Automata and Formal Languages - Exercise sheet 6

Exercise 6.1

Given a formula of the form $\sum_{i} a_{i} x_{i} \equiv c \bmod k$ with $\operatorname{gcd}\left(2 a_{i}, k\right)=1$ for all i.

1. Show that the minimal deterministic automaton accepting solutions (represented in base 2) of this formula has exactly k states.
2. Show that there does not exist any smaller nondeterministic automaton accepting that language.

Exercise 6.2

Give an MSO sentence defining the language $\{a b, b a\}^{*}$ over the alphabet $\{a, b\}$.

Exercise 6.3

Construct an automaton for the following MSO sentence

$$
\exists X \forall x \forall y:(\lambda(x)=a \wedge x \notin X) \vee \lambda(y)=b \vee(x<y \wedge y \in X)
$$

over $\{a, b\}^{*}$.

Solution:

The first step consists in rewriting the formula as:

$$
\exists X \neg \exists x \exists y(\lambda(x) \neq a \vee x \in X) \wedge(\lambda(y) \neq b) \wedge(x \geq y \vee y \notin X)
$$

Then we give an automaton for each of the atomic subformulas:

- $\varphi_{1}(X, x, y): \lambda(x) \neq a$,

The automaton A_{1} will be over alphabet $\Sigma \times\{0,1\} \times\{0,1\} \times\{0,1\}$.
The second component of a letter indicates whether the position is in X, the third (resp. fourth) whether the position is that of x (resp. y).
Notice that this automaton should accept only words who exactly have a single letter whose third component is 1 as x is a first-order variable. (The same holds for the fourth component.)
Because of this restriction we know that we can split each language in three pairwise disjoint languages: the language of solutions when $x>y$, when $x<y$ and when $x=y$. As these languages are disjoint, we can perform the boolean operations over each of these 3 classes of languages independantly.
$-x<y, A_{1,<}:(\Sigma \times\{0,1\} \times\{0\} \times\{0\})^{*}((b, 1,1,0) \mid(b, 0,1,0))(\Sigma \times\{0,1\} \times\{0\} \times$ $\{0\})^{*}((a, 0,0,1)|(b, 0,0,1)|(a, 1,0,1) \mid(b, 1,0,1))(\Sigma \times\{0,1\} \times\{0\} \times\{0\})^{*}$
We can simplify this notation by omitting the \times and writing 2 as a shorthand for $\{0,1\}, 1$ for $\{1\}$ and 0 for $\{0\}$.
We thus get:
$x<y, A_{1,<}:(\Sigma 200)^{*}(b 210)(\Sigma 200)^{*}(\Sigma 201)(\Sigma 200)^{*}$
$-x>y, A_{1,>}:(\Sigma 200)^{*}(\Sigma 201)(\Sigma 200)^{*}(b 210)(\Sigma 200)^{*}$
$-x=y, A_{1,=}:(\Sigma 200)^{*}(b 211)(\Sigma 200)^{*}$

- $\varphi_{2}(X, x, y): x \in X$

$$
\begin{aligned}
& A_{2,<}:(\Sigma 200)^{*}(\Sigma 110)(\Sigma 200)^{*}(\Sigma 201)(\Sigma 200)^{*} \\
& A_{2,>}:(\Sigma 200)^{*}(\Sigma 201)(\Sigma 200)^{*}(\Sigma 110)(\Sigma 200)^{*} \\
& A_{2,=}:(\Sigma 200)^{*}(\Sigma 111)(\Sigma 200)^{*} \\
&- \varphi_{3}(X, x, y): \lambda(y) \neq b \\
& A_{3,<}:(\Sigma 200)^{*}(\Sigma 210)(\Sigma 200)^{*}(a 201)(\Sigma 200)^{*} \\
& A_{3,>}:(\Sigma 200)^{*}(a 201)(\Sigma 200)^{*}(\Sigma 210)(\Sigma 200)^{*} \\
& A_{3,=}:(\Sigma 200)^{*}(a 211)(\Sigma 200)^{*}
\end{aligned}
$$

- $\varphi_{4}(X, x, y): x \geq y$
$A_{4,<}: \emptyset$
$A_{4,>}:(\Sigma 200)^{*}(\Sigma 201)(\Sigma 200)^{*}(\Sigma 210)(\Sigma 200)^{*}$
$A_{4,=}:(\Sigma 200)^{*}(\Sigma 211)(\Sigma 200)^{*}$
- $\varphi_{5}(X, x, y): y \notin X$
$A_{5,<}:(\Sigma 200)^{*}(\Sigma 210)(\Sigma 200)^{*}(\Sigma 001)(\Sigma 200)^{*}$
$A_{5,>}:(\Sigma 200)^{*}(\Sigma 001)(\Sigma 200)^{*}(\Sigma 210)(\Sigma 200)^{*}$
$A_{5,=}:(\Sigma 200)^{*}(\Sigma 011)(\Sigma 200)^{*}$
We will now build inductively an automaton accepting the whole quantifier free formula:
First remark that $A_{1,<} \cup A_{2,<}$ (which we will denote $A_{12,<}$) is
$(\Sigma 200)^{*}((b 210) \cup(\Sigma 110))(\Sigma 200)^{*}((\Sigma 201) \cup(\Sigma 201))(\Sigma 200)^{*}$
similarly $A_{1,=} \cup A_{2,=}\left(\operatorname{denoted} A_{12,=}\right)$ is
$(\Sigma 200)^{*}((b 211) \cup(\Sigma 111))(\Sigma 200)^{*}$
Also remark that (because the pairwise disjointness)
$\left(A_{i,<} \cup A_{i,>} \cup A_{i,=}\right) \cap\left(A_{j,<} \cup A_{j,>} \cup A_{j,=}\right)=\left(A_{i,<} \cap A_{j,<}\right) \cup\left(A_{i,>} \cap A_{j,>}\right) \cup\left(A_{i,=} \cap A_{j,=}\right)$ and that $A_{12,<} \cap A_{3,<}=$
$\left.(\Sigma 200)^{*}(((b 210) \cup(\Sigma 110)) \cap(\Sigma 210))(\Sigma 200)^{*}\right)(((\Sigma 201) \cup(\Sigma 201)) \cap(a 201))(\Sigma 200)^{*}$
Applying these remarks allow us to compute the following (threefold) regular expression for the quantifier-free formula:

$$
A=(\Sigma 200)^{*} \gamma_{>}(\Sigma 200)^{*} \sigma_{>}(\Sigma 200)^{*} \cup(\Sigma 200)^{*} \gamma_{<}(\Sigma 200)^{*} \sigma_{<}(\Sigma 200)^{*} \cup(\Sigma 200)^{*} \gamma_{=}(\Sigma 200)^{*}
$$

where:
$\gamma_{>}=(\Sigma 201 \cup \Sigma 201) \cap(a 201) \cap(\Sigma 201 \cup \Sigma 001)=\{a 001, a 101\}$
$\sigma_{>}=\{a 110, b 110, b 010\}, \gamma_{<}=\{a 110, b 110, b 010\}, \sigma_{<}=\{a 001\}, \gamma_{=}=\{a 111\}$.

We now perform the language projection corresponding to the existential quantification of the first-order variables x and y. Notice that a word should belong to the projection, if it can be obtained by erasing the third an fourth components of each letter of a word in the language A. It corresponds exactly to erasing each third an fourth component in the regular expression (as this regular expression does not contain any complement operation).

$$
A^{\prime}=(\Sigma 2)^{*}\{a 0, a 1\}(\Sigma 2)^{*}\{a 1, b 0, b 1\}(\Sigma 2)^{*} \cup(\Sigma 2)^{*}\{a 1, b 0, b 1\}(\Sigma 2)^{*} a 0(\Sigma 2)^{*} \cup(\Sigma 2)^{*} a 1(\Sigma 2)^{*}
$$

We now need to perform a language complementation of A^{\prime} before we project away the second component. We give the automaton \mathcal{A}^{\prime} that accepts that regular expression:

	$a 0$	$a 1$	$b 0$	$b 1$
0	01	$012 F_{=}$	02	02
01	01	$012 F_{>} F_{=}$	$012 F_{>}$	$012 F_{>}$
02	$012 F_{<}$	$012 F_{=}$	02	02
$\supseteq F$				

To easily determinize this automaton (using the standard subset construction), we rely on the fact that we can merge all states that contain a final states as from any of those states we are guaranteed to accept $(\Sigma 2)^{*}$. This produces the a 4 -state deterministic automaton, whose complement is:

Discarding the second component leads us to an automaton that accepts the language $L=a^{*} \cup b^{*}$ which is the set of words that satisfy the MSO sentence.

A careful analysis of the formula could have spared us this long construction: That sentence is satisfied by any word of a^{*} : take $X=\emptyset$ the first disjunct is always true, similarly, it is always satisfied by a word of the form b^{*} as the second disjunct will always be true. If it is satisfied by a word w that contains an a (at position i), let us show that w does not contain any b : assume it contains a b at position j, then when $x=y=i$, we have that $i \notin X$. When $y=i, x=j$, only the third disjunct might be true, thus $j<i \wedge i \in X$ so $i \in X$ and $i \notin X$ which implies a contradiction.

Exercise 6.4

Apply Angluin's L^{*}-algorithm for learning the language $L=a(b a)^{*}$ over the alphabet $\{a, b, c\}$.

Exercise 6.5

Give a Büchi automaton for the language L of all words $\alpha \in\{a, b, c\}^{\omega}$ such that α contains infinitely many a 's, finitely many c 's, and between any two a 's there is an even number of b 's or c 's.

