Winter term 2013/2014

31.10.2013

Automata and Formal Languages – Exercise sheet 2

Exercise 2.1

Let $L = \{ab, abb\}^*$. Give the minimal automata of $K_a = \{u \in \{a, b\}^* \mid u \equiv_L a\}$ and $K_b = \{u \in \{a, b\}^* \mid u \equiv_L b\}.$

Exercise 2.2

Let M be generated by $\Sigma \subseteq M$, let $\varphi : M \to N$ be a homomorphism to a finite monoid N, and let $P \subseteq N$. Give an algorithm for computing the syntactic monoid of $\varphi^{-1}(P)$.

Exercise 2.3

Let S be a finite semigroup. An element $e \in S$ is *idempotent* if $e^2 = e$.

- (a) Show that for every $x \in S$ there exists a unique idempotent element in the set $\{x^k \mid k \ge 1\} \subseteq S$.
- (b) Show that $x^{|S|!}$ is idempotent for every $x \in S$.

Exercise 2.4

Let $\varphi : \Sigma^* \to M$ be a homomorphism to a finite monoid M. Show that there exists an integer $n \ge 1$ such that $\varphi(\Sigma^n) = \varphi(\Sigma^{2n})$. As usual, $\varphi(L)$ denotes the subset $\{\varphi(u) \mid u \in L\}$ of M.

Exercise 2.5

Given a word $w \in \Sigma^*$ and a subset $\Gamma \subseteq \Sigma$, we define informally $\pi_{\Gamma}(w)$ as the word obtained by erasing all letters of w that are not in Γ . More precisely, $\pi_{\Gamma} : \Sigma^* \to \Gamma^*$ is defined by $\pi_{\Gamma}(a) = a$ if $a \in \Gamma$ and $\pi_{\Gamma}(a) = \varepsilon$ otherwise. Show that if $L \subseteq \Sigma^*$ is recognizable, then $\pi_{\Gamma}(L) = \{\pi_{\Gamma}(u) \mid u \in L\}$ is recognizable.