Automata and Formal Languages - Exercise sheet 4

Exercise 4.1

Let $\Sigma=\{a, b\}$. We consider the languages $L_{1}=\left(b a a^{*}\right)^{*} b$ and $L_{2}=\Sigma^{*} a \Sigma^{2} a \Sigma^{*}$.
(a) Use the Thompson-construction for finding nondeterministic automata \mathcal{A}_{1} and \mathcal{A}_{2} with $L_{i}=L\left(\mathcal{A}_{i}\right)$.
(b) Use removal of ε-transitions for constructing equivalent nondeterministic automata \mathcal{B}_{1} and \mathcal{B}_{2} with labels in Σ.
(c) Use Brzozowski's minimization algorithm for constructing the minimal automata for L_{1} and L_{2}.
(d) Build an automaton \mathcal{D} accepting $L_{1} \backslash L_{2}$ and minimize it.
(e) Use state elimination for constructing a rational expression for $L_{1} \backslash L_{2}$.

Exercise 4.2

We use binary encoding of nonnegative integers with the least significant bit first.
(a) Give an automaton accepting the solutions of $3 x-5 y>2$.
(b) Give an automaton accepting the solutions of the formula $x+2 y \equiv 0 \bmod 7$.
(c) Let $a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $c \in \mathbb{N}$. Give an algorithm to build the automaton accepting solutions of $\sum_{i=1}^{k} a_{i} x_{i}=c$.
(d) Use the automata theoretic approach for showing that $\forall x \exists y \exists z:-x+2 y+3 z=2$ is true for \mathbb{N}.

Exercise 4.3

Show that the true sentences in $\mathrm{FO}[\mathbb{Z},+]$ are decidable, i.e., for any given first-order sentence φ using atomic formulas of the form $x=n$ for $n \in \mathbb{Z}$ and $x+y=z$, one can decide whether φ is true over the integers \mathbb{Z}. For instance, the sentence $\forall x \exists y \exists z: 3 y+5 z=x$ is false over \mathbb{N} but true over \mathbb{Z}.

