27.11.2013

Automata and Formal Languages – Exercise sheet 4

Exercise 4.1

Let $\Sigma = \{a, b\}$. We consider the languages $L_1 = (baa^*)^*b$ and $L_2 = \Sigma^* a \Sigma^2 a \Sigma^*$.

- (a) Use the Thompson-construction for finding nondeterministic automata \mathcal{A}_1 and \mathcal{A}_2 with $L_i = L(\mathcal{A}_i)$.
- (b) Use removal of ε -transitions for constructing equivalent nondeterministic automata \mathcal{B}_1 and \mathcal{B}_2 with labels in Σ .
- (c) Use Brzozowski's minimization algorithm for constructing the minimal automata for L_1 and L_2 .
- (d) Build an automaton \mathcal{D} accepting $L_1 \setminus L_2$ and minimize it.
- (e) Use state elimination for constructing a rational expression for $L_1 \setminus L_2$.

Exercise 4.2

We use binary encoding of nonnegative integers with the least significant bit first.

- (a) Give an automaton accepting the solutions of 3x 5y > 2.
- (b) Give an automaton accepting the solutions of the formula $x + 2y \equiv 0 \mod 7$.
- (c) Let $a_1, \ldots, a_k \in \mathbb{Z}$ and $c \in \mathbb{N}$. Give an algorithm to build the automaton accepting solutions of $\sum_{i=1}^k a_i x_i = c$.
- (d) Use the automata theoretic approach for showing that $\forall x \exists y \exists z : -x + 2y + 3z = 2$ is true for \mathbb{N} .

Exercise 4.3

Show that the true sentences in FO[Z, +] are decidable, i.e., for any given first-order sentence φ using atomic formulas of the form x = n for $n \in \mathbb{Z}$ and x + y = z, one can decide whether φ is true over the integers Z. For instance, the sentence $\forall x \exists y \exists z \colon 3y + 5z = x$ is false over N but true over Z.