I7

M. Kufleitner / A. Durand-Gasselin

Automata and Formal Languages - Exercise sheet 2

Exercise 2.1

Let $L=\{a b, a b b\}^{*}$. Give the minimal automata of $K_{a}=\left\{u \in\{a, b\}^{*} \mid u \equiv_{L} a\right\}$ and $K_{b}=\left\{u \in\{a, b\}^{*} \mid u \equiv_{L} b\right\}$.

Solution:

Here is A_{L} the minimal automaton accepting L :

As A_{L} is minimal we have that $u \equiv_{L} v$ iff $\forall q \in Q \cdot \delta(q, u)=\delta(q, v)$.
Therefore, we work with the transition monoid of A_{L} as it is the syntactic monoid of L.
Characterizing K_{b} :
Notice that $|\delta(Q, a)|=2$, so if $Q^{\prime} \subseteq Q,\left|\delta\left(Q^{\prime}, a\right)\right| \leq 2$.
If a word w contains an a (i.e. w can be written as $u a w$), $\delta(Q, w)=\delta(\delta(\delta(Q, u), a), v)=\delta\left(\delta\left(Q^{\prime}, a\right), v\right)=\delta\left(Q^{\prime \prime}, v\right)$ for some $Q^{\prime}, Q^{\prime \prime} \subseteq Q$ with $\left|Q^{\prime \prime}\right| \leq 2$, thus $\left|\delta\left(Q^{\prime \prime}, v\right)\right| \leq 2$, so if a word w contains an $a,|\delta(Q, w)| \leq 2$.
As $|\delta(Q, b)|=3$ we deduce that words in K_{b} do not contain any a.
Also $|\delta(Q, b b)|=2$ thus words in K_{b} do not contain $b b$. $\delta(1, b) \neq 1$ thus $\varepsilon \notin K_{b}$.
Therefore $K_{b}=\{b\}$.
Characterizing K_{a} :
Denote $L_{q, q^{\prime}}$ the set of words such that $\delta(q, w)=q^{\prime}$, we have $K_{a}=L_{1,2} \cap L_{2, S} \cap L_{3,2} \cap L_{S, S}$. $L_{1,2}=a \cdot L_{2,2} \cup b \cdot L_{S, 2}$, obviously $L_{S, 2}=\emptyset$, so $L_{1,2}=a \cdot L_{2,2}$.
$L_{2, S}=a \cdot L_{S, S} \cup b \cdot L_{3, S}$, as $L_{S, S}=\{a, b\}^{*} \supset L_{2,2}$, we have $L_{1,2} \cap L_{2, S}=a \cdot L_{2,2}$
$L_{3,2}=a \cdot L_{2,2} \cup b \cdot L_{1,2}, L_{S, S}=\{a, b\}^{*}$, therfore $K_{a}=L_{1,2} \cap L_{2, S} \cap L_{3,2} \cap L_{S, S}=a \cdot L_{2,2}$.
It is easy to build an automaton accepting $L_{2,2}$ from A_{L} : its initial and final state is 2 .
As the automaton accepting the language $\{a\}$ has only one final state, it is easy to build a deterministic automaton accepting the concatenation of the two languages. We obtain a deterministic automaton $A_{K_{a}}$ accepting K_{a}.
This automaton is not minimal, applying Moore's minimization algorithm will indicate that states 1 and i can be merged.

Exercise 2.2

Let M be generated by $\Sigma \subseteq M$, let $\varphi: M \rightarrow N$ be a homomorphism to a finite monoid N, and let $P \subseteq N$. Give an algorithm for computing the syntactic monoid of $\varphi^{-1}(P)$.

Solution:

Denote $L=\varphi^{-1}(P), N^{\prime}=\varphi(N)$ and $P^{\prime}=P \cap N$.
In order to present the algorithm, we first show that it suffices to compute the syntactic monoid of the language P^{\prime} over the finite monoid N^{\prime}. Then we devise an algorithm that relies on the finiteness of the monoid N^{\prime} to compute the syntactic monoid of P^{\prime}.
We first show that $\operatorname{Synt}_{N^{\prime}}\left(P^{\prime}\right)=\operatorname{Synt}_{M}(L)$
φ is a surjective homorphism from M to N^{\prime} recognizing L, therefore we can define the (surjective) homorphism ψ from N^{\prime} to $\operatorname{Synt}(L)$ as $\psi: \varphi(u) \mapsto[u]_{L}$.
(This homomorphism is well-defined: if $\varphi(u)=\varphi(v)$ then -as φ recognizes $L-[u]_{L}=[v]_{L}$) We denote ϕ_{L} the homomorphism $u \mapsto[u]_{L}$, and we remark $\phi_{L}=\psi \circ \varphi$.
As N^{\prime} is a monoid, and $P^{\prime} \subseteq N^{\prime}$, we can define the syntactic monoid of P^{\prime}, $\operatorname{Synt}\left(P^{\prime}\right)$.
We now show that $\operatorname{Synt}\left(P^{\prime}\right)$ and $\operatorname{Synt}(L)$ are isomorphic:
Remark that $\operatorname{Synt}(L)$ recognizes P^{\prime} : for that we have to show that $\psi^{-1}\left(\psi\left(P^{\prime}\right)\right)=P^{\prime}$ (by double inclusion, \supseteq is trivial)
$\psi\left(P^{\prime}\right)=\phi_{L}(L)$, and $\phi_{L}^{-1}\left(\phi_{L}(L)\right)=L$ so if $x \in \psi^{-1}\left(\psi\left(P^{\prime}\right)\right)$, then $\varphi^{-1}(x) \in L$, as $\varphi(L)=P^{\prime}$ which implies $x \in P^{\prime}$.
Therefore there exists a surjective homorphism from Synt (L) to $\operatorname{Synt}\left(P^{\prime}\right)$.
For the same reason $\phi_{L}(L)$ is recognized by $\operatorname{Synt}\left(P^{\prime}\right)$. Hence there exists a surjective homorphism in the other direction, which implies that the two syntactic monoids are isomorphic.

We now give an algorithm to compute $\operatorname{Synt}\left(P^{\prime}\right)$ (actually $\equiv_{P^{\prime}}$):
Take the (finite) graph $G=\left(N^{\prime},\binom{N^{\prime}}{2}\right.$.
For $u, v \in N^{\prime}$ remove edges (x, y) such that $u x v \in P^{\prime}$ and $u y v \notin P^{\prime}$.
Merge nodes that are still connected.
Its correctness stands in that if x and y are merged then for all $u, v \in N^{\prime}, u x y \in P$ iff $v x y \in P$.

Exercise 2.3

Let S be a finite semigroup. An element $e \in S$ is idempotent if $e^{2}=e$.
(a) Show that for every $x \in S$ there exists a unique idempotent element in the set $\left\{x^{k} \mid k \geq 1\right\} \subseteq S$.
(b) Show that $x^{|S|!}$ is idempotent for every $x \in S$.

Solution:

The unicity is easy to show: assume x^{k} and $x^{k^{\prime}}$ are idempotent, then for any integer λ, $x^{k}=x^{\lambda k}$ and $x^{k^{\prime}}=x^{\lambda k^{\prime}} ; x^{k} \stackrel{\left(\lambda:=k^{\prime}\right)}{=} x^{k k^{\prime}} \stackrel{(\lambda:=k)}{=} x^{k^{\prime}}$.
Let $n=|S|$. Take the sequence x^{1}, \ldots, x^{n+1}.
By pidgeon hole principle, there exists $p, p^{\prime}, p<p^{\prime} \leq n+1$ such that $x^{p}=x^{p^{\prime}}$, let $q=p^{\prime}-p$. Multiplying the equality $x^{p}=x^{p+q}$ by powers of x implies, that for any $k \geq p, x^{k}=x^{k+q}$. We even have for any $k, \lambda, k \geq p, \lambda \geq 0$, that $x^{k}=x^{k+\lambda q}$. (obvious by induction over λ)
Let m the multiple of q between p and $p+q-1$ (m can be written as λq for some λ), $\left(x^{m}\right)^{2}=x^{m+m}=x^{m+\lambda q} \stackrel{\text { as }}{\underline{m} \geq p} x^{m}$, so x^{m} is idempotent. Also $m \leq n$.
Showing that $x^{|S|!}$ is idempotent is easily shown from the fact that there exists an $m \leq n$ such that x^{m} is idempotent: this implies that $x^{|S|!}=x^{m \frac{|S|!}{m}}=x^{m}$ which is idempotent.

Exercise 2.4

Let $\varphi: \Sigma^{*} \rightarrow M$ be a homomorphism to a finite monoid M. Show that there exists an integer $n \geq 1$ such that $\varphi\left(\Sigma^{n}\right)=\varphi\left(\Sigma^{2 n}\right)$. As usual, $\varphi(L)$ denotes the subset $\{\varphi(u) \mid u \in L\}$ of M.

Solution:

Consider the semigroup $\left(2^{M}, \cdot\right)$ where \cdot is defined as follows:
$A \cdot B=\{u v \mid u \in A, v \in B\}$

- is clearly associative.

Consider $x=\varphi(\Sigma)$, then applying solution of the preceeding exercise, we have that there exists an n such that $x^{n}=x^{2 n}$.
We just need to establish that $x^{n}=\varphi\left(\Sigma^{n}\right)$.
By induction over n :
when $n=1$, it is clear.
$x^{n+1}=x \cdot \varphi\left(\Sigma^{n}\right)=\left\{\varphi(\alpha) \cdot \varphi(u) \mid \alpha \in \Sigma, u \in \Sigma^{n}\right\}=\left\{\varphi(\alpha u) \mid \alpha \in \Sigma, u \in \Sigma^{n}\right\}=\varphi\left(\Sigma^{n+1}\right)$.

Exercise 2.5

Given a word $w \in \Sigma^{*}$ and a subset $\Gamma \subseteq \Sigma$, we define informally $\pi_{\Gamma}(w)$ as the word obtained by erasing all letters of w that are not in Γ. More precisely, $\pi_{\Gamma}: \Sigma^{*} \rightarrow \Gamma^{*}$ is defined by $\pi_{\Gamma}(a)=a$ if $a \in \Gamma$ and $\pi_{\Gamma}(a)=\varepsilon$ otherwise. Show that if $L \subseteq \Sigma^{*}$ is recognizable, then $\pi_{\Gamma}(L)=\left\{\pi_{\Gamma}(u) \mid u \in L\right\}$ is recognizable.

