Technische Universität München Prof. J. Esparza / J. Křetínský Winter term 2012/13 Name:

Matrikelnummer:

Automata and Formal Languages – Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

Answer:

```
6 \times 1.5 P = 9 P
```

Question: Consider $L \subseteq \{a, b\}^*$ the set of words, where *a* occurs only at even, or only at odd positions (not necessarily at *all* even/odd positions). For example, $aba \in L$, $babbb \in L$, $aa \notin L$. Give a corresponding MSO formula *and* an automaton for *L*. You may use macros from the lecture notes.

Answer:	
Question :	Let $L \subseteq \Sigma^*$ be a language defined by the MSO sentence $\forall X \exists x \ (x \in X \lor x \notin X)$. Write down a regular expression for L .
Answer:	
Question :	Write an MSO formula for the language $(aab)^*$. You may use macros from the lecture notes.
Answer:	
Question :	Give a Büchi automaton and a ω -regular expression for the formula $\mathbf{F} \mathbf{G} (p \lor q)$ over the atomic propositions $AP = \{p, q\}$. (Recall that the language of the formula is an ω -language over the alphabet $\Sigma = 2^{AP}$.)
Answer:	
Question :	Decide whether $\mathbf{G}(a\mathbf{U}b)$ and $\mathbf{G}(a \lor b) \land \mathbf{F}b$ are equivalent and prove your answer.
Answer:	
Question :	Let \mathcal{A} be a DFA recognizing a language $L \subseteq \Sigma^n$ of a fixed length n . What is the language recognized by \mathcal{A} seen as a co-Büchi automaton? (Recall that transition function of a DFA is total.)

Exercise 2

- (a) Give a transducer \mathcal{T} over $\{0,1\}$ recognizing the lsbf encodings of the pairs $(v,w) \in \mathbb{N} \times \mathbb{N}$ such that v < w, i.e. $L = \{(v,w) \mid \text{lsbf}^{-1}(v) < \text{lsbf}^{-1}(w)\}$
- (b) Prove that \mathcal{T} recognizes L by induction on the length of the word.

Exercise 3

Recall that $\{a^m b^n \mid m = n\}$ is not regular. Decide whether the following languages are regular or not. If yes, give a corresponding automaton or a regular expression. If no, either show it has infinitely many residuals, or use closure properties as discussed in the exercises.

(a) $L_1 = \{w \in \{a, b\}^* \mid w \text{ contains as many } a' \text{ as } b's\}$

(b) $L_2 = \{w \in \{a, b\}^* \mid w \text{ contains as many } ab' \text{ as } ba's\}$ (For example, in w = abaab there are two ab's and one ba, hence $w \notin L_2$.)

(c) $L_3 = \{a^m b^n \mid m \le n, m < 1000\}$

Exercise 4

Given a finite automaton $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ recognizing a language $L \subseteq \Sigma^*$, construct a transducer $\mathcal{T} = (Q', \Sigma', \delta', q'_0, F')$ recognizing $\{(a_1 \cdots a_n, b_1 \cdots b_n) \in \Sigma^* \times \Sigma^* \mid a_1 a_2 \cdots a_n \in L \text{ and } a_1 b_1 a_2 b_2 \cdots a_n b_n \in L\}$.

Exercise 5

Consider the following program P with a binary variable x initialised to 0:

- loop
- 1: non-deterministically choose
- 2: either $x \leftarrow 1$
- 3: or $x \leftarrow 0$
- (a) Construct a network of automata for P and x and their asynchronous product.
- (b) Using the standard algorithm from the lecture decide whether $\mathbf{F} = 1$ holds for P.

Exercise 6

Let Inf(w) denote the set of letters that occur infinitely often in the word w. Consider the language $L = \{w \in \{a, b, c\}^{\omega} \mid a \in Inf(w) \Rightarrow b \notin Inf(w)\}.$

- (a) Construct a *deterministic* Muller automaton for L with only two states.
- (b) Construct an equivalent Rabin automaton.

Exercise 7

Given a language $L \subseteq \Sigma^*$ of finite words, we define the *limit* ω -language $\overrightarrow{L} \subseteq \Sigma^{\omega}$ as follows: $w \in \overrightarrow{L}$ iff infinitely many prefixes of w belong to L. For example, if $L = b + (ab)^*$ then $\overrightarrow{L} = (ab)^{\omega}$.

- (a) Give an NFA \mathcal{N} such that the limit of its language and the language of \mathcal{N} viewed as a Büchi automaton differ.
- (b)* Prove that for a DFA \mathcal{D} , the limit of its language and the language of \mathcal{D} viewed as a Büchi automaton coincide.

6 P

4 P

3 P

4 P

4 P