Exercise 1.3

Prove that every DFA recognizing $L_n = \{a^k \mid k \text{ is divisible by } n \text{ or } n-1\}$ has at least n(n-1) states.

Solution:

We prove that ε , a, aa, ..., $a^{n(n-1)-1}$ all belong to different residuals, hence there are at least n(n-1) residuals and thus also states.

Consider two arbitrary but different elements a^x, a^{x+d} from above, i.e. we assume

$$0 \le x < x + d < n(n-1)$$

We need to find $z \in \mathbb{N}$ such that exactly one of $a^x a^z, a^{x+d} a^z$ is in L, which proves a^x, a^{x+d} belong to different residuals.

Case 1 Neither *n* nor n-1 divides *d*: let z = n(n-1) - x.

On the one hand $a^x a^z = a^{n(n-1)} \in L$ as *n* divides n(n-1). On the other hand $a^{x+d}a^z = a^{n(n-1)+d} \notin L$ as *n* divides n(n-1) but neither *d*, thus nor their sum.

Case 2 *n* divides *d*, but n-1 does not: let z = n(n-1) - x - (d%(n-1)). Observe that $z \ge 0$. On the one hand $a^x a^z = a^{n(n-1)-(d\%(n-1))} \notin L$ as neither *n* nor n-1 divides d%(n-1) < n-1 < n. On the other hand $a^{x+d}a^z = a^{n(n-1)+d-(d\%(n-1))} \in L$ as n-1 divides d-(d%(n-1)).

Case 3 n-1 divides d, but n does not: similar.

Case 4 Both n-1 and n divide d: cannot happen as $d \le x + d < n(n-1) = \operatorname{lcm}(n, n-1)$.

Homework

Show that $M = \{a^{2^n} \mid n \in \mathbb{N}\}$ is not regular.

Hint: Show that M has infinitely many residuals.