Technische Universität München
Prof. M. Kufleitner / A. Durand-Gasselin
Winter term 2013/2014

Name:
Matrikelnummer:
Signature:

Automata and Formal Languages - Endterm

- If you feel ill, let us know immediately.
- Please, do not write until told so. You are given approx. 10 minutes to read the exercises and address us in case of questions or problems.
- You will be given $\mathbf{1 2 0}$ minutes to fill in all the required information and write down your solutions.
- You can use your own paper for writing down the solutions.
- Should you require paper, please tell us.
- Sign the exercise sheet (upper right corner) and hand it back with the solutions.
- Write your name and Matrikelnummer on every paper.
- Write with a non-erasable pen, do not use red or green color.
- You are not allowed to use auxiliary means other than your pen and paper.
- You may answer in English or German.
- Please turn off your cell phone.
- You can obtain 40 points in the exam. You need 17 points in total to pass.
- Good luck!

Throughout, let $\Sigma=\{a, b\}$.
Exercise 1

$$
(6 \times 2 \mathrm{P}=12 \mathrm{P})
$$

Let $L=\left(a\{a b, b a\}^{*} b\right)^{*}$.
(a) Use the Thompson construction for finding a nondeterministic automaton \mathcal{A} with $L(\mathcal{A})=L$.
(b) Use removal of ε-transitions for constructing an equivalent nondeterministic automaton \mathcal{B} for Σ.
(c) Use the powerset construction for finding an equivalent deterministic automaton \mathcal{C}.
(d) Use a minimization algorithm for constructing the minimal automaton \mathcal{A}_{L}.
(e) Give an automaton \mathcal{D} with $L(\mathcal{D})=\Sigma^{*} \backslash L$.
(f) Use state elimination for constructing a rational expression for $\Sigma^{*} \backslash L$.

Exercise 2

Apply Angluin's L^{*}-algorithm for learning the language $\{a a, b\}^{*}$ over the alphabet Σ. Start with samples $S=\{\varepsilon\}$ and extensions $E=\{\varepsilon\}$ and use counterexamples of minimal length.

Exercise 3

Give an MSO sentence defining the language $\{a a, a b\}^{*}$ over the alphabet Σ.

Exercise 4

We use binary encoding of nonnegative integers with the least significant bit first. Give a finite automaton accepting the solutions of $2 x>y+z$.

Exercise 5

Let $\mathcal{A}=(Q, \delta, I, F)$ with $\delta \subseteq Q \times \Sigma \times Q$ be a nondeterministic finite Σ^{*}-automaton. Consider the following decision problem:

Input: A binary encoded integer $n \geq 0$.
Question: Is $(a b)^{n} \in L(\mathcal{A})$?
Show that this problem can be solved in deterministic polynomial time.

Exercise 6

$$
(2 \mathrm{P}+2 \mathrm{P}=4 \mathrm{P})
$$

Let $L=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ has only finitely many occurrences of $a b$ as a factor $\}$.
(a) Give a Büchi automaton which accepts L.
(b) Show that there is no finite deterministic Büchi automaton which accepts L.

Exercise 7

Let \mathcal{A} be the following Büchi automaton over Σ :

Apply Safra's construction to give a determinisitc Rabin automaton for $L(\mathcal{A})$.
Exercise 8

$$
(3 \mathrm{P}+1 \mathrm{P}+2 \mathrm{P}=6 \mathrm{P})
$$

Let $S=\{a, b\}$ be the semigroup defined by $a=a^{2}=a b$ and $b=b^{2}=b a$, and let the homomorphism $h: \Sigma^{+} \rightarrow S$ be defined by $h(a)=a$ and $h(b)=b$. For $s \in S$ we use the notation $[s]$ instead of $h^{-1}(s)$.
(a) Give a Büchi automaton for the language $[a][b]^{\omega}$.
(b) When is a language $L \subseteq \Sigma^{\omega}$ recognized by a homomorphism $g: \Sigma^{+} \rightarrow T$ for some finite semigroup T ? Give the definition or some equivalent condition.
(c) Is $[a][b]^{\omega}$ recognized by h ? Justify your answer.

