
Technische Universität München
I7
M. Kufleitner / A. Durand-Gasselin

Winter term 2013/2014

16.12.2013

Automata and Formal Languages – Exercise sheet 6

Exercise 6.1

Given a formula of the form
∑

i aixi ≡ c mod k with gcd(2ai, k) = 1 for all i.

1. Show that the minimal deterministic automaton accepting solutions (represented in
base 2) of this formula has exactly k states.

2. Show that there does not exist any smaller nondeterministic automaton accepting
that language.

Exercise 6.2

Give an MSO sentence defining the language {ab, ba}∗ over the alphabet {a, b}.

Exercise 6.3

Construct an automaton for the following MSO sentence

∃X ∀x ∀y : (λ(x) = a ∧ x 6∈ X) ∨ λ(y) = b ∨ (x < y ∧ y ∈ X)

over {a, b}∗.

Solution:

The first step consists in rewriting the formula as:

∃X ¬∃x ∃y (λ(x) 6= a ∨ x ∈ X) ∧ (λ(y) 6= b) ∧ (x ≥ y ∨ y /∈ X)

Then we give an automaton for each of the atomic subformulas:

• ϕ1(X, x, y) : λ(x) 6= a,
The automaton A1 will be over alphabet Σ× {0,1} × {0,1} × {0,1}.
The second component of a letter indicates whether the position is in X,
the third (resp. fourth) whether the position is that of x (resp. y).
Notice that this automaton should accept only words who exactly have a single letter
whose third component is 1 as x is a first-order variable. (The same holds for the
fourth component.)
Because of this restriction we know that we can split each language in three pairwise
disjoint languages: the language of solutions when x > y, when x < y and when
x = y. As these languages are disjoint, we can perform the boolean operations over
each of these 3 classes of languages independantly.

1

– x < y, A1,< : (Σ× {0,1} × {0} × {0})∗((b, 1, 1, 0)|(b, 0, 1, 0))(Σ× {0,1} × {0} ×
{0})∗((a, 0, 0, 1)|(b, 0, 0, 1)|(a, 1, 0, 1)|(b, 1, 0, 1))(Σ× {0,1} × {0} × {0})∗

We can simplify this notation by omitting the × and writing 2 as a shorthand
for {0, 1}, 1 for {1} and 0 for {0}.
We thus get:
x < y, A1,< : (Σ200)∗(b210)(Σ200)∗(Σ201)(Σ200)∗

– x > y, A1,> : (Σ200)∗(Σ201)(Σ200)∗(b210)(Σ200)∗

– x = y, A1,= : (Σ200)∗(b211)(Σ200)∗

• ϕ2(X, x, y) : x ∈ X
A2,< : (Σ200)∗(Σ110)(Σ200)∗(Σ201)(Σ200)∗

A2,> : (Σ200)∗(Σ201)(Σ200)∗(Σ110)(Σ200)∗

A2,= : (Σ200)∗(Σ111)(Σ200)∗

• ϕ3(X, x, y) : λ(y) 6= b
A3,< : (Σ200)∗(Σ210)(Σ200)∗(a201)(Σ200)∗

A3,> : (Σ200)∗(a201)(Σ200)∗(Σ210)(Σ200)∗

A3,= : (Σ200)∗(a211)(Σ200)∗

• ϕ4(X, x, y) : x ≥ y
A4,< : ∅
A4,> : (Σ200)∗(Σ201)(Σ200)∗(Σ210)(Σ200)∗

A4,= : (Σ200)∗(Σ211)(Σ200)∗

• ϕ5(X, x, y) : y /∈ X
A5,< : (Σ200)∗(Σ210)(Σ200)∗(Σ001)(Σ200)∗

A5,> : (Σ200)∗(Σ001)(Σ200)∗(Σ210)(Σ200)∗

A5,= : (Σ200)∗(Σ011)(Σ200)∗

We will now build inductively an automaton accepting the whole quantifier free formula:
First remark that A1,< ∪ A2,< (which we will denote A12,<) is

(Σ200)∗((b210) ∪ (Σ110))(Σ200)∗((Σ201) ∪ (Σ201))(Σ200)∗

similarly A1,= ∪ A2,= (denoted A12,=) is
(Σ200)∗((b211) ∪ (Σ111))(Σ200)∗

Also remark that (because the pairwise disjointness)
(Ai,< ∪ Ai,> ∪ Ai,=) ∩ (Aj,< ∪ Aj,> ∪ Aj,=) = (Ai,< ∩ Aj,<) ∪ (Ai,> ∩ Aj,>) ∪ (Ai,= ∩ Aj,=)
and that A12,< ∩ A3,< =
(Σ200)∗(((b210)∪(Σ110)) ∩ (Σ210))(Σ200)∗)(((Σ201) ∪ (Σ201)) ∩ (a201))(Σ200)∗

Applying these remarks allow us to compute the following (threefold) regular expression
for the quantifier-free formula:

A = (Σ200)∗γ>(Σ200)∗σ>(Σ200)∗ ∪ (Σ200)∗γ<(Σ200)∗σ<(Σ200)∗ ∪ (Σ200)∗γ=(Σ200)∗

where:
γ> = (Σ201 ∪ Σ201) ∩ (a201) ∩ (Σ201 ∪ Σ001) = {a001, a101}
σ> = {a110, b110, b010}, γ< = {a110, b110, b010}, σ< = {a001}, γ= = {a111}.

2

We now perform the language projection corresponding to the existential quantification
of the first-order variables x and y. Notice that a word should belong to the projection, if
it can be obtained by erasing the third an fourth components of each letter of a word in
the language A. It corresponds exactly to erasing each third an fourth component in the
regular expression (as this regular expression does not contain any complement operation).

A′ = (Σ2)∗{a0, a1}(Σ2)∗{a1, b0, b1}(Σ2)∗∪(Σ2)∗{a1, b0, b1}(Σ2)∗a0(Σ2)∗∪(Σ2)∗a1(Σ2)∗

We now need to perform a language complementation of A′ before we project away the
second component. We give the automaton A′ that accepts that regular expression:

0

1 F>

2 F<

F=

Σ2

a0
, a

1

a1, b0, b1

a1

Σ2

a1, b0, b1

Σ2

a0

Σ2

Σ2

Σ2

a0 a1 b0 b1

0 01 012F= 02 02

01 01 012F>F= 012F> 012F>

02 012F< 012F= 02 02

⊇ F ⊇ F ⊇ F ⊇ F ⊇ F

To easily determinize this automaton (using the standard subset construction), we rely on
the fact that we can merge all states that contain a final states as from any of those states
we are guaranteed to accept (Σ2)∗. This produces the a 4-state deterministic automaton,
whose complement is:

0

01

02

⊇ F

a0

b0, b1

a1

a0

a1, b0, b1

b0, b1

a0, a1

Σ2

Discarding the second component leads us to an automaton that accepts the language
L = a∗ ∪ b∗ which is the set of words that satisfy the MSO sentence.

A careful analysis of the formula could have spared us this long construction: That
sentence is satisfied by any word of a∗: take X = ∅ the first disjunct is always true,
similarly, it is always satisfied by a word of the form b∗ as the second disjunct will always
be true. If it is satisfied by a word w that contains an a (at position i), let us show that w
does not contain any b: assume it contains a b at position j, then when x = y = i, we have
that i /∈ X. When y = i, x = j, only the third disjunct might be true, thus j < i ∧ i ∈ X
so i ∈ X and i /∈ X which implies a contradiction.

3

Exercise 6.4

Apply Angluin’s L∗-algorithm for learning the language L = a(ba)∗ over the alphabet
{a, b, c}.

Exercise 6.5

Give a Büchi automaton for the language L of all words α ∈ {a, b, c}ω such that α contains
infinitely many a’s, finitely many c’s, and between any two a’s there is an even number of
b’s or c’s.

4

