
Technische Universität München Winter term 2012/13
I7
Prof. J. Esparza / J. Křet́ınský 10.12.2012

Automata and Formal Languages – Homework 8

Due 17.12.2012.

Exercise 8.1

Characterize the languages described by the following formulae and give corresponding automata:

(a) ∃x first(x)

(b) ∀x first(x)

(c)
(
¬∃x∃y(x < y ∧Qa(x) ∧Qb(y))

)
∧

(
∀x(Qb(x)→ ∃y(x < y ∧Qa(y)))

)
∧

(
∃x(¬∃yx < y ∧Qa(x))

)

Exercise 8.2

For the following languages over {a, b}, write down their defining MSO formula, automaton and regular

expression.

• The set of words of even length and containing only a’s or only b’s.

• The set of words, where between each two b’s with no other b in between there is a block of an odd

number of letters a.

• The set of words with odd length and an odd number of occurrences of a.

Exercise 8.3

Give formulae expressing the following macros:

(a) Sing(X) meaning that the set X is a singleton,

(b) X ⊆ Y meaning subset inclusion,

(c) X ⊆ Qa meaning all elements of X are labelled by a, for a ∈ Σ,

(d) X < Y that is true for singletons X = {x}, Y = {y} satisfying x < y.

Exercise 8.4

We interpret the monadic second order logic over finite words with the standard interpretation of < as less
than relation.

Let MSO′(S) be a modification of the standard monadic second-order logic given by the following syntax.
Assume a set of second-order logical variables ranged over by X, Y, Z. Let Σ be an alphabet. An MSO′(<)
formula over Σ is defined by the following BNF, where a ∈ Σ:

ϕ ::= X ⊆ Qa | X < Y | Sing(X) | X ⊆ Y | ¬ϕ | (ϕ ∨ ϕ) | ∃Xϕ

Although we quantify over set variables only, we want this logic to be equally “powerful” as the original
MSO(<). As there are no first-order variables, the first-order predicates < will be replaced by the second-
order predicates, so new atomic formulas are introduced: Sing(X) (meaning singleton), X ⊆ Y (meaning
subset inclusion), X ⊆ Qa for every a ∈ Σ (meaning all elements of X are labelled by a), and X < Y (true
for singletons X = {x}, Y = {y} satisfying x < y).

(a) Show that MSO(<) and MSO′(<) are equally expressive, i.e., a language is definable in MSO(<) iff
it is definable in MSO′(<).

Hint: Express the newly defined predicates in the original MSO and vice versa.

Remark: This logic can be used to create a different (a bit easier) procedure to translate formulae into
automata: the problem of incorrect encodings does not arise.

(b) Translate the formula
∃Z∀x(Qa(x)→ ∃y(x < y ∧ y ∈ Z))

into an equivalent one of MSO′(<).

