Exercise 1.3

Prove that every DFA recognizing $L_{n}=\left\{a^{k} \mid k\right.$ is divisible by n or $\left.n-1\right\}$ has at least $n(n-1)$ states.

Solution:

We prove that $\varepsilon, a, a a, \ldots, a^{n(n-1)-1}$ all belong to different residuals, hence there are at least $n(n-1)$ residuals and thus also states.
Consider two arbitrary but different elements a^{x}, a^{x+d} from above, i.e. we assume

$$
0 \leq x<x+d<n(n-1)
$$

We need to find $z \in \mathbb{N}$ such that exactly one of $a^{x} a^{z}, a^{x+d} a^{z}$ is in L, which proves a^{x}, a^{x+d} belong to diferent residuals.
Case 1 Neither n nor $n-1$ divides d : let $z=n(n-1)-x$.
On the one hand $a^{x} a^{z}=a^{n(n-1)} \in L$ as n divides $n(n-1)$. On the other hand $a^{x+d} a^{z}=$ $a^{n(n-1)+d} \notin L$ as n divides $n(n-1)$ but neither d, thus nor their sum.
Case $2 n$ divides d, but $n-1$ does not: let $z=n(n-1)-x-(d \%(n-1))$. Observe that $z \geq 0$.
On the one hand $a^{x} a^{z}=a^{n(n-1)-(d \%(n-1))} \notin L$ as neither n nor $n-1$ divides $d \%(n-1)<$ $n-1<n$. On the other hand $a^{x+d} a^{z}=a^{n(n-1)+d-(d \%(n-1))} \in L$ as $n-1$ divides $d-(d \%(n-1))$.

Case $3 n-1$ divides d, but n does not: similar.
Case 4 Both $n-1$ and n divide d : cannot happen as $d \leq x+d<n(n-1)=\operatorname{lcm}(n, n-1)$.

Homework

Show that $M=\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is not regular.
Hint: Show that M has infinitely many residuals.

