06.02.2014

Automata and Formal Languages – Exercise sheet 11

Exercise 9.1

Safra's construction allows to obtain a Rabin automaton from a Büchi automaton. We show how to use Safra's construction for complementating Büchi automata.

- (a) *Complementation of a Rabin automaton:* How can one obtain a Streett automaton accepting the complement of some language accepted by a Rabin automatan?
- (b) From Streett to Büchi automata: Let \mathcal{A} be a Streett automaton with n states and m accepting pairs. Give a nondeterministic Büchi automaton with $\mathcal{O}(n2^m)$ states for $L(\mathcal{A})$.

Hint: Note that $|Q \cup (Q \times 2^{\{1,\ldots,m\}} \times 2^{\{1,\ldots,m\}})|$ is in $\mathcal{O}(n2^m)$.

- (c) *Complexity upper bound:* What is the complexity of this algorithm performing complementation of Büchi automata with Safra's construction?
- (d) Complexity lower bound: What lower bound can we deduce on Safra's construction?

Exercise 9.2

Let \mathcal{A} be a deterministic Büchi automaton. Let us denote \mathcal{A}' the automaton obtained by applying a (finite-word automaton) minimization procedure on this automata.

- (a) What can we say about the ω -language accepted by \mathcal{A}' ?
- (b) Does this provide a minimal deterministic Büchi automaton?