ri−1 for all i ≥ 1.

Proof. The instruction in line 4 removes a pair (S, a) from L, but then P is refined by this
pair. The instruction in line 12 only increases the list L. Therefore it suffices to show
that updates of L using line 10 yield a refinement of the partition

∧
(S,a)∈L(S, a) | P for the

current values of L and P. Let L′ = { (S1, a1), . . . , (Sj , aj), (P, b) } be the list L before the
execution of line 10 and let L′′ = { (S1, a1), . . . , (Sj , aj), (P1, b), (P2, b) } be the list after it.

Let R =
∧j
i=1(Si, ai) | P, let R′ =

∧
(S,a)∈L′(S, a) | P, and let R′′ =

∧
(S,a)∈L′′(S, a) | P. Then

R′ =
{
P · b−1, Q \ P · b−1

}
∧R,

R′′ =
{
P1 · b−1, Q \ P1 · b−1

}
∧
{
P2 · b−1, Q \ P2 · b−1

}
∧R.

The partition
{
P1 · b−1, Q \ P1 · b−1

}
∧
{
P2 · b−1, Q \ P2 · b−1

}
refines

{
P · b−1, Q \ P · b−1

}
by Lemma 4.8 because P = P1 ∪ P2 (and thus P · a−1 = P1 · a−1 ∪ P2 · a−1). Therefore, R′′
refines R′ as desired.

Note that if the algorithm uses k iterations, then it returns the partition Rk. Another view
on this partition is as follows. Let (Si, ai) be the pair removed from L in line 4 in the i-th
iteration of the while-loop and suppose the algorithm runs the while-loop k times. Hopcroft’s
algorithm then computes the partition{

Sk · a−1k , Q \ Sk · a−1k
}
∧ · · · ∧

{
S1 · a−11 , Q \ S1 · a−11

}
∧ {F,Q \ F} .

In particular, the order of the application of the pairs (Si, ai) does not matter for any fixed set
of pairs (S1, a1), . . . , (Sk, ak). On the other hand, different choices for (S, a) in line 4 of the
algorithm can yield different entries in the list L and therefore different intermediate partitions
can occur. For instance, L could be implemented either as a stack or as a queue. The following
proposition shows that, independent of the implementation, Hopcroft’s algorithm always
computes the partition defining the minimal automaton.

Proposition 4.10. On input A, Hopcroft’s algorithm computes the Myhill-Nerode equivalence
relation for A.

Proof. An important invariant of the algorithm is that before and after every iteration of the
while-loop, all pairs (S, a) ∈ L satisfy S ∈ P . For the correctness, we show that the partition
computed by the algorithm represents the Myhill-Nerode equivalence relation ≡A. We first
show that ≡A refines the partition of the algorithm. Since ≡A refines the initial partition
{F,Q \ F}, it suffices to prove the following claim: If ≡A refines P, then ≡A also refines
(S, a) | P for all (S, a) ∈ P × Σ. Let p ≡A q. Then we have p, q ∈ P for some P ∈ P and

p ∈ S · a−1 ⇔ p · a ∈ S ⇔ q · a ∈ S ⇔ q ∈ S · a−1,

where the second equivalence relies on p · a ≡A q · a and S ∈ P. This shows that p and q are
in the same class of the partition (S, a) | P.

Next we show that Myhill-Nerode inequivalent states p, q are separated by the algorithm.
Consider states p, q with p · u ∈ F ⇔ q · u 6∈ F for some word u ∈ Σ∗. By induction on u we
show that p and q end up in different sets of the final partition. For u = ε this is true since
the final partition refines the initial partition {F,Q \ F}. Let now p · a 6≡A q · a for a ∈ Σ

61

4. Algorithmic Properties of Automata

such that p · a, q · a are in different classes of the final partition. We show that p, q end up in
different classes, too. Let Pi denote the partition P computed by the algorithm after the i-th
iteration of the while-loop; for i = 0 we obtain the initial partition. Similarly, let Li be the
list L after the i-th iteration. After some iteration i ≥ 0 of the while-loop we have:

• p · a ∈ P and q · a ∈ P ′ for disjoint classes P, P ′ ∈ P, and

• (P, a) ∈ L or (P ′, a) ∈ L.

This holds at the beginning (i.e. i = 0) or immediately after separating p · a from q · a.
Without loss of generality, let (P, a) ∈ L. Since p ∈ P · a−1 and q 6∈ P · a−1, the states p, q
are in different classes of the partition (P, a) | P. Thus, by Lemma 4.9, the final partition
separates p and q.

Next, we analyze the running time of Hopcroft’s algorithm. The presentation is based on
the textbook by Beauquier, Berstel, and Chrétienne [?], see also [?]. We assume that the
partition P can be implemented such that the following properties hold:

• Accessing the class of a state q ∈ Q is in O(1).

• The size of a class P ∈ P can be determined in O(1).

• Enumerating the elements of a class P ∈ P is in O(|P |).
• Adding and removing an element to/from a class is in O(1).

We describe how to compute P ← (S, a) | P in O(
∣∣S · a−1∣∣). To this end, the classes of P in

the for-loop in line 5 of Hopcroft’s algorithm are processed simultaneously. First, for each
q ∈ S · a−1 we do the following:

• We mark the class P ∈ P with q ∈ P .

• We increment a counter nP for the class P .

• We add q to a list RP .

Of course, we initially have nP = 0 and RP = ∅ for all marked classes P . In a second phase,
we consider the marked classes P . If nP < |P |, then for every state q ∈ RP we remove q from
P (which yields P \RP as a class), and we include the class RP in the partition P.

For the implementation of the list L, we require that one can add and remove pairs in
constant time. Moreover, one can check whether or not (S, a) ∈ L in constant time. Naturally,
we represent the class S by a reference instead of copying the corresponding class in the
partition.

Let (S1, a1), . . . , (Sk, ak) be the pairs removed from L in line 4. Then the above imple-
mentation yields a running time of O(

∑k
i=1

∣∣Si · a−1i ∣∣) for Hopcroft’s algorithm. Thus the
following proposition yields the desired bound of O(|Σ|n log n).

Proposition 4.11. We have
k∑
i=1

∣∣Si · a−1i ∣∣ ≤ |Σ|n log n.

Proof. We fix some letter a ∈ Σ. We say that (S, a) is a q-splitter if q ∈ S. At any time, for
every state q there is at most one q-splitter (S, a) in the list L. When a q-splitter (S, a) is
removed from L using the instruction in line 4 and later (not necessarily during the same
iteration) a q-splitter (P1, a) is added in line 12, then 2 |P1| ≤ |S|: In the setting of the
algorithm, we have P ⊆ S since P is currently the class of P which contains q and S has
previously been a class of P containing q; thus 2 |P1| ≤ |P1|+ |P2| = |P | ≤ |S|. We conclude
that at most log n pairs (Si, ai) form a q-splitter with ai = a. Note that the size of a q-splitter
could decrease during its stay in the list L by the instruction in line 10, but this does not
affect the argument. For every state p ∈ Q we have

p ∈ S · a−1 ⇔ p · a ∈ S ⇔ (S, a) is a p · a-splitter.

62

4.5. Minimization algorithms

There are at most log n many pairs (Si, ai) which form a p ·a-splitter with ai = a. By varying
the letter a, we see that every state p is considered in at most |Σ| log n sets Si · a−1i . Taking
the sum over all n states yields the desired bound.

A slight optimization of Hopcroft’s algorithm is to replace the initialization of the list L in
line 2 by the following piece of code:

if |F | ≤ |Q \ F | then
L ← { (F, a) | a ∈ Σ }

else
L ← { (Q \ F, a) | a ∈ Σ }

That is, we use the class Q \ F instead of F whenever there are more final than non-final
states. This neither affects the correctness of the algorithm nor its asymptotic running time,
but it slightly improves the constants hidden in the notation O(|Σ|n log n).

There are several ways of implementing the list L and the partition P with the desired
complexities, see e.g. [?]. For instance one could use a doubly linked list for representing
a class P ∈ P together with a counter for |P |. Every state has a reference to the position
within its class. The list L could also be organized as a doubly linked list. Every partition
class P has an array of up to |Σ| references to elements of L, the entry for (P, a) is either
null or it points to its position in L.

Example 4.9. We revisit the deterministic {a, b}∗-automaton A for L = b {ab, b}∗ from
Example 3.1.

1

2

5

3

4

b

a

b

a

b

ba

a, b

a

Hopcroft’s minimization algorithm on A starts with the partition P = { {1, 5} , {2, 3, 4} }. As
mentioned above, in this case it is slightly better to initialize L using the non-final states, i.e.,
at the beginning we have L = { ({1, 5} , a), ({1, 5} , b) }. Then a possible run of the algorithm
could be:

1. In the first iteration we remove the pair ({1, 5} , a) from L. Note that {1, 5} · a−1 =
{1, 5} ∈ P . Thus this does not affect the partition P . The list is now L = { ({1, 5} , b) }.

2. In the second iteration we remove the pair ({1, 5} , b) from L. We have {1, 5} · b−1 =
{2, 4, 5}. This leads to the partition P = { {1} , {5} , {2, 4} , {3} } and to the list
L = { ({1} , a), ({1} , b), ({3} , a), ({3} , b) } after the second iteration.

3. The remaining iterations do not affect P.

Thus, not surprisingly, Hopcroft’s algorithm computes the same minimal automaton as
Moore’s algorithm in Example 4.8. 3

Remark 4.1. One can consider Hopcroft’s algorithm as a particular way of implementing
Moore’s algorithm. In this setting, Hopcroft’s algorithm combines two advantages. First, by
using partitions it relies on a highly compressed representation of the graph used in Moore’s
algorithm. And second, when removing an element from a class P it deletes many edges from
the graph in only one step. 3

63

4. Algorithmic Properties of Automata

Brzozowski’s algorithm

While Moore’s algorithm and Hopcroft’s algorithm work for deterministic automata over
arbitrary monoids, the following algorithm due to Brzozowski only works for automata over
free monoids Σ∗. One advantage of Brzozowski’s algorithm is that it can also be applied
if the input automaton is nondeterministic; as a drawback, it can construct intermediate
automata of exponential size even if the input is deterministic.

The reversal of a word u = a1 · · · an with ai ∈ Σ is uρ = an · · · a1. The reversal is
obtained by reading the word from right to left. An obvious but crucial property of the
reversal is (uρ)ρ = u for all u ∈ Σ∗, i.e., reveral is an involution. The reversal of a language
L ⊆ Σ∗ is Lρ = {uρ | u ∈ L }. Let A = (Q, δ, I, F) be a nondeterministic Σ∗-automaton with
δ ⊆ Q × Σ × Q. The reversal of A is Aρ = (Q, δρ, F, I) with δρ = { (q, a, p) | (p, a, q) ∈ δ },
i.e., we reverse all transitions and we interchange initial and final states. Now, a word u ∈ Σ∗

has an accepting run in A if and only if uρ has an accepting run in Aρ. Thus L(Aρ) = L(A)ρ.
If A is deterministic, then Aρ might be nondeterministic.

Theorem 4.12. Let B = (Q, ·, q0, F) be a deterministic Σ∗-automaton such that all states
are reachable. Then P(Bρ) is the minimal Σ∗-automaton of L(B)ρ.

Proof. Remember that the powerset construction P(Bρ) only contains the reachable subsets
of Q, the initial state is F and P ⊆ Q is final if q0 ∈ P . We have L(P(Bρ)) = L(Bρ) = L(B)ρ.
Thus it remains to show that P(Bρ) is minimal.

Claim. For any state P ⊆ Q of P(Bρ) we have q0 · u ∈ P if and only if uρ ∈ L(P).

Proof of the claim: Let q = q0 · u in B and let P ′ = P · uρ in P(Bρ). We have q u
ρ
q0 in Bρ.

Therefore, q ∈ P imlies q0 ∈ P ′ and thus uρ ∈ L(P). Conversely, if q0 ∈ P ′, then there exists

a state q′ ∈ P with q′ u
ρ
q0. Since B is deterministic, we have q′ = q0 · u = q; in particular,

q ∈ P . This concludes the proof of the claim.

Consider two different states P, P ′ ⊆ Q. Let q ∈ P \ P ′. Since all states in B are
reachable, there exists a word u ∈ Σ∗ with q0 · u = q in B. By the above claim we have
uρ ∈ L(P) \ L(P ′).

Let A = (Q, δ, I, F) be a nondeterministic Σ∗-automaton with δ ⊆ Q×Σ×Q. If we apply
Theorem 4.12 with B = P(Aρ), we see that P

(
P(Aρ)ρ

)
is the minimal automaton of L(A).

This means that “reverse-determinize-reverse-determinize” yields the minimal automaton.
Even though there are two powerset constructions involved, the intermediate automata have
at most exponential size since the minimal automaton of a nondeterministic automaton is at
most exponential.

Example 4.10. We apply Brzozowski’s minimization algorithm to the automaton constructed
in Example 1.9. Let A be the following {a, b}∗-automaton for the language L = b {ab, a}∗.

1 2

3

4

5

b
b

aa

a

a

a a

Its reversal Aρ is:

64

4.5. Minimization algorithms

1 2

3

4

5

b
b

aa

a

a

a a

The powerset construction P(Aρ) yields:

234 15 ∅
b

a

b

a

a, b

After omitting the unreachable state ∅ in P(Aρ)ρ, we obtain the following nondeterministic
automaton for L:

y x
b

a

a

For better readability we used the name x for the state 15 and y for the state 234. The
powerset constructing of P(Aρ)ρ produces the following automaton:

x y xy

∅

b
a

b

a

a
b

a, b

This is the minimal deterministic automaton of L. It is identical to the automaton constructed
in Example 4.8. 3

State reduction in nondeterministic automata

In general, there is no unique nondeterministic automaton with a minimal number of states.
For instance, the following three a∗-automata for L = aa∗ are alle different (non-isomorphic):

a

a

a

a

a

a a

There is no one-state automaton for L. Therefore, both automata have the minimal possible
number of states. On the other hand non-deterministic automata can be much smaller than
the minimal deterministic automaton, see e.g. Examples 3.2 and 4.6. Therefore, one might
be interested in computing some nondeterministic automaton of minimal size. The following
result shows that one cannot hope for an efficient algorithm for minimizing nondeterministic
automata.

65

4. Algorithmic Properties of Automata

Theorem 4.13. The following problem is pspace-complete.

Input: A finite nondeterministic automaton A over {a, b}∗ and an integer k ≥ 1.

Question: Is there an equivalent nondeterministic automaton with at most k states.

Proof. We show that the problem is in pspace for arbitrary alphabets Σ. Let A be a
nondeterministic Σ∗-automaton and let k ≥ 1. Then a pspace-algorithm can guess a
nondeterministic Σ∗-auotomaton B and then check whether L(A) = L(B) using Algorithm 8.

For pspace-hardness, we use a reduction from universality of nondeterministic automata,
see Theorem 4.2. Let A be a nondeterministic {a, b}∗-automaton. We use the followin
procedure for deciding whether A is universal. First, we check that a, b ∈ L(A). If this is
the case, then we let A′ = A, otherwise we let A′ be some fixed automaton such that any
automaton for L(A′) requires at least two states. Now, A is universal if and only if there
exists an equivalent 1-state automaton for A′. This is because there is only one 1-state
automaton B with L(B) 6= ∅ having both an a- and a b-transition, and this automaton satisfies
L(B) = {a, b}∗.

Next, we describe an efficient heuristic for reducing the number of states in a nondetermin-
istic automaton. Let A = (Q, δ, I, F) be a nondeterministic automaton with δ ⊆ Q× Σ×Q.
Then as in the case of deterministic automata, we can define L(p) as the language accepted
by the automaton (Q, δ, p, F). For a partition P of Q we can define the quotient automaton
A/P = (P, δ′, I ′, F ′) with

δ′ =
{

(P, a, P ′) ∈ P × Σ× P
∣∣ (p, a, p′) ∈ δ for p ∈ P , p′ ∈ P ′

}
,

I ′ = {P ∈ P | P ∩ I 6= ∅ } ,
F ′ = {P ∈ P | P ∩ F 6= ∅ } .

In general, we have L(A) 6= L(A/P); for instance, let L(A) be non-trivial and let P = {Q}.
We say that a partition P is consistent if for all classes P ∈ P and all states p, q ∈ P we have
L(p) = L(q). For consistent partitions P we have L(A) = L(A/P). A partition P is stable if
the following two properties hold:

(a) Every class P ∈ P either only contains final states or it only contains non-final states.

(b) Whenever p a r is a transition in A and p, p′ are in the same class, then there exists a
state r′ in the class of r such that p′ a r′ is a transtion.

Lemma 4.14. Every stable partition is consistent.

Proof. Let P be a stable partition, let P ∈ P be a class, let p, p′ ∈ P , and let u ∈ L(p). We
want to show u ∈ L(p′). The proof is by induction on |u|. If u = ε, then p is a final state of
A. Thus, by property (a) in the definition of stability, p′ is a final state, too. In particular,
u = ε is in L(p′).

Let now u = au′ for a ∈ Σ. Let p a r u′ q with q ∈ F be a run on u. By property (b) of
stability, there exists a state r′ in the class of r such that p′ a r′. Induction yields u′ ∈ L(r′).
Thus u = au′ ∈ L(p′) as desired.

Remark 4.2. Let A = (Q, ·, q0, F) be a deterministic Σ∗-automaton. An equivalence relation
≡ on Q is a congruence if for all p, q ∈ Q and all letters a ∈ Σ the following two implications
hold:

p ≡ q ⇒ (p ∈ F ⇔ q ∈ F) ,

p ≡ q ⇒ p · a ≡ q · a.

A partition of Q is stable if and only if it induces a congruence. For instance, both the
identity relation and the Myhill-Nerode equivalence form congruences. Moreover, the Myhill-
Nerode congruence is the coarsest congruence, i.e., all other congruences on Q refine the
Myhill-Nerode congruence. 3

66

4.5. Minimization algorithms

For S ⊆ Q and a ∈ Σ let S · a−1 = { p ∈ Q | δ(p, a) ∈ S } be the states which have
an a-transition to S. For a partition P, a subset S ⊆ Q and a letter a ∈ Σ we de-
fine (S, a) | P =

{
S · a−1, Q \

(
S · a−1

)}
∧ P as the coarsest partition which refines both{

S · a−1, Q \
(
S · a−1

)}
and P . If P 6= (S, a) | P , then we say that (S, a) splits P . A partition

P of Q is stable if and only if the following two properties hold:

(a) P refines {F,Q \ F}.
(b) For all S ∈ P and all a ∈ Σ, the pair (S, a) does not split P.

This immediately leads to the following algorithm for computing a stable partition:

(a) Start with the partition P = {F,Q \ F}.
(b) As long as there exists S ∈ P and a ∈ Σ such that (S, a) splits P , replace P by (S, a) | P .

By Lemma 4.14, the resulting partition P of the algorithm satisfies L(A) = L(A/P). We
note that one cannot apply Hopcroft’s algorithm in this setting since in general we have
Q \

(
S · a−1

)
6= (Q \ S) · a−1. On the other hand, if A is deterministic, then the above

algorithm computes the minimal automaton of L(A). The two main differences in the setting
of nondeterministic automata are:

• We do not find all pairs of states (p, q) with L(p) = L(q).

• We could combine two states p and q even if L(p) 6= L(q) .

Example 4.11. Consider the following nondeterministic automaton for aa∗:

q0

q1

q2

q3

a

a

a

a

The above algorithm would compute the identity relation, even though the non-stable
partition {F,Q \ F} would yield an equivalent smaller automaton. The algorithm splits
q0 and q1 even though we have L(q0) = L(q1), and we could combine q2 and q3 despite of
L(q2) 6= L(q3). For S = {q3} we have S · a−1 = {q1} and (Q \ S) · a−1 = {q0, q1, q2}; in
particular Q \

(
S · a−1

)
6= (Q \ S) · a−1. Also note that the above algorithm computes a

nondeterministic automaton which is larger than the minimal automaton of aa∗. 3

Example 4.12. We apply the above state reduction algorithm to the automaton constructed
in Example 1.9. Let A be the following {a, b}∗-automaton for the language L = b {ab, a}∗.

1 2

3

4

5

b
b

aa

a

a

a a

The algorithm starts with the partition P = { {1, 5} , {2, 3, 4} }. We have

{1, 5} · a−1 = {2, 3, 4}
{1, 5} · b−1 = ∅

{2, 3, 4} · a−1 = {2, 3, 4}
{1, 5} · b−1 = {1, 5}

67

4. Algorithmic Properties of Automata

and therefore, P is stable. The resulting automaton is:

15 234

b

a
a

In this case, the algorithm actually computes an equivalent nondeterministic automaton of
minimal size. It is smaller than the corresponding minimal (deterministic) automaton. 3

68

	Finite Words
	Rational Sets
	Rational expressions
	Closure properties of rational sets
	Nondeterministic automata
	Conversion of rational expressions into automata
	Conversion of automata into rational expressions
	Removal of epsilon-transitions
	Equivalence of rational expressions and nondeterministic automata
	Semilinear subsets of commutative monoids

	Recognizable Sets
	Closure properties of recognizable sets
	Syntactic monoids
	Deterministic automata
	Minimal automata
	Transition monoids and Cayley automata
	The Myhill-Nerode Theorem
	Learning Recognizable Sets

	Regular Languages
	McKnight's Theorem
	The powerset construction and Kleene's Theorem
	Nondeterministic automata and Boolean matrices
	The relation between rational and recognizable sets

	Algorithmic Properties of Automata
	Boolean operations
	Homomorphisms and inverse homomorphisms
	Residuals and quotients
	Decision problems for automata
	Minimization algorithms

