Automata and Formal Languages – Homework 10

Due 14.1.2013.

Exercise 10.1

Recall that finite languages of finite words are regular.

Find a language over $\{a,b\}$ consisting of one infinite word such that there is no Büchi automaton recognizing it.

Exercise 10.2

Construct Büchi automata accepting the following languages over $\Sigma = \{a, b, c\}$.

- (a) $L_0 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains } ab \text{ exactly once } \}.$
- (b) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains } ab \text{ at least once } \}.$
- (c) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains } ab \text{ infinitely often } \}.$
- (d) $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \text{contains } ab \text{ only finitely often } \}.$
- (e) $L_4 = \{ \alpha \in \Sigma^{\omega} \mid \text{if } \alpha \text{ contains infinitely many } a \text{'s then } \alpha \text{ contains infinitely many } b \text{'s } \}.$

Exercise 10.3

Construct deterministic Büchi automata accepting the following languages over $\Sigma = \{a, b, c\}$.

- (a) $L_1 = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains at least one letter } c \}.$
- (b) $L_2 = \{ \alpha \in \Sigma^{\omega} \mid \text{in } \alpha, \text{ every } a \text{ is immediately followed by a } b \}.$
- (c) $L_3 = \{ \alpha \in \Sigma^{\omega} \mid \text{in } \alpha, \text{ between two successive } a \text{'s there are at least two } b \text{'s } \}.$

Exercise 10.4

For a word w, let $\inf(w)$ denote the set of letters that occur infinitely many times in w.

Construct a Büchi automaton recognizing the language L over alphabet $\{a,b,c\}$ where

- (a) $L = \{w \mid \{a, b\} \supseteq \inf(w)\}$
- (b) $L = \{w \mid \{a, b\} = \inf(w)\}$
- (c) $L = \{w \mid \{a, b\} \subseteq \inf(w)\}$
- (d) $L = \{w \mid \{a, b, c\} = \inf(w)\}$
- (e) $L = \{w \mid \text{if } a \in \inf(w) \text{ then } \{b, c\} \subseteq \inf(w)\}$

Hint: It may be easier to construct a generalized Büchi automaton first and then transform it into a Büchi automaton.

Give the corresponding ω -regular expressions, too.

Exercise 10.5

- You are given finite words $u, v, x, y \in \Sigma^*$ which represent the ω -words $w := u v^{\omega}$ and $z := x y^{\omega}$. Give an algorithm for deciding " $w \stackrel{?}{=} z$?".
- You are given a Büchi automaton \mathcal{B} and two finite words u, v representing the ω -word $w := uv^{\omega}$. Give an algorithm for deciding " $w \in \mathcal{L}(\mathcal{B})$ ".

Exercise 10.6

For $L \subseteq \{a,b\}^{\omega}$ below, find an ω -regular expression of the form $\bigcup_{i=1}^{n} U_i V_i^{\omega}$ representing the language, such that each U_i and V_i are regular languages of finite words.

- (a) $L = \{ w \mid k \text{ is even for each substring } ba^k b \text{ of } w \}$
- (b) $L = \{w \mid w \text{ has no occurrence of } bab\}$

Exercise 10.7

Find a transformation from Büchi automata to Rabin automata and back.

Exercise 10.8

The acceptance consition of *Streett automata* is of the form $\{(F_i, I_i) \mid i \in \{1, ..., n\}\}$ and a run ρ is accepting if for all $i \in \{1, ..., n\}$, whenever $\operatorname{Inf}(\rho) \cap F_i \neq \emptyset$ then also $\operatorname{Inf}(\rho) \cap I_i \neq \emptyset$.

What is the relationship between Rabin and Streett automata?