Name:

Signature:

Automata and Formal Languages – Endterm

- If you feel ill, let us know immediately.
- Please, **do not write** until told so. You are given approx. 10 minutes to read the exercises and address us in case of questions or problems.
- You will be given **120 minutes** to fill in all the required information and write down your solutions.
- You can use your **own paper** for writing down the solutions.
- Should you require **paper**, please tell us.
- Sign the exercise sheet (upper right corner) and hand it back with the solutions.
- Write your name and Matrikelnummer on every paper.
- Write with a non-erasable **pen**, do not use red or green color.
- You are **not allowed to use auxiliary means** other than your pen and paper.
- You may answer in **English or German**.
- Please turn off your **cell phone**.
- You can obtain 40 points in the exam. You need 17 points in total to pass.
- Good luck!

Throughout, let $\Sigma = \{a, b\}$.

Exercise 1

Let $L = (a\{ab, ba\}^*b)^*$.

- (a) Use the Thompson construction for finding a nondeterministic automaton \mathcal{A} with $L(\mathcal{A}) = L$.
- (b) Use removal of ε -transitions for constructing an equivalent nondeterministic automaton \mathcal{B} for Σ .
- (c) Use the powerset construction for finding an equivalent deterministic automaton \mathcal{C} .
- (d) Use a minimization algorithm for constructing the minimal automaton \mathcal{A}_L .
- (e) Give an automaton \mathcal{D} with $L(\mathcal{D}) = \Sigma^* \setminus L$.
- (f) Use state elimination for constructing a rational expression for $\Sigma^* \setminus L$.

Exercise 2

(4P)

Apply Angluin's L^* -algorithm for learning the language $\{aa, b\}^*$ over the alphabet Σ . Start with samples $S = \{\varepsilon\}$ and extensions $E = \{\varepsilon\}$ and use counterexamples of minimal length.

 $(6 \times 2P = 12P)$

Exercise 3

Give an MSO sentence defining the language $\{aa, ab\}^*$ over the alphabet Σ .

Exercise 4

We use binary encoding of nonnegative integers with the least significant bit first. Give a finite automaton accepting the solutions of 2x > y + z.

Exercise 5

Let $\mathcal{A} = (Q, \delta, I, F)$ with $\delta \subseteq Q \times \Sigma \times Q$ be a nondeterministic finite Σ^* -automaton. Consider the following decision problem:

Input: A binary encoded integer $n \ge 0$.

Question: Is $(ab)^n \in L(\mathcal{A})$?

Show that this problem can be solved in deterministic polynomial time.

Exercise 6

$$(2P + 2P = 4P)$$

Let $L = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has only finitely many occurrences of } ab \text{ as a factor} \}.$

- (a) Give a Büchi automaton which accepts L.
- (b) Show that there is no finite deterministic Büchi automaton which accepts L.

Exercise 7

Let \mathcal{A} be the following Büchi automaton over Σ :

Apply Safra's construction to give a determinisite Rabin automaton for $L(\mathcal{A})$.

Exercise 8

(3P + 1P + 2P = 6P)

Let $S = \{a, b\}$ be the semigroup defined by $a = a^2 = ab$ and $b = b^2 = ba$, and let the homomorphism $h : \Sigma^+ \to S$ be defined by h(a) = a and h(b) = b. For $s \in S$ we use the notation [s] instead of $h^{-1}(s)$.

- (a) Give a Büchi automaton for the language $[a][b]^{\omega}$.
- (b) When is a language $L \subseteq \Sigma^{\omega}$ recognized by a homomorphism $g : \Sigma^+ \to T$ for some finite semigroup T? Give the definition or some equivalent condition.
- (c) Is $[a][b]^{\omega}$ recognized by h? Justify your answer.

(2P)

(3P)

(4P)

(5P)