$\underline{\text { Automata and Formal Languages - Exercise sheet } 3}$

Exercise 3.1

A word $u=a_{1} \cdots a_{n}$ is a scattered subword of $w($ written as $u \triangleleft w)$ if $w=w_{0} a_{1} w_{1} \cdots a_{n} w_{n}$ for some $w_{0}, \ldots, w_{n} \in \Sigma^{*}$. Let $L \subseteq \Sigma^{*}$ be regular.
(a) Show that $L_{\triangleright}=\left\{u \in \Sigma^{*} \mid w \triangleleft u\right.$ for some $\left.w \in L\right\}$ is also regular.
(b) Show that $L_{\triangleleft}=\left\{u \in \Sigma^{*} \mid u \triangleleft w\right.$ for some $\left.w \in L\right\}$ is also regular.

Exercise 3.2

Let $\Sigma=\{a, b\}$ and $L=\left((a b)^{*} a \cup a b b\right)^{*} \in \operatorname{RAT}\left(\Sigma^{*}\right)$.
(a) Use the Thompson-construction for finding a nondeterministic automaton \mathcal{A} with $L=L(\mathcal{A})$.
(b) Use removal of ε-transitions for constructing an equivalent nondeterministic automaton \mathcal{B} for Σ.
(c) Use the power set construction for finding an equivalent deterministic automaton \mathcal{C}.
(d) Use Moore's minimization algorithm for constructing the minimal automaton \mathcal{A}_{L}.
(e) Give an automaton \mathcal{D} with $L(\mathcal{D})=\Sigma^{*} \backslash L$.
(f) Use state elimination for constructing a rational expression for $\Sigma^{*} \backslash L$.

Exercise 3.3

Let M_{1} and M_{2} be monoids. The direct product of M_{1} and M_{2} is $M_{1} \times M_{2}$ equipped with the operation $\left(u_{1}, u_{2}\right) \cdot\left(v_{1}, v_{2}\right)=\left(u_{1} v_{1}, u_{2} v_{2}\right)$. Show that $L \in \operatorname{REC}\left(M_{1} \times M_{2}\right)$ if and only if L is a finite union of sets $K_{1} \times K_{2}$ with $K_{1} \in \operatorname{REC}\left(M_{1}\right)$ and $K_{2} \in \operatorname{REC}\left(M_{2}\right)$.

Exercise 3.4

Give a language $L \in \operatorname{RAT}\left(a^{*} \times b^{*}\right)$ such that L cannot be written as a finite union of languages $K_{1} \times K_{2}$ with $K_{1} \in \operatorname{RAT}\left(a^{*}\right)$ and $K_{2} \in \operatorname{RAT}\left(b^{*}\right)$

