Automata and Formal Languages - Homework 10

Due 14.1.2013.

Exercise 10.1

Recall that finite languages of finite words are regular.
Find a language over $\{a, b\}$ consisting of one infinite word such that there is no Büchi automaton recognizing it.

Exercise 10.2

Construct Büchi automata accepting the following languages over $\Sigma=\{a, b, c\}$.
(a) $L_{0}=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ contains $a b$ exactly once $\}$.
(b) $L_{1}=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ contains $a b$ at least once $\}$.
(c) $L_{2}=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ contains $a b$ infinitely often $\}$.
(d) $L_{3}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ contains $a b$ only finitely often $\}$.
(e) $L_{4}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ if α contains infinitely many a 's then α contains infinitely many b 's $\}$.

Exercise 10.3

Construct deterministic Büchi automata accepting the following languages over $\Sigma=\{a, b, c\}$.
(a) $L_{1}=\left\{\alpha \in \Sigma^{\omega} \mid \alpha\right.$ contains at least one letter $\left.c\right\}$.
(b) $L_{2}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ in α, every a is immediately followed by a $\left.b\right\}$.
(c) $L_{3}=\left\{\alpha \in \Sigma^{\omega} \mid\right.$ in α, between two successive a 's there are at least two b 's $\}$.

Exercise 10.4

For a word w, let $\inf (w)$ denote the set of letters that occur infinitely many times in w.
Construct a Büchi automaton recognizing the language L over alphabet $\{a, b, c\}$ where
(a) $L=\{w \mid\{a, b\} \supseteq \inf (w)\}$
(b) $L=\{w \mid\{a, b\}=\inf (w)\}$
(c) $L=\{w \mid\{a, b\} \subseteq \inf (w)\}$
(d) $L=\{w \mid\{a, b, c\}=\inf (w)\}$
(e) $L=\{w \mid$ if $a \in \inf (w)$ then $\{b, c\} \subseteq \inf (w)\}$

Hint: It may be easier to construct a generalized Büchi automaton first and then transform it into a Büchi automaton.
Give the corresponding ω-regular expressions, too.

Exercise 10.5

- You are given finite words $u, v, x, y \in \Sigma^{*}$ which represent the ω-words $w:=u v^{\omega}$ and $z:=x y^{\omega}$. Give an algorithm for deciding " $w \stackrel{?}{=} z$?".
- You are given a Büchi automaton \mathcal{B} and two finite words u, v representing the ω-word $w:=u v^{\omega}$. Give an algorithm for deciding " $w \stackrel{?}{\in} \mathcal{L}(\mathcal{B})$ ".

Exercise 10.6

For $L \subseteq\{a, b\}^{\omega}$ below, find an ω-regular expression of the form $\bigcup_{i=1}^{n} U_{i} V_{i}^{\omega}$ representing the language, such that each U_{i} and V_{i} are regular languages of finite words.
(a) $L=\left\{w \mid k\right.$ is even for each substring $b a^{k} b$ of $\left.w\right\}$
(b) $L=\{w \mid w$ has no occurrence of $b a b\}$

Exercise 10.7

Find a transformation from Büchi automata to Rabin automata and back.

Exercise 10.8

The acceptance consition of Streett automata is of the form $\left\{\left(F_{i}, I_{i}\right) \mid i \in\{1, \ldots, n\}\right\}$ and a run ρ is accepting if for all $i \in\{1, \ldots, n\}$, whenever $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ then also $\operatorname{Inf}(\rho) \cap I_{i} \neq \emptyset$.

What is the relationship between Rabin and Streett automata?

