5.12.2013

Automata and Formal Languages – Exercise sheet 5

Exercise 5.1

Let $n \geq 1$. Give two inequivalent deterministic $\{a, b\}^*$ -automata $\mathcal{A}_i = (Q_i, \cdot, q_{0i}, F_i)$ for $i \in \{1, 2\}$ with at least n states such that the shortest word in $(L(\mathcal{A}_1) \setminus L(\mathcal{A}_2)) \cup (L(\mathcal{A}_1) \setminus L(\mathcal{A}_2))$ has length at least $1 + \max(|Q_1|, |Q_2|)$.

Exercise 5.2

Give an algorithm which for a given deterministic Σ^* -automaton \mathcal{A} decides whether $L(\mathcal{A})$ is infinite, and which, in case that $L(\mathcal{A})$ is finite, computes $|L(\mathcal{A})|$.

Exercise 5.3

Give an algorithm which computes for a given word $u \in \Sigma^*$ the number of scattered subwords of u. For instance, *aaa* has the 4 scattered subwords, namely ε , *a*, *aa*, *aaa*, whereas *aab* has 6 scattered subwords, namely ε , *a*, *b*, *aa*, *ab*, *aab*.