
Technische Universität München
I7
M. Kufleitner / A. Durand-Gasselin

Winter term 2013/2014

31.10.2013

Automata and Formal Languages – Exercise sheet 2

Exercise 2.1

Let L = {ab, abb}∗. Give the minimal automata of Ka = {u ∈ {a, b}∗ | u ≡L a} and
Kb = {u ∈ {a, b}∗ | u ≡L b}.

Solution:

Here is AL the minimal automaton accepting L:

1 3

2S

a
b

a

b a

b

a, b

As AL is minimal we have that u ≡L v iff ∀q ∈ Q · δ(q, u) = δ(q, v).
Therefore, we work with the transition monoid of AL as it is the syntactic monoid of L.

Characterizing Kb:
Notice that |δ(Q, a)| = 2, so if Q′ ⊆ Q, |δ(Q′, a)| ≤ 2.
If a word w contains an a (i.e. w can be written as uaw),
δ(Q,w) = δ(δ(δ(Q, u), a), v) = δ(δ(Q′, a), v) = δ(Q′′, v) for some Q′, Q′′ ⊆ Q with |Q′′| ≤ 2,
thus |δ(Q′′, v)| ≤ 2, so if a word w contains an a, |δ(Q,w)| ≤ 2.
As |δ(Q, b)| = 3 we deduce that words in Kb do not contain any a.
Also |δ(Q, bb)| = 2 thus words in Kb do not contain bb. δ(1, b) 6= 1 thus ε /∈ Kb.
Therefore Kb = {b}.

Characterizing Ka:
Denote Lq,q′ the set of words such that δ(q, w) = q′, we have Ka = L1,2 ∩L2,S ∩L3,2 ∩LS,S.
L1,2 = a · L2,2 ∪ b · LS,2, obviously LS,2 = ∅, so L1,2 = a · L2,2.
L2,S = a · LS,S ∪ b · L3,S, as LS,S = {a, b}∗ ⊃ L2,2, we have L1,2 ∩ L2,S = a · L2,2

L3,2 = a · L2,2 ∪ b · L1,2, LS,S = {a, b}∗, therfore Ka = L1,2 ∩ L2,S ∩ L3,2 ∩ LS,S = a · L2,2.
It is easy to build an automaton accepting L2,2 from AL: its initial and final state is 2.
As the automaton accepting the language {a} has only one
final state, it is easy to build a deterministic automaton ac-
cepting the concatenation of the two languages. We obtain
a deterministic automaton AKa accepting Ka.
This automaton is not minimal, applying Moore’s mini-
mization algorithm will indicate that states 1 and i can be
merged.

1 3

2S i

a
b

a

b a

b

a, b

a

b

1

Exercise 2.2

Let M be generated by Σ ⊆M , let ϕ : M → N be a homomorphism to a finite monoid N ,
and let P ⊆ N . Give an algorithm for computing the syntactic monoid of ϕ−1(P).

Solution:

Denote L = ϕ−1(P), N ′ = ϕ(N) and P ′ = P ∩N .
In order to present the algorithm, we first show that it suffices to compute the syntactic
monoid of the language P ′ over the finite monoid N ′. Then we devise an algorithm that
relies on the finiteness of the monoid N ′ to compute the syntactic monoid of P ′.
We first show that SyntN ′(P ′) = SyntM(L)
ϕ is a surjective homorphism from M to N ′ recognizing L, therefore we can define the
(surjective) homorphism ψ from N ′ to Synt(L) as ψ : ϕ(u) 7→ [u]L.
(This homomorphism is well-defined: if ϕ(u) = ϕ(v) then –as ϕ recognizes L– [u]L = [v]L)
We denote φL the homomorphism u 7→ [u]L, and we remark φL = ψ ◦ ϕ.
As N ′ is a monoid, and P ′ ⊆ N ′, we can define the syntactic monoid of P ′, Synt(P ′).
We now show that Synt(P ′) and Synt(L) are isomorphic:
Remark that Synt(L) recognizes P ′: for that we have to show that ψ−1(ψ(P ′)) = P ′ (by
double inclusion, ⊇ is trivial)
ψ(P ′) = φL(L), and φ−1

L (φL(L)) = L so if x ∈ ψ−1(ψ(P ′)), then ϕ−1(x) ∈ L, as ϕ(L) = P ′

which implies x ∈ P ′.
Therefore there exists a surjective homorphism from Synt(L) to Synt(P ′).
For the same reason φL(L) is recognized by Synt(P ′). Hence there exists a surjective
homorphism in the other direction, which implies that the two syntactic monoids are
isomorphic.

We now give an algorithm to compute Synt(P ′) (actually ≡P ′):
Take the (finite) graph G = (N ′,

(
N ′

2

)
).

For u, v ∈ N ′ remove edges (x, y) such that uxv ∈ P ′ and uyv /∈ P ′.
Merge nodes that are still connected.

Its correctness stands in that if x and y are merged then for all u, v ∈ N ′, uxy ∈ P iff
vxy ∈ P .

2

Exercise 2.3

Let S be a finite semigroup. An element e ∈ S is idempotent if e2 = e.

(a) Show that for every x ∈ S there exists a unique idempotent element in the set
{xk | k ≥ 1} ⊆ S.

(b) Show that x|S|! is idempotent for every x ∈ S.

Solution:

The unicity is easy to show: assume xk and xk
′ are idempotent, then for any integer λ,

xk = xλk and xk′ = xλk
′ ; xk

(λ:=k′)
= xkk

′ (λ:=k)
= xk

′ .
Let n = |S|. Take the sequence x1, . . . , xn+1.
By pidgeon hole principle, there exists p, p′, p < p′ ≤ n+1 such that xp = xp

′ , let q = p′−p.
Multiplying the equality xp = xp+q by powers of x implies, that for any k ≥ p, xk = xk+q.
We even have for any k, λ, k ≥ p, λ ≥ 0, that xk = xk+λq. (obvious by induction over λ)
Let m the multiple of q between p and p+ q − 1 (m can be written as λq for some λ),
(xm)2 = xm+m = xm+λq asm≥p

= xm, so xm is idempotent. Also m ≤ n.
Showing that x|S|! is idempotent is easily shown from the fact that there exists an m ≤ n

such that xm is idempotent: this implies that x|S|! = xm
|S|!
m = xm which is idempotent.

Exercise 2.4

Let ϕ : Σ∗ → M be a homomorphism to a finite monoid M . Show that there exists an
integer n ≥ 1 such that ϕ(Σn) = ϕ(Σ2n). As usual, ϕ(L) denotes the subset {ϕ(u) | u ∈ L}
of M .

Solution:

Consider the semigroup (2M , ·) where · is defined as follows:
A ·B = {uv | u ∈ A, v ∈ B}
· is clearly associative.
Consider x = ϕ(Σ), then applying solution of the preceeding exercise, we have that there
exists an n such that xn = x2n.
We just need to establish that xn = ϕ(Σn).
By induction over n:
when n = 1, it is clear.
xn+1 = x·ϕ(Σn) = {ϕ(α)·ϕ(u) |α ∈ Σ, u ∈ Σn} = {ϕ(αu) |α ∈ Σ, u ∈ Σn} = ϕ(Σn+1).

Exercise 2.5

Given a word w ∈ Σ∗ and a subset Γ ⊆ Σ, we define informally πΓ(w) as the word obtained
by erasing all letters of w that are not in Γ. More precisely, πΓ : Σ∗ → Γ∗ is defined by
πΓ(a) = a if a ∈ Γ and πΓ(a) = ε otherwise. Show that if L ⊆ Σ∗ is recognizable, then
πΓ(L) = {πΓ(u) | u ∈ L} is recognizable.

3

