7.11.2013

Automata and Formal Languages – Exercise sheet 3

Exercise 3.1

A word $u = a_1 \cdots a_n$ is a scattered subword of w (written as $u \triangleleft w$) if $w = w_0 a_1 w_1 \cdots a_n w_n$ for some $w_0, \ldots, w_n \in \Sigma^*$. Let $L \subseteq \Sigma^*$ be regular.

- (a) Show that $L_{\triangleright} = \{ u \in \Sigma^* \mid w \triangleleft u \text{ for some } w \in L \}$ is also regular.
- (b) Show that $L_{\triangleleft} = \{ u \in \Sigma^* \mid u \triangleleft w \text{ for some } w \in L \}$ is also regular.

Exercise 3.2

Let $\Sigma = \{a, b\}$ and $L = ((ab)^* a \cup abb)^* \in RAT(\Sigma^*)$.

- (a) Use the Thompson-construction for finding a nondeterministic automaton \mathcal{A} with $L = L(\mathcal{A})$.
- (b) Use removal of ε -transitions for constructing an equivalent nondeterministic automaton \mathcal{B} for Σ .
- (c) Use the power set construction for finding an equivalent deterministic automaton \mathcal{C} .
- (d) Use Moore's minimization algorithm for constructing the minimal automaton \mathcal{A}_L .
- (e) Give an automaton \mathcal{D} with $L(\mathcal{D}) = \Sigma^* \setminus L$.
- (f) Use state elimination for constructing a rational expression for $\Sigma^* \setminus L$.

Exercise 3.3

Let M_1 and M_2 be monoids. The direct product of M_1 and M_2 is $M_1 \times M_2$ equipped with the operation $(u_1, u_2) \cdot (v_1, v_2) = (u_1v_1, u_2v_2)$. Show that $L \in \text{REC}(M_1 \times M_2)$ if and only if L is a finite union of sets $K_1 \times K_2$ with $K_1 \in \text{REC}(M_1)$ and $K_2 \in \text{REC}(M_2)$.

Exercise 3.4

Give a language $L \in \text{RAT}(a^* \times b^*)$ such that L cannot be written as a finite union of languages $K_1 \times K_2$ with $K_1 \in \text{RAT}(a^*)$ and $K_2 \in \text{RAT}(b^*)$