Finite Universes

When the universe is finite (e.g., the interval
[0,23% — 1]), all objects can be encoded by words of
the same length.

A language L has lengthn = 0 if
—L=@andn =0, or
— L # @ and every word of L has length n.

L is a fixed-length language if it has length n for some
n=0,
Observe:

— Fixed-length languages contain finitely many words.
— @ and {¢} are the only two languages of length 0.

The Master Automaton

@. aba, baa, bab, bba, bbb} @bb. baa, bab, bbb)
/ b a b
a a,b b
b
a a
@ a,b |

a,b

b

a,
b

The master automaton over X is the tuple M = (Qu, Z, 651, Fy),
where

— Qy is the set of all fixed-length languages;
— Oyt QX X > Qyis given by 6,,(L,a) = L%;
— Fy istheset { {e}}.

Prop: The language recognized from state L of the master
automatoniis L.

Proof: By induction on the length n of L.

= (0. Then either L = @ or L = {&}, and result follows by inspection.

n > 0.Then &y, (L,a) = L® for every a € %, and L?* has smaller length than
L. By induction hypothesis the state L% recognizes the language L%,
and so the state L recognizes the language L.

* We denote the ,fragment” of the master automaton

reachable from state L by A, :
* |nitial state is L.
 States and transitions are those reachable from L.

* Prop: A; is the minimal DFA recognizing L.
Proof: By definition, all states of A; are reachable from its initial state.
Since every state of the master automaton recognizes its ,own“
language, distinct states of A; recognize distinct languages.

Data structure for fixed-length languages

* The structure representing the set of languages

L ={L4,..,L,}Iisthe fragment of the master automaton
containing states L4, ..., L,,, and their descendants.

* |tisa multi-DFA, i.e., a DFA with multiple initial states.

L

a. b

In order to manipulate multi-DFAs we represent them as a table of nodes. Assume
~ =\{ay,...,ay}. Anodeisapair(q, s), where g 1s a state identifierand s = (qy,...,qm)
is the successor tuple of the node. The multi-DFA is represented by a table containing
a node for each state, but the state corresponding to the empty language'. -

Ident. | a-succ b-succ
| 0 0

(NI O

e NV RN
WRNN O — —
SCEA O ==

* We represent multi-DFAs as tables of nodes.
* Anodeis apair (g, s) where

— @ is a state identifier, and

— s = (g4, ..., Qi) is a successor tuple.

e The table for a multi-DFA contains a node for each state but
the state for the empty language.

G = = Q@ WS

SUcCcC

b

SUcCcC

& ™= == & N N N

-

= N) | V) D =

Ident.

a,b

-
<

* The procedure make|T](s)

— returns the state identifier of the node of table T having s
as successor tuple, if such a node exists;

— otherwise it adds a new node (g, s) to T, where q is a fresh
identifier , and returns q.

* make|T](s) assumes that T contains a node for every
identifierin s.

Implementing union and intersection

LrN Ly

* We give a recursive algorithm inter|T|(q4,g>):
— Input: state identifiers g4, g, from table T.

— Output: identifier of the state recognizing L(g,) N L(g,) in
the multi-DFA for T'.

— Side-effect: if the identifier is not in T, then the algorithm
adds new nodes to T, i.e., after termination the
table T may have been extended.

* The algorithm follows immediately from the following properties
(1) |fL1 —_ Q, then Ll N Lz — @,
(2) ifL, =0,thenLi;NL, =0;

(3) IfLy # ®and L, + @, then (L; N L,)* = LT N LS for every
aeE .

inter| T (g1, q2)
Input: table 7, states gy, of T

Output: state recognizing L(q;) N L(q>)
| if G(g1,q>) 1s not empty then return G(¢q, ¢>)
2 if g, = qp V g2 = gp then return g
3 ifqg, #qp N\ g2 # gy then
4 foralli=1,...,mdor;, < inter|T]|(g
5
6

a;

[45)
G(q1,q2) « make[T|(ry,...,1m)
return G(q,,q2)

/0

12,13+ 15

<

8.11 » 8 910|—>l4
5,75 0,70 57|->5 76H6

ks
\ / \

0,1 = 0|0, 1=0[|1,1=1 L1110l =0[(L1Im0|LI-1

0,0 0| 10,0 0

Fixed-length complement

In principle ill-defined, because the complement of a
fixed-length language is not fixed-length.

We implement the fixed-length complement instead.

Can't we just swap the states for the empty language and
the language containing the empty word?

Yes and no ...

12

Fixed-length complement

Equations:

e if L =0, then L = X", where n is the length of L;
e if L = {€}, then L = 0; and

e if 0 # L # {€}, then (L) =L
(Observe that w € (L) iff aw ¢ Liff w ¢ L% iff w € L)

comp|T, n](q)
Input: table 7', length n, state g of T of length n

Output: state recognizing the fixed-length complement of L(g)
1 if G(g) 1s not empty then return G(g)

2 ifn =0 and g = gy then return g,

3 elseif n = 0and g = g, then return g

4 else /x n>1 x/

5 foralli=1,..., mdor; < comp[T,n— 1](g“)
6 G(qg) < make|T|(r1,...,1y)

7 return G(q)

Emptiness

empty| T |(q)

Input: table 7', state g of T

Output: true if L(g) = 0, false otherwise
| return g = gy

l#

IS
Universality

e if L = (), then L is not universal;
e if L = {€}, then L 1s universal;

e 1f) # L # {€}, then L 1s universal 1ff L“ 1s universal for every a € X.

univ|T|(q)
Input: table 7', state g of T
Output: true if L(g) is fixed-length universal,

I
2
3
4
5
6
i

false otherwise

if G(g) 1s not empty then return G(g)

if ¢ = gy then return false

else if ¢ = g, then return true

else /g # qgpand g # g * /
foralli=1,...,mdor; « comp|T]|(g")
G(q) <« and(univ[T](ry), ..., univ[T|(r,))
return G(g)

/6

17
Inclusion and Equality

Inclusion. Given two languages L;, L, € X", in order to check L; € L, we compute
L, N L, and check whether 1t 1s equal to L, using the equality check shown next. The
complexity is dominated by the complexity of computing the intersection.

e‘][T](([I s CIZ)
Input: table 7, states g;, g, of T
Output: true if L(q,) = L(g»), false otherwise

| return g, = ¢

eql Ty, T21(q1,q2)
Input: tables 7', T>, states g; of T, g of T»
Output: true if L(g,) = L(g»), false otherwise

l

hnh B W N

~N O

if G(q, g>) 1s not empty then return G(q,, ¢>)
if g1 = go1 and ¢» = gg> then G(qy, ¢2) < true
else if ¢, = gg; and ¢» # gy then G(q,, q>) «— false
else if ¢; # go; and ¢» = gy then G(q,,q>) «— false
else /*q; # go1 and g2 # g2 * /

G(q1,492) < and(eq(q{', 45
return G(q, q>)

(IHI (‘"l

), ..., eq(q,",q,"))

/8

/9
What if the starting point is an NFA?

* Given: NFA A accepting a fixed-length language and
containing no cycles.

Goal: simultaneously determinize and minimize A
 Each state of A accepts a fixed-length language.

* We give an algorithm state(S):

— Input: a subset S of states of A accepting languages of the
same length.

— Output: the state of the master automaton accepting
UqESL(Q)*
* Goalis achieved by calling state({gy})

20
Equations:

e if S =0then L(S) =0;
o if S NF # 0 then L(S) = {€}
e if S #0and S N F =0, then L(S) = Ua,--L(S,-), where S; = 6(S, a;).

=]l

state|A](S)

Input: NFA A = (0Q,%2,9,q, F),setS C Q

Output: master state recognizing L(S)

if G(S) i1s not empty then return G(S)

else if S = () then return ¢

else if S N F # () then return ¢,

else /«*S #0and S NF =0/
foralli=1,....,mdoS; « &(5,aqa;)
G(S) « make(state[Al(S), ..., state[A](S ,,)):
return G(S5)

~N N RN =

2|

(3

[\

7,60 1

1

—

n

N

a5

e 2

0,6, — 3

7,0 — 1

[\

PN

n 1

e 2

n+— 1

/ N\

D0

22
Operations on relations

Definition 6.10 A word relation R C X" X X* has length n > 0 if it is empty and n = 0,
or if it is nonempty and for all pairs (wi,w>) of R the words w| and w, have length n.
If R has length n for some n > 0, then we say that R is a fixed-length word relation, or
that R has fixed-length.

Definition 6.12 The master transducer over the alphabet X is the tuple MT = (Qy, 2 X
2, 0m, F), where

e Qy is is the set of all fixed-length relations;

® Oy: Oy X (T XZX) = Qu is given by (R, [a, b]) = R for every g € Qy and
a,b € X;

o Fy ={(g,8)}
With T_R as the "fragment” of MT with R as root we get:

Proposition 6.13 For every fixed-length word relation R, the transducer Ty is the min-
imal deterministic transducer recognizing R.

23
Storing minimal transducers

Like minimal DFA, minimal deterministic transducers are represented as tables of
nodes. However, a remark 1s in order: since a state of a deterministic transducer has
IZ|> successors, one for each letter of £ X ¥, a row of the table has |X|> entries, too

large when the table 1s only sparsely filled. Sparse transducers over X X X are better
; : — s [a,b]
encoded as NFAs over X by introducing auxiliary states: a transition ¢ —— ¢’ of the

Si_ GG 5 siuis a b ; saia
transducer is “simulated” by two transitions ¢ — r — ¢’, where r 1s an auxiliary state

with exactly one input and one output transition.

Computing joins
Equations:
¢)oR=Ro(=0;

o {(g,8)}o{(e,8)} = {(&,8)};
e RioR, = U la, b] - (R[l““'l o R!z"‘b]) .

a.b.cex

24

Input: transducer table 7', states gy, g, of T
Output: state recognizing L(q;) o L(g»)

1

O &0 9 N O B W N

Jjoin[T(q1,q2)

if G(q,, g>) 1s not empty then return G(q,, g»)
if g, = qp or g> = gy then return g
else if g, = g and ¢» = ¢, then return ¢,

else /xqy#q #Ge.qo # G2 # Ge * /|

for all (a;,a;) e 2 XX do
Gaja; < union|T | (join (

G(q1,q2) = make(qa, a4, »- - -
return G(q1, ¢>)

la;ay] _lar.a;)

49 49

’ flal,a,,,, ..

),...,join.(q

i qam .Hm)

laivamj
|

[(i,,, A]
>12

235

)

Pre and Post

Pre and Post can be reduced to intersection
and projection. Define:

emb(L) = {[vi,v] € EXX)"| v, € L}
prég (L) ={w, € I | A[vi,»»]€S:vi=w;and v, € L}

Then we have:

preg(L) = proj, (S Nemb(L))

We use this to derive equations.

26

Equations:

if S =0 or L =0, then preg(L) = 0;

; b
if S # 0 # L then preg(L) = U a-pre [q, b] (L"),

a.bex

where S = {y e (T xX)* | [a,b]w € S).

2}

(preg(L))*

28
(proj,(S N emb(L)))"

\ a
(proj, (U la,b] - (S N emb(L))[a’ b])

U

beX

U a- proj, ((S N emb(L))[a’ b])T

\ he¥

J proj, ((S N emb(L))[a’ b])

beX

U proj, (S 4. 0] emb (Lb))

beX

U p'.es [a, b] (Lb)

beX

\(I
proj, ([a, bl-(S N emb(L))[a’ b])J

(

29

Input: transducer table T'T, table 7', state r of TT, state g of T

Output: state of 7' recognizing pre, ,,(L(g))
I prelTT, T|(r,q)

2 if G(r, g) 1s not empty then return G(r, g)
3 if r = ry or g = gy then return g

4 else if r = r. and ¢ = ¢, then return ¢,

5 else

6 for all ¢; € X do

7

8

9

G(r,q) < make(qq,,....qa,):
return G(r, g)

Go, < union (pre[TT, T](gl% @]y}, ..

pre[TT, T (q[a" »am r""*))

Binary Decision

30

The master z-automaton

@b. aba, baa, bab, bba, bbb} (b.abb. baa, bab, bbb}
/

a, b

da. b

LY

@b. aba, baa, bab, bba, bbb) @ abb, baa, bab, bbb)

hx?

a

ax

b

ax

b

laa, ab, bb)

b

(,

OF
@

a, b

a. b

aX

32

55

Length: 2

4
Data structure for z-automata

Ident. | Length | a-succ b-succ
I 0 0 0
0
1
I

AN =
| I
N O

12,13 - 15

5,15

DN

2,1 > 2

0,1=>0

3,1—-3

9

10— 14

- =

1,21=2

ANV NEYA

1,11

0,1 =0

0,1 =0

I,1—>1

/

N\

0,00

0,0~ 0

I,1=1

||

0,10

