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Automata and Formal Languages — Exercise sheet 6

Exercise 6.1
Given a formula of the form ). a;z; = ¢ mod k with ged(2a;, k) = 1 for all 4.
1. Show that the minimal deterministic automaton accepting solutions (represented in

base 2) of this formula has exactly k states.

2. Show that there does not exist any smaller nondeterministic automaton accepting
that language.

Exercise 6.2

Give an MSO sentence defining the language {ab, ba}* over the alphabet {a,b}.

Exercise 6.3

Construct an automaton for the following MSO sentence
AXVaeVy: (Mz)=aANzgX)V ANy =bV (x<yAyeX)
over {a,b}*.

Solution:

The first step consists in rewriting the formula as:
AX —Jzdy (Mz) #avVee X)NMy) #0)A(x>yVy ¢ X)
Then we give an automaton for each of the atomic subformulas:

o 901(X7x7y) : )\(‘T) % a,
The automaton A; will be over alphabet ¥ x {0,1} x {0,1} x {0,1}.
The second component of a letter indicates whether the position is in X,
the third (resp. fourth) whether the position is that of z (resp. y).
Notice that this automaton should accept only words who exactly have a single letter
whose third component is 1 as z is a first-order variable. (The same holds for the
fourth component.)
Because of this restriction we know that we can split each language in three pairwise
disjoint languages: the language of solutions when x > y, when x < y and when
r = y. As these languages are disjoint, we can perform the boolean operations over
each of these 3 classes of languages independantly.
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-z <y, A1« : (¥ x{0,1} x {0} x {0})*((b,1,1,0)|(b,0,1,0))(X x {0,1} x {0} x
{0})*((a,0,0,1)[(,0,0,1)|(a,1,0,1)|(b,1,0,1))(X x {0,1} x {0} x {0})*
We can simplify this notation by omitting the x and writing 2 as a shorthand
for {0,1}, 1 for {1} and 0 for {0}.
We thus get:
r <y, A< (3200)*(b210)(X200)*(X201)(3200)*

— x>y, Al 1 ($200)(£201)(3200)* (210)(£200)*
— z =y, A : ($200)*(b211)(X200)*

o (X, z,y):zeX
Ay - (X200)*(X110)(X200)*(2201)(32200)*
Ao ¢ (£200)*(£201)(£200)*(£110)(£200)"
Ao+ (£200)*(S111)(X200)"

As <+ (3200)* 2210)(2200)*@201)(2200)*
As - ¢ (3200)*(a201)(X200)*(2210)(X200)*
)

(
(
(
o v3(X,x,y): My) #
E
As— ¢ (2200)*(a211)($200)*

~

° 904(X:cy):x2y
Ag<: 0
Ay 1 (£200)*(£201)(£200)*(£210)(2200)*
Ay : ($200)*(2211)(£200)*

o p5(X,z,y):yéd X
As - : (£200)*(£210)(£200)*(£001)(£200)*
As~ : (£200)*(2001)(£200)* (£210)(£200)*
As_ : ($200)*(2011)(£200)*

We will now build inductively an automaton accepting the whole quantifier free formula:
First remark that A; - U Ay o (which we will denote A;5 o) is
(33200)*((6210) U (32110))(32200)*((X201) U (3201))(>200)*
similarly A; — U Ay — (denoted Ay ) is
(33200)*((b211) U (3111))(X200)*
Also remark that (because the pairwise disjointness)
(Ai,< U Ai,> U Ai,:) N (Aj7< U Aj7> U Aj,:) = (Ai,< N Aj7<) U (Ai,> N Aj7>) U (Ai,: N Aj7:)
and that Ajpc NAsz . =
(33200)*(((b210)U(X110)) N (32210))(3200)*)(((X201) U (3201)) N (a201))(33200)*
Applying these remarks allow us to compute the following (threefold) regular expression
for the quantifier-free formula:
A = (£200)*y-(2200)*0+ (32200)* U (£200)*y(32200)*0(3200)* U (£200)*y=(3200)*
where:
7= = (X201 U £201) N (a201) N (3201 U 3001) = {a001,a101}
o~ = {al10,06110,0010}, v~ = {a110,b110,b6010}, o = {a001}, v= = {alll}.
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We now perform the language projection corresponding to the existential quantification
of the first-order variables z and y. Notice that a word should belong to the projection, if
it can be obtained by erasing the third an fourth components of each letter of a word in
the language A. It corresponds exactly to erasing each third an fourth component in the
regular expression (as this regular expression does not contain any complement operation).

A" = (32)*{a0, al}(32)*{al, b0,b1}(X2)*U(X2)*{al, b0, b1 }(¥X2)*a0(32)*U(X2)*al(X2)*

We now need to perform a language complementation of A’ before we project away the
second component. We give the automaton A’ that accepts that regular expression:

§$

al, b0, bl

D > a0 al b0 bl
22 0 01 O012F. 02 02
(% a0 @D 59 01 01 O012FLF_ 012F. 012F.

) 02 012F. 012F_ 02 02

X2 0 ODF DF DF D2F OF

F_ D2

To easily determinize this automaton (using the standard subset construction), we rely on
the fact that we can merge all states that contain a final states as from any of those states
we are guaranteed to accept (32)*. This produces the a 4-state deterministic automaton,
whose complement is:

a0

0

a0 al, b0, bl

—(O—L—(C D

bo,h A),al

b0, b1

Discarding the second component leads us to an automaton that accepts the language
L = a* Ub* which is the set of words that satisfy the MSO sentence.

A careful analysis of the formula could have spared us this long construction: That
sentence is satisfied by any word of a*: take X = () the first disjunct is always true,
similarly, it is always satisfied by a word of the form b* as the second disjunct will always
be true. If it is satisfied by a word w that contains an a (at position i), let us show that w
does not contain any b: assume it contains a b at position j, then when x = y = ¢, we have
that i ¢ X. When y = ¢,x = j, only the third disjunct might be true, thus j <iAi € X
so 7 € X and ¢ ¢ X which implies a contradiction.



Exercise 6.4

Apply Angluin’s L*-algorithm for learning the language L = a(ba)* over the alphabet
{a,b,c}.

Exercise 6.5

Give a Biichi automaton for the language L of all words a € {a, b, c}* such that « contains
infinitely many a’s, finitely many ¢’s, and between any two a’s there is an even number of
b’s or ¢’s.



