#### **Finite Universes**

- When the universe is finite (e.g., the interval [0, 2<sup>32</sup> 1]), all objects can be encoded by words of the same length.
- A language L has length  $n \ge 0$  if
  - $-L = \emptyset$  and n = 0, or
  - $-L \neq \emptyset$  and every word of L has length n.
- L is a fixed-length language if it has length n for some  $n \ge 0$  .
- Observe:
  - Fixed-length languages contain finitely many words.
  - $\emptyset$  and  $\{\varepsilon\}$  are the only two languages of length 0.

### **The Master Automaton**



- The master automaton over  $\Sigma$  is the tuple  $M=(Q_M,\Sigma,\delta_M,F_M)$ , where
  - $-Q_M$  is the set of all fixed-length languages;
  - $-\delta_M: Q_M \times \Sigma \to Q_M$  is given by  $\delta_M(L, a) = L^a$ ;
  - $-F_M$  is the set  $\{\{\varepsilon\}\}$ .
- Prop: The language recognized from state L of the master automaton is L.

Proof: By induction on the length n of L.

- n=0. Then either  $L=\emptyset$  or  $L=\{\varepsilon\}$  , and result follows by inspection.
- n>0. Then  $\delta_M(L,a)=L^a$  for every  $a\in \Sigma$ , and  $L^a$  has smaller length than L. By induction hypothesis the state  $L^a$  recognizes the language  $L^a$ , and so the state L recognizes the language L.

- We denote the "fragment" of the master automaton reachable from state L by A<sub>L</sub>:
  - Initial state is L.
  - States and transitions are those reachable from L.
- Prop:  $A_L$  is the minimal DFA recognizing L.

Proof: By definition, all states of  $A_L$  are reachable from its initial state. Since every state of the master automaton recognizes its "own" language, distinct states of  $A_L$  recognize distinct languages.

### Data structure for fixed-length languages

- The structure representing the set of languages  $\mathcal{L} = \{L_1, \dots, L_m\}$  is the fragment of the master automaton containing states  $L_1, \dots, L_m$  and their descendants.
- It is a multi-DFA, i.e., a DFA with multiple initial states.



In order to manipulate multi-DFAs we represent them as a *table of nodes*. Assume  $\Sigma = \{a_1, \ldots, a_m\}$ . A *node* is a pair  $\langle q, s \rangle$ , where q is a *state identifier* and  $s = (q_1, \ldots, q_m)$  is the *successor tuple* of the node. The multi-DFA is represented by a table containing a node for each state, but the state corresponding to the empty language<sup>1</sup>.



- We represent multi-DFAs as tables of nodes.
- A node is a pair  $\langle q, s \rangle$  where
  - q is a state identifier, and
  - $-s = (q_1, ..., q_m)$  is a successor tuple.
- The table for a multi-DFA contains a node for each state but the state for the empty language.



| Ident. | a-succ | b-succ |
|--------|--------|--------|
| 1      | 0      | 0      |
| 2      | 1      | 0      |
| 3      | 1      | 1      |
| 4      | 0      | 1      |
| 5      | 2      | 0      |
| 6      | 2      | 4      |
| 7      | 3      | 0      |

- The procedure make[T](s)
  - returns the state identifier of the node of table T having s as successor tuple, if such a node exists;
  - otherwise it adds a new node  $\langle q, s \rangle$  to T, where q is a fresh identifier, and returns q.
- make[T](s) assumes that T contains a node for every identifier in s.

### Implementing union and intersection



- We give a recursive algorithm  $inter[T](q_1, q_2)$ :
  - Input: state identifiers  $q_1$ ,  $q_2$  from table T.
  - Output: identifier of the state recognizing  $L(q_1) \cap L(q_2)$  in the multi-DFA for T.
  - Side-effect: if the identifier is not in T, then the algorithm adds new nodes to T, i.e., after termination the table T may have been extended.
- The algorithm follows immediately from the following properties
  - (1) if  $L_1 = \emptyset$ , then  $L_1 \cap L_2 = \emptyset$ ;
  - (2) if  $L_2 = \emptyset$ , then  $L_1 \cap L_2 = \emptyset$ ;
  - (3) If  $L_1 \neq \emptyset$  and  $L_2 \neq \emptyset$ , then  $(L_1 \cap L_2)^a = L_1^a \cap L_2^a$  for every  $a \in \Sigma$ .

```
inter[T](q_1,q_2)
Input: table T, states q_1, q_2 of T
Output: state recognizing \mathcal{L}(q_1) \cap \mathcal{L}(q_2)
       if G(q_1, q_2) is not empty then return G(q_1, q_2)
     if q_1 = q_\emptyset \lor q_2 = q_\emptyset then return q_\emptyset
      if q_1 \neq q_\emptyset \land q_2 \neq q_\emptyset then
           for all i = 1, ..., m do r_i \leftarrow inter[T](q_1^{a_i}, q_2^{a_i})
          G(q_1, q_2) \leftarrow \mathsf{make}[T](r_1, \dots, r_m)
          return G(q_1, q_2)
  6
```





## Fixed-length complement

In principle ill-defined, because the complement of a fixed-length language is not fixed-length.

We implement the fixed-length complement instead.

Can't we just swap the states for the empty language and the language containing the empty word?

Yes and no ...

## Fixed-length complement

#### **Equations:**

- if  $L = \emptyset$ , then  $\overline{L} = \Sigma^n$ , where n is the length of L;
- if  $L = \{\epsilon\}$ , then  $\overline{L} = \emptyset$ ; and
- if  $\emptyset \neq L \neq \{\epsilon\}$ , then  $\left(\overline{L}\right)^a = \overline{L^a}$ . (Observe that  $w \in \left(\overline{L}\right)^a$  iff  $aw \notin L$  iff  $w \notin L^a$  iff  $w \in \overline{L^a}$ .)

```
comp[T, n](q)
```

**Input:** table T, length n, state q of T of length n

**Output:** state recognizing the fixed-length complement of L(q)

- 1 if G(q) is not empty then return G(q)
- 2 if n = 0 and  $q = q_{\emptyset}$  then return  $q_{\epsilon}$
- 3 else if n = 0 and  $q = q_{\epsilon}$  then return  $q_{\emptyset}$
- 4 **else**  $/ * n \ge 1 * /$
- 5 **for all** i = 1, ..., m **do**  $r_i \leftarrow comp[T, n 1](q^{a_i})$
- 6  $G(q) \leftarrow \mathsf{make}[T](r_1, \ldots, r_m)$
- 7 return G(q)

# **Emptiness**

```
empty[T](q)

Input: table T, state q of T

Output: true if \mathcal{L}(q) = \emptyset, false otherwise

1 return q = q_{\emptyset}
```

### Universality

- if  $L = \emptyset$ , then L is not universal;
- if  $L = \{\epsilon\}$ , then L is universal;
- if  $\emptyset \neq L \neq \{\epsilon\}$ , then L is universal iff  $L^a$  is universal for every  $a \in \Sigma$ .

```
univ[T](q)
Input: table T, state q of T
Output: true if \mathcal{L}(q) is fixed-length universal,
             false otherwise
      if G(q) is not empty then return G(q)
     if q = q_{\emptyset} then return false
      else if q = q_{\epsilon} then return true
      else /*q \neq q_0 and q \neq q_{\epsilon} * /
         for all i = 1, ..., m do r_i \leftarrow comp[T](q^{a_i})
 5
         G(q) \leftarrow \mathbf{and}(univ[T](r_1), \dots, univ[T](r_m))
 6
         return G(q)
```

## **Inclusion and Equality**

**Inclusion.** Given two languages  $L_1, L_2 \subseteq \Sigma^n$ , in order to check  $L_1 \subseteq L_2$  we compute  $L_1 \cap L_2$  and check whether it is equal to  $L_1$  using the equality check shown next. The complexity is dominated by the complexity of computing the intersection.

```
eq[T](q_1,q_2)
```

**Input:** table T, states  $q_1, q_2$  of T

Output: true if  $\mathcal{L}(q_1) = \mathcal{L}(q_2)$ , false otherwise

1 return  $q_1 = q_2$ 

```
eq[T_1,T_2](q_1,q_2)
Input: tables T_1, T_2, states q_1 of T_1, q_2 of T_2
Output: true if \mathcal{L}(q_1) = \mathcal{L}(q_2), false otherwise
          if G(q_1, q_2) is not empty then return G(q_1, q_2)
          if q_1 = q_{01} and q_2 = q_{02} then G(q_1, q_2) \leftarrow \text{true}
  3
          else if q_1 = q_{01} and q_2 \neq q_{02} then G(q_1, q_2) \leftarrow false
          else if q_1 \neq q_{\emptyset 1} and q_2 = q_{\emptyset 2} then G(q_1, q_2) \leftarrow false
  4
          else /*q_1 \neq q_{01} and q_2 \neq q_{02} */
  5
               G(q_1, q_2) \leftarrow \mathbf{and}(eq(q_1^{a_1}, q_2^{a_1}), \dots, eq(q_1^{a_m}, q_2^{a_m}))
 6
          return G(q_1, q_2)
```

### What if the starting point is an NFA?

- Given: NFA A accepting a fixed-length language and containing no cycles.
  - Goal: simultaneously determinize and minimize A
- Each state of A accepts a fixed-length language.
- We give an algorithm state(S):
  - Input: a subset S of states of A accepting languages of the same length.
  - Output: the state of the master automaton accepting  $\bigcup_{q \in S} L(q)$ .
- Goal is achieved by calling state({q<sub>0</sub>})

#### Equations:

- if  $S = \emptyset$  then  $\mathcal{L}(S) = \emptyset$ ;
- if  $S \cap F \neq \emptyset$  then  $\mathcal{L}(S) = \{\epsilon\}$
- if  $S \neq \emptyset$  and  $S \cap F = \emptyset$ , then  $\mathcal{L}(S) = \bigcup_{i=1}^{n} a_i \cdot \mathcal{L}(S_i)$ , where  $S_i = \delta(S, a_i)$ .

```
state[A](S)
```

**Input:** NFA  $A = (Q, \Sigma, \delta, q_0, F)$ , set  $S \subseteq Q$ 

**Output:** master state recognizing  $\mathcal{L}(S)$ 

- if G(S) is not empty then return G(S)
- else if  $S = \emptyset$  then return  $q_{\emptyset}$
- 3 else if  $S \cap F \neq \emptyset$  then return  $q_{\epsilon}$
- 4 **else**  $/ * S \neq \emptyset$  and  $S \cap F = \emptyset * /$
- for all  $i = 1, ..., m \text{ do } S_i \leftarrow \delta(S, a_i)$
- 6  $G(S) \leftarrow make(state[A](S_1), \dots, state[A](S_m))$ :
- 7 return G(S)



### **Operations on relations**

**Definition 6.10** A word relation  $R \subseteq \Sigma^* \times \Sigma^*$  has length  $n \ge 0$  if it is empty and n = 0, or if it is nonempty and for all pairs  $(w_1, w_2)$  of R the words  $w_1$  and  $w_2$  have length n. If R has length n for some  $n \ge 0$ , then we say that R is a fixed-length word relation, or that R has fixed-length.

**Definition 6.12** The master transducer over the alphabet  $\Sigma$  is the tuple  $MT = (Q_M, \Sigma \times \Sigma, \delta_M, F_M)$ , where

- $Q_M$  is is the set of all fixed-length relations;
- $\delta_M: Q_M \times (\Sigma \times \Sigma) \to Q_M$  is given by  $\delta_M(R, [a, b]) = R^{[a,b]}$  for every  $q \in Q_M$  and  $a, b \in \Sigma$ ;
- $F_M = \{(\varepsilon, \varepsilon)\}.$

With T\_R as the "fragment" of MT with R as root we get:

**Proposition 6.13** For every fixed-length word relation R, the transducer  $T_R$  is the minimal deterministic transducer recognizing R.

## Storing minimal transducers

Like minimal DFA, minimal deterministic transducers are represented as tables of nodes. However, a remark is in order: since a state of a deterministic transducer has  $|\Sigma|^2$  successors, one for each letter of  $\Sigma \times \Sigma$ , a row of the table has  $|\Sigma|^2$  entries, too large when the table is only sparsely filled. Sparse transducers over  $\Sigma \times \Sigma$  are better encoded as NFAs over  $\Sigma$  by introducing auxiliary states: a transition  $q \xrightarrow{[a,b]} q'$  of the transducer is "simulated" by two transitions  $q \xrightarrow{a} r \xrightarrow{b} q'$ , where r is an auxiliary state with exactly one input and one output transition.

### **Computing joins**

#### Equations:

- $\emptyset \circ R = R \circ \emptyset = \emptyset$ ;
- $\{(\varepsilon, \varepsilon)\} \circ \{(\varepsilon, \varepsilon)\} = \{(\varepsilon, \varepsilon)\};$
- $\bullet \ R_1 \circ R_2 = \bigcup_{a,b,c \in \Sigma} [a,b] \cdot \left( R_1^{[a,c]} \circ R_2^{[c,b]} \right).$

```
Input: transducer table T, states q_1, q_2 of T
Output: state recognizing \mathcal{L}(q_1) \circ \mathcal{L}(q_2)
       join[T](q_1,q_2)
           if G(q_1, q_2) is not empty then return G(q_1, q_2)
  3
           if q_1 = q_0 or q_2 = q_0 then return q_0
           else if q_1 = q_{\epsilon} and q_2 = q_{\epsilon} then return q_{\epsilon}
  4
  5
           else /*q_0 \neq q_1 \neq q_\epsilon, q_0 \neq q_2 \neq q_\epsilon */
  6
               for all (a_i, a_i) \in \Sigma \times \Sigma do
                   q_{a_i,a_i} \leftarrow union[T] \left( join\left(q_1^{[a_i,a_1]}, q_2^{[a_1,a_j]}\right), \dots, join\left(q_1^{[a_i,a_m]}, q_2^{[a_m,a_j]}\right) \right)
  7
               G(q_1, q_2) = make(q_{a_1, a_1}, \dots, q_{a_1, a_m}, \dots, q_{a_m, a_m})
  9
               return G(q_1, q_2)
```

#### **Pre and Post**

Pre and Post can be reduced to intersection and projection. Define:

$$emb(L) = \{ [v_1, v_2] \in (\Sigma \times \Sigma)^n \mid v_2 \in L \}$$
  
 $pre_S(L) = \{ w_1 \in \Sigma^n \mid \exists [v_1, v_2] \in S : v_1 = w_1 \text{ and } v_2 \in L \}$ 

Then we have:

$$pre_S(L) = proj_1(S \cap emb(L))$$

We use this to derive equations.

### Equations:

$$\begin{split} &if \, S = \emptyset \ or \ L = \emptyset, \ then \ pre_S(L) = \emptyset; \\ &if \, S \neq \emptyset \neq L \ then \ pre_S(L) = \bigcup_{a,b \in \Sigma} a \cdot pre_{S[a,b]}(L^b), \\ &where \, S^{[a,b]} = \{ w \in (\Sigma \times \Sigma)^* \mid [a,b]w \in S \}. \end{split}$$

$$(pre_{S}(L))^{a} = (proj_{1}(S \cap emb(L)))^{a}$$

$$= \left( proj_{1} \left( \bigcup_{b \in \Sigma} [a, b] \cdot (S \cap emb(L))[a, b] \right) \right)^{a}$$

$$= \left( \bigcup_{b \in \Sigma} proj_{1} \left( [a, b] \cdot (S \cap emb(L))[a, b] \right) \right)^{a}$$

$$= \left( \bigcup_{b \in \Sigma} a \cdot proj_{1} \left( (S \cap emb(L))[a, b] \right) \right)^{a}$$

$$= \bigcup_{b \in \Sigma} proj_{1} \left( (S \cap emb(L))[a, b] \right)$$

$$= \bigcup_{b \in \Sigma} proj_{1} \left( S[a, b] \cap emb(L) \right)$$

$$= \bigcup_{b \in \Sigma} proj_{1} \left( S[a, b] \cap emb(L) \right)$$

$$= \bigcup_{b \in \Sigma} proj_{1} \left( S[a, b] \cap emb(L) \right)$$

```
Input: transducer table TT, table T, state r of TT, state q of T
Output: state of T recognizing pre_{\mathcal{L}(r)}(\mathcal{L}(q))
      pre[TT,T](r,q)
          if G(r,q) is not empty then return G(r,q)
 3
          if r = r_{\emptyset} or q = q_{\emptyset} then return q_{\emptyset}
          else if r = r_{\epsilon} and q = q_{\epsilon} then return q_{\epsilon}
 4
 5
          else
              for all a_i \in \Sigma do
 6
                 q_{a_i} \leftarrow union\left(pre[TT, T]\left(q^{[a_i, a_1]}, r^{a_1}\right), \dots, pre[TT, T]\left(q^{[a_i, a_m]}, r^{a_m}\right)\right)
              G(r,q) \leftarrow make(q_{a_1},\ldots,q_{a_m});
 8
              return G(r,q)
 9
```

## **Binary Decision**



### The master z-automaton





Length: 2



### Data structure for z-automata



| Ident. | Length | a-succ | b-succ |
|--------|--------|--------|--------|
| 1      | 0      | 0      | 0      |
| 2      | 1      | 1      | 0      |
| 4      | 1      | 0      | 1      |
| 6      | 2      | 2      | 1      |



