Operations on relations: Implementation on NFAs

```
Projection_1(R) : returns the set \pi_1(R) = \{x \mid \exists y \ (x, y) \in R\}.
```

Projection_2(R) : returns the set $\pi_2(R) = \{y \mid \exists y \ (x, y) \in R\}.$

```
Join(R_1, R_2) : returns R_1 \circ R_2 = \{(x, z) \mid \exists y \in X (x, y) \in R_1 \land (y, z) \in R_2\}
```

```
\mathbf{Post}(Y,R) \quad : \quad \text{returns } post_R(Y) = \{x \in X \mid \exists y \in Y : (y,x) \in R\}.
```

 $\mathbf{Pre}(Y,R) \qquad : \quad \text{returns } pre_R(Y) = \{x \in X \mid \exists y \in Y' : (x,y) \in R\}.$

Encoding objects

- So far we have assumed for convenience:
 - a) every word encodes one object.
 - b) every object is encoded by exactly one word. We now analyze this in more detail.
- Example: objects \rightarrow natural number encoding \rightarrow *lsbf* $lsbf(5) = 101 \ lsbf(0) = \varepsilon$. Satisfies b), but not a).
- We argue that a) can be easily weakened to:
 a') the set of words encoding objects is a regular language.
- The *lsbf* encoding satisfies a'): set of encodings $\rightarrow \{\varepsilon\} \cup \{w \in \Sigma^* \mid w \text{ ends with } 1\}$

Encoding pairs

- Extending the implementations to relations requires to encode pairs of objects.
- How should we encode a pair (n_1, n_2) of natural numbers?

- Consider the pair (n_1, n_2) .
- Assume n_1 , n_2 encoded by w_1 , w_2 in *Isbf* encoding
- Which should be the encoding of (n_1, n_2) ?
 - Cannot be w_1w_2 .
 Then same word encodes many pairs, violates b).
- First attempt: use a separator symbol &, and encode (n_1,n_2) by $w_1\&w_2$.
 - Problem: not even the identity relation gives a regular language!

- Second attempt: encode (n_1, n_2) as a word over $\{0,1\} \times \{0,1\}$ (intuitively, the automaton reads w_1 and w_2 simultaneously).
 - Problem: what if w_1 and w_2 have different length?
 - Solution: fill the shortest one with 0s.
 - Satisfies b) and a'), but not (a):
 - The number k is encoded by all the words of $s_k 0^*$, where s_k is the *lsbf* encoding of k.
 - We call 0 the padding symbol or padding letter.

So we assume:

- The alphabet contains a padding letter #, different or not from the letters used to encode an object.
- Each object x has a minimal encoding s_x .
- The encodings of x are all the words of $s_x \#^*$.
- A pair (x, y) of objects has a minimal encoding $s_{(x,y)}$.

$$S_{x}$$
 ##### = $S_{(x,y)}$

- The encodings of (x, y) are all the words of $s_{(x,y)}$ #*.

 Question: if objects (pairs of objects) are encoded by multiple words, which is the set of objects (pairs) recognized by a DFA or NFA?

(We can no longer say: an object is recognized if its encoding is accepted by the DFA or NFA!)

 Question: because of the new definition of "set of objects recognized by an automaton", do we have to change the implementation of the set operations? **Definition 5.2** Assume an encoding of X over Σ^* has been fixed. Let A be an NFA.

- A accepts $x \in X$ if it accepts all encodings of x.
- A rejects $x \in X$ if it accepts no encoding of x.
- A recognizes a set $Y \subseteq X$ if

$$\mathcal{L}(A) = \{ w \in \Sigma^* \mid w \text{ encodes some element of } Y \}.$$

A subset $Y \subseteq X$ is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Notice that with this definition a NFA may neither accept nor reject a given x. In this case the NFA does not recognize any subset of X.

Transducers

Definition 5.3 A transducer over Σ is an NFA over the alphabet $\Sigma \times \Sigma$.

Definition 5.4 Let T be a transducer over Σ . Given words $w_1 = a_1 a_2 \dots a_n$ and $w_2 = b_1 b_2 \dots b_n$, we say that T accepts the pair (w_1, w_2) if it accepts the word $(a_1, b_1) \dots (a_n, b_n) \in (\Sigma \times \Sigma)^*$.

Definition 5.5 *Let T be a transducer.*

- T accepts a pair $(x, y) \in X \times X$ if it accepts all encodings of (x, y).
- T rejects a pair $(x, y) \in X \times X$ if it accepts no encoding of (x, y).
- T recognizes a relation $R \subseteq X \times X$ if

$$\mathcal{L}(T) = \{(w_x, w_y) \in (\Sigma \times \Sigma)^* \mid (w_x, w_y) \text{ encodes some pair of } R\}$$
.

A relation is regular if it is recognized by some transducer.

- Examples of regular relations on numbers (Isbf encoding):
 - The identity relation $\{(n, n) \mid n \in \mathbb{N}\}$
 - The relation $\{(n, 2n) | n \in \mathbb{N}\}$

Example 5.6 The *Collatz function* is the function $f: \mathbb{N} \to \mathbb{N}$ defined as follows:

$$f(n) = \begin{cases} 3n+1 & \text{if } n \text{ is odd} \\ n/2 & \text{if } n \text{ is even} \end{cases}$$

Determinism

- A transducer is deterministic if it is a DFA.
- Observe: if Σ has size n, then a state of a deterministic transducer with alphabet $\Sigma \times \Sigma$ has n^2 outgoing transitions.
- Warning! There is a different definition of determinism:
 - A letter $\begin{bmatrix} a \\ b \end{bmatrix}$ is interpreted as "output b on input a"
 - Deterministic transducer: only one move (and so only one output) for each input.

- Before implementing the new operations:
 - How do we check membership?
 - Can we compute union, intersection and complement of relations as for sets?

Implementing the operations

Projection

Deleting the second component is not correct

- Counterexample:
$$R = \{ (4,1) \}$$

$$- s_{(4,1)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

− DFA for R:

```
Proj_{-}1(T)
Input: transducer T = (Q, \Sigma \times \Sigma, \delta, q_0, F)
Output: NFA A = (Q', \Sigma, \delta', q'_0, F') with \mathcal{L}(A) = \pi_1(\mathcal{L}(T))
 1 Q' \leftarrow Q; q_0' \leftarrow q_0; F'' \leftarrow F
 2 \delta' \leftarrow \emptyset:
  3 for all (q,(a,b),q') \in \delta do
     add (q, a, q') to \delta'
 5 F' \leftarrow PadClosure((Q', \Sigma, \delta', q'_0, F''), \#)
PadClosure(A, \#)
Input: NFA A = (\Sigma \times \Sigma, Q, \delta, q_0, F)
Output: new set F' of final states
 1 W \leftarrow F; F' \leftarrow \emptyset;
 2 while W \neq \emptyset do
         pick q from W
         add q to F'
         for all (q', \#, q) \in \delta do
             if q' \notin F' then add q' to W
      return F'
```

- Problem: we may be accepting $s_x \#^k \#^*$ instead of $s_x \#^*$ and so according to the definition we are not acepting x!
- Solution: if after eliminating the second components some non-final state goes with # ... # to a final state, we mark the state as final.
- Complexity: linear in the size of the transducer
- Observe: the result of a projection may be a NFA, even if the transducer is deterministic!!
- This is the operation that prevents us from implementing all operations directly on DFAs.

Correctness proof

- Assume: transducer T recognizes a set of pairs
- Prove: the projection automaton A recognizes a set, and this set is the projection onto the first component of the set of pairs recognized by T.
- a) A accepts either all encodings or no encoding of an object.
 Assume A accepts at least one encoding w of an object x.
 We prove it accepts all.
 - If A accepts w, then T accepts $\frac{w}{w'}$ for some w'. By assumption T accepts $\frac{w}{w'} {\# \brack \#}^*$, and so A accepts $w \#^*$. Moreover, $w = s_x \#^k$ for some k > 0, and so, by padding closure, A also accepts $s_x \#^j$ for every j < k.
- b) A only accepts words that are encodings of objects. Follows easily from the fact that *T* satisfies the same property for pairs of objects.

Correctness proof

c) If A accepts an object x, then there is an object y such that T accepts (x,y).

$$x$$
 accepted by A

- \Rightarrow s_x accepted by A
- $\Rightarrow \frac{S_x}{w}$ accepted by T for some w

By assumption, T only accepts pairs of words encoding some pair of objects. So w encodes some object y. By assumption, T then accepts all encodings of (x,y). So T accepts (x,y).

(part a)

Correctness proof

d) If a pair of objects (x, y) is accepted by T, then x is accepted by A.

```
(x,y) accepted by T
```

- $\Rightarrow \frac{w_x}{w_y}$ accepted by T for some encodings w_x , w_y of x and y
- $\Rightarrow w_{\chi}$ accepted by A
- \Rightarrow x accepted by A (part a))

Remember:

The projection automaton of a deterministic transducer may be nondeterministic.

Joi

- Goal: given transducers T_1 , T_2 recognizing relations R_1 , R_2 , construct a transducer $T_1 \circ T_2$ recogonizing the relation $R_1 \circ R_2$.
- First step: construct a transducer T that accepts $\frac{w}{v}$ iff there is a "connecting" word u such that

 $\frac{w}{u}$ is accepted by T_1 and $\frac{u}{v}$ is accepted by T2.

We slightly modify the pairing construction.

Instead of:

$$\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{a_1} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} \quad \text{iff} \quad \begin{array}{c} q_{01} \xrightarrow{a_1} & q_{11} \\ q_{02} \xrightarrow{a_1} & q_{12} \end{array}$$

we now use

$$\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} \quad \text{iff} \quad \begin{bmatrix} a_1 \\ c_1 \end{bmatrix} \xrightarrow{q_{01}} q_{11} \\ q_{02} \xrightarrow{\begin{bmatrix} c_1 \\ b_1 \end{bmatrix}} q_{12}$$

for some letter c1

The transducer T has a run

$$\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}} \begin{bmatrix} a_1 \\ b_2 \end{bmatrix} \xrightarrow{\begin{bmatrix} a_2 \\ b_2 \end{bmatrix}} & \cdots & \begin{bmatrix} q_{(n-1)1} \\ q_{(n-1)2} \end{bmatrix} \xrightarrow{\begin{bmatrix} a_n \\ b_n \end{bmatrix}} & \begin{bmatrix} q_{n1} \\ q_{n2} \end{bmatrix}$$

iff T_1 and T_2 have runs

We have the same problem as before.

• Let
$$R_1 = \{ (2,4) \}$$
, $R_2 = \{ (4,2) \}$.
Then $R_1 \circ R_2 = \{ (2,2) \}$.

- But the operation we have just defined does not yield the correct result.
- Solution: apply the padding closure again with padding symbol $\begin{bmatrix} # \\ # \end{bmatrix}$.

```
Join(T_1, T_2)
Input: transducers T_1 = (Q_1, \Sigma \times \Sigma, \delta_1, q_{01}, F_1), T_2 = (Q_2, \Sigma \times \Sigma, \delta_2, q_{02}, F_2)
Output: transducer T_1 \circ T_2 = (Q, \Sigma \times \Sigma, \delta, q_0, F)
  1 Q, \delta, F' \leftarrow \emptyset; q_0 \leftarrow [q_{01}, q_{02}]
  2 W \leftarrow \{[q_{01}, q_{02}]\}
       while W \neq \emptyset do
           pick [q_1, q_2] from W
           add [q_1, q_2] to Q
           if q_1 \in F_1 and q_2 \in F_2 then add [q_1, q_2] to F'
           for all (q_1, (a, c), q'_1) \in \delta_1, (q_2, (c, b), q'_2) \in \delta_2 do
               add ([q_1, q_2], (a, b), [q'_1, q'_2]) to \delta
  8
               if [q'_1, q'_2] \notin Q then add [q'_1, q'_2] to W
  9
       F \leftarrow \mathbf{PadClosure}((Q, \Sigma \times \Sigma \delta, q_0, F'), (\#, \#))
10
```

Complexity: similar to pairing

Example:

Let f be the Collatz function.

- Let
$$R_1 = R_2 = \{ (n, f(n)) \mid n \geq 0 \}$$
.

- Then $R_1 \circ R_2 = \{ (n, f(f(n))) \mid n \ge 0 \}$.

$$f(f((n)) = \left\{ \begin{array}{ll} n/4 & \text{if } n \equiv 0 \, mod \, 4 \\ 3n/2 + 1 & \text{if } n \equiv 2 \, mod \, 4 \\ 3n/2 + 1/2 & \text{if } n \equiv 1 \, mod \, 4 \, \text{or } n \equiv 3 \, mod \, 4 \end{array} \right.$$

Pre and Post

Goal (for post):given

- an automaton A recognizing a set X, and
- a transducer T recognizing a relation R construct an automaton B recognizing the set

$$\{y \mid \exists x \in X : (x,y) \in R\}$$

We slightly modify the construction for join.

Instead of:

$$\begin{bmatrix} q_{01} \\ q_{02} \end{bmatrix} \xrightarrow{\begin{bmatrix} a_1 \\ b_1 \end{bmatrix}} \begin{bmatrix} q_{11} \\ q_{12} \end{bmatrix} \quad \text{iff}$$

$$\begin{bmatrix} 901 \\ 902 \end{bmatrix} \xrightarrow{b_1} \begin{bmatrix} 911 \\ 912 \end{bmatrix} \text{ if } f$$

$$\begin{array}{ccc}
 & \begin{bmatrix} a_1 \\ c_1 \end{bmatrix} & \\
q_{01} & \xrightarrow{} & q_{11} \\
 & \begin{bmatrix} c_1 \\ b_1 \end{bmatrix} & \\
q_{02} & \xrightarrow{} & q_{12}
\end{array}$$

for some letter c1

$$901 \xrightarrow{91} 911$$
 $902 \xrightarrow{[61]} 912$
for some letter a_1

From Join to Post

```
Join(T_1, T_2)
Input: transducers T_1 = (Q_1, \Sigma \times \Sigma, \delta_1, q_{01}, F_1), T_2 = (Q_2, \Sigma \times \Sigma, \delta_2, q_{02}, F_2)
Output: transducer T_1 \circ T_2 = (Q, \Sigma \times \Sigma, \delta, q_0, F)
  1 Q, \delta, F' \leftarrow \emptyset; q_0 \leftarrow [q_{01}, q_{02}]
  2 W \leftarrow \{[q_{01}, q_{02}]\}
       while W \neq \emptyset do
           pick [q_1, q_2] from W
           add [q_1, q_2] to Q
           if q_1 \in F_1 and q_2 \in F_2 then add [q_1, q_2] to F'
           for all (q_1, (a, c), q'_1) \in \delta_1, (q_2, (c, b), q'_2) \in \delta_2 do
               add ([q_1, q_2], (a, b), [q'_1, q'_2]) to \delta
               if [q'_1, q'_2] \notin Q then add [q'_1, q'_2] to W
       F \leftarrow \mathbf{PadClosure}((Q, \Sigma \times \Sigma \delta, q_0, F'), (\#, \#))
```

Example: compute the set { f(n) | n multiple of 3 }

