I7

M. Kufleitner / A. Durand-Gasselin

9.01.2014

Automata and Formal Languages – Exercise sheet 7

Exercise 7.1

Let $L \subseteq \Sigma^*$ and let $\$ \notin \Sigma$. Show that L is regular if and only if $L\$^{\omega} \subseteq (\Sigma \cup \{\$\})^{\omega}$ is ω -regular.

Exercise 7.2

Let $\mathcal{A} = (Q, \delta, I, F)$ be an automaton with $\delta \subseteq Q \times \Sigma \times Q$. Let $L_{\text{fin}} \subseteq \Sigma^*$ be the language of finite words accepted by the nondeterministic automaton \mathcal{A} and let $L(\mathcal{A}) \subseteq \Sigma^{\omega}$ be the language accepted by the Büchi automaton \mathcal{A} .

- (a) Give automata $\mathcal{A}_1, \mathcal{A}_2$ such that $L_{\text{fin}}(\mathcal{A}_1) = L_{\text{fin}}(\mathcal{A}_2)$ and $L(\mathcal{A}_1) \neq L(\mathcal{A}_2)$.
- (b) Give deterministic automata A_1, A_2 with $L_{\text{fin}}(A_1) \neq L_{\text{fin}}(A_2)$ and $L(A_1) = L(A_2)$.
- (c) Show that if $\mathcal{A}_1, \mathcal{A}_2$ are deterministic with $L_{\text{fin}}(\mathcal{A}_1) = L_{\text{fin}}(\mathcal{A}_2)$, then $L(\mathcal{A}_1) = L(\mathcal{A}_2)$.

Exercise 7.3

Let $\Sigma = \{a, b\}$.

- (a) Give Büchi automata for the following languages.
 - $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has infinitely many } a \text{'s} \}.$
 - $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ has only finitely many } b$'s $\}$.
 - $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \text{ every } a \text{ in } \alpha \text{ is followed by } b \}.$
- (b) Give an automaton for $L_1 \cap L_2 \cap L_3$ using the construction from the lecture.
- (c) Give an automaton for $\Sigma^{\omega} \setminus L_1$ using the construction from the lecture.