Automata and Formal Languages - Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

Question: Consider $L \subseteq\{a, b\}^{*}$ the set of words, where a occurs only at even, or only at odd positions (not necessarily at all even/odd positions). For example, $a b a \in L, b a b b b \in L, a a \notin L$. Give a corresponding MSO formula and an automaton for L. You may use macros from the lecture notes.

Answer :

Question: Let $L \subseteq \Sigma^{*}$ be a language defined by the MSO sentence $\forall X \exists x(x \in X \vee x \notin X)$. Write down a regular expression for L.

Answer :

Question: Write an MSO formula for the language $(a a b)^{*}$. You may use macros from the lecture notes.

Answer:

Question: Give a Büchi automaton and a ω-regular expression for the formula $\mathbf{F G}(p \vee q)$ over the atomic propositions $A P=\{p, q\}$. (Recall that the language of the formula is an ω-language over the alphabet $\Sigma=2^{A P}$.)

Answer :

Question: Decide whether $\mathbf{G}(a \mathbf{U} b)$ and $\mathbf{G}(a \vee b) \wedge \mathbf{F} b$ are equivalent and prove your answer.

[^0]Answer:
(a) Give a transducer \mathcal{T} over $\{0,1\}$ recognizing the lsbf encodings of the pairs $(v, w) \in \mathbb{N} \times \mathbb{N}$ such that $v<w$, i.e. $L=$ $\left\{(v, w) \mid \operatorname{lsbf}^{-1}(v)<\operatorname{lsbf}^{-1}(w)\right\}$
(b) Prove that \mathcal{T} recognizes L by induction on the length of the word.

Exercise 3

Recall that $\left\{a^{m} b^{n} \mid m=n\right\}$ is not regular. Decide whether the following languages are regular or not. If yes, give a corresponding automaton or a regular expression. If no, either show it has infinitely many residuals, or use closure properties as discussed in the exercises.
(a) $L_{1}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains as many a^{\prime} as b^{\prime} 's $\}$
(b) $L_{2}=\left\{w \in\{a, b\}^{*} \mid w\right.$ contains as many $a b$ ' as $b a$'s $\}$ (For example, in $w=a b a a b$ there are two $a b$'s and one $b a$, hence $w \notin L_{2}$.)
(c) $L_{3}=\left\{a^{m} b^{n} \mid m \leq n, m<1000\right\}$

Exercise 4

Given a finite automaton $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ recognizing a language $L \subseteq \Sigma^{*}$, construct a transducer $\mathcal{T}=\left(Q^{\prime}, \Sigma^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ recognizing $\left\{\left(a_{1} \cdots a_{n}, b_{1} \cdots b_{n}\right) \in \Sigma^{*} \times \Sigma^{*} \mid a_{1} a_{2} \cdots a_{n} \in L\right.$ and $\left.a_{1} b_{1} a_{2} b_{2} \cdots a_{n} b_{n} \in L\right\}$.

Exercise 5

Consider the following program P with a binary variable x initialised to 0 :

```
loop
    non-deterministically choose
    either }x\leftarrow
    or }\quadx\leftarrow
```

(a) Construct a network of automata for P and x and their asynchronous product.
(b) Using the standard algorithm from the lecture decide whether $\mathbf{F} x=1$ holds for P.

Exercise 6

Let $\operatorname{Inf}(w)$ denote the set of letters that occur infinitely often in the word w. Consider the language $L=\left\{w \in\{a, b, c\}^{\omega} \mid\right.$ $a \in \operatorname{Inf}(w) \Rightarrow b \notin \operatorname{Inf}(w)\}$.
(a) Construct a deterministic Muller automaton for L with only two states.
(b) Construct an equivalent Rabin automaton.

Exercise 7

Given a language $L \subseteq \Sigma^{*}$ of finite words, we define the limit ω-language $\vec{L} \subseteq \Sigma^{\omega}$ as follows: $w \in \vec{L}$ iff infinitely many prefixes of w belong to L. For example, if $L=b+(a b)^{*}$ then $\vec{L}=(a b)^{\omega}$.
(a) Give an NFA \mathcal{N} such that the limit of its language and the language of \mathcal{N} viewed as a Büchi automaton differ.
(b)* Prove that for a DFA \mathcal{D}, the limit of its language and the language of \mathcal{D} viewed as a Büchi automaton coincide.

[^0]: Answer:

 Question: Let \mathcal{A} be a DFA recognizing a language $L \subseteq \Sigma^{n}$ of a fixed length n. What is the language recognized by \mathcal{A} seen as a co-Büchi automaton? (Recall that transition function of a DFA is total.)

