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Automata and Formal Languages — Exercise sheet 2

Exercise 2.1

Let L = {ab,abb}*. Give the minimal automata of K, = {u € {a,b}* | v =1 a} and
Ky ={u € {a,b}* | u=[ b}.

Solution:
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As Ay, is minimal we have that u = v iff Vg € Q - d(q,u) = §(q,v).
Therefore, we work with the transition monoid of Ay, as it is the syntactic monoid of L.
Characterizing Ky:
Notice that [0(Q,a)| =2, s0if Q' C Q, [0(Q',a)| < 2.
If a word w contains an a (i.e. w can be written as uaw),
5(Q, w) = (5(5(Q, u), ), v) — 8(A(Q'sa),v) = 3(Q", ) for some @', Q" € Q with Q"] <2,
thus [0(Q",v)| <2, so if a word w contains an a, [§(Q,w)| < 2.
As 10(Q,b)| = 3 we deduce that words in K} do not contain any a.
Also [6(Q, bb)| = 2 thus words in K}, do not contain bb. §(1,b) # 1 thus € ¢ Kj,.
Therefore K, = {b}.
Characterizing K,:
Denote L, , the set of words such that d(¢, w) = ¢/, we have K, = L1sN Ly sN L32NLgs.
LLQ =a- LQ,Q ub- LS’Q’ ObViOUSly LS72 = @, SO LLQ =a- L272.
Lys=a-LgsUb-Lsg, as Lgg = {a,b}* D Lys, we have L1o N Lyg =a- Los
L372 =a- L272 ub- LLQ7 LS,S = {CL, b}*, therfore Ka = LLQ N L27S N L372 N LS7S =a- L272.
It is easy to build an automaton accepting Lqo from Ap: its initial and final state is 2.
As the automaton accepting the language {a} has only one

final state, it is easy to build a deterministic automaton ac- b
cepting the concatenation of the two languages. We obtain
a deterministic automaton Ay, accepting K,. b \a b a
This automaton is not minimal, applying Moore’s mini- AN a
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mization algorithm will indicate that states 1 and ¢ can be a.b 6
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Exercise 2.2

Let M be generated by > C M, let ¢ : M — N be a homomorphism to a finite monoid NV,
and let P C N. Give an algorithm for computing the syntactic monoid of p~!(P).

Solution:

Denote L = o~ }(P), N' = ¢(N) and P'= PN N.
In order to present the algorithm, we first show that it suffices to compute the syntactic
monoid of the language P’ over the finite monoid N’. Then we devise an algorithm that
relies on the finiteness of the monoid N’ to compute the syntactic monoid of P’.
We first show that Synt ., (P') = Synt,, (L)
@ is a surjective homorphism from M to N’ recognizing L, therefore we can define the
(surjective) homorphism ¢ from N’ to Synt(L) as ¥ : ¢(u) — [u]L.
(This homomorphism is well-defined: if p(u) = p(v) then —as ¢ recognizes L— [u];, = [v])
We denote ¢, the homomorphism u — [u]r, and we remark ¢ = 1 o .
As N’ is a monoid, and P’ C N’, we can define the syntactic monoid of P’, Synt(P’).
We now show that Synt(P’) and Synt(L) are isomorphic:
Remark that Synt(L) recognizes P': for that we have to show that ¢! ()(P')) = P (by
double inclusion, D is trivial)
Y(P') = ¢r(L), and ¢, (¢(L)) = L so if & € =1 (xp(P')), then o~ (x) € L, as (L) = P’
which implies x € P'.
Therefore there exists a surjective homorphism from Synt(L) to Synt(P’).
For the same reason ¢ (L) is recognized by Synt(P’). Hence there exists a surjective
homorphism in the other direction, which implies that the two syntactic monoids are
isomorphic.

We now give an algorithm to compute Synt(P’) (actually =p/):
Take the (finite) graph G = (N, (]\;))
For u,v € N’ remove edges (z,y) such that uxv € P’ and uyv ¢ P'.
Merge nodes that are still connected.

Its correctness stands in that if x and y are merged then for all u,v € N, uxy € P iff
vy € P.



Exercise 2.3

Let S be a finite semigroup. An element e € S is idempotent if €2 = e.

(a) Show that for every # € S there exists a unique idempotent element in the set
{z¥ |k >1} C S.

(b) Show that z/I' is idempotent for every x € S.

Solution:

The unicity is easy to show: assume z* and z* are idempotent, then for any integer A,

% ’ ()\::k/) ’ ()\::k) /
¥ = 2™ and 2% = 2 2P xkk k.

Let n = |S|. Take the sequence x!,... z
By pidgeon hole principle, there ex1sts p,p,p<p <n+1such that 27 = 27, let q =p —p.
Multiplying the equality 2P = 2P™? by powers of x implies, that for any k 2 p, ok = zFta,
We even have for any k, \, k > p, A > 0, that ¥ = 2%729_ (obvious by induction over \)
Let m the multiple of ¢ between p and p + ¢ — 1 (m can be written as Aq for some \),
(xm>2 — pmtm xm-{—)\q asm>p m

n+1

, so ™ is idempotent. Also m < n.

Showing that z!°!' is idempotent is easily shown from the fact that there exists an m < n

mlSL

such that ™ is idempotent: this implies that zI°' = = x™ which is idempotent.

Exercise 2.4

Let ¢ : ¥* — M be a homomorphism to a finite monoid M. Show that there exists an
integer n > 1 such that p(3") = p(X*"). As usual, ¢(L) denotes the subset {p(u) | u € L}
of M.

Solution:

Consider the semigroup (2¥,.) where - is defined as follows:

A-B={w]|u€ Av e B}

- is clearly associative.

Consider = = p(X), then applying solution of the preceeding exercise, we have that there
exists an n such that 2" = 22"

We just need to establish that 2" = p(¥X").

By induction over n:

when n = 1, it is clear.

2"t = 2p(3") = {p(a)pu) |a € B,u € 2"} = {p(au) |a € T,u € X"} = p(X").

Exercise 2.5

Given a word w € ¥* and a subset I' C ¥, we define informally 71 (w) as the word obtained
by erasing all letters of w that are not in I'. More precisely, nr : ¥* — I'* is defined by
nr(a) = a if @ € T and 7r(a) = € otherwise. Show that if L C 3* is recognizable, then
mr(L) = {mpr(u) | u € L} is recognizable.



