Verification

Use languages to describe the implementation and the
specification of a system.

Reduce the verification problem to language inclusion
between implementation and specification

| whilex=1do
2 if y =1 then
3 x 0

4 ye—1-x

5 end

Configuration
Initial configuration

Execution, full execution, potential execution

I whilex=1do
2 if y = 1 then
3 x « 0

4 ye—1-x

5 end

A configuration of the program is a triple [£, n,, n,|, where € € {1,2,3,4,5} is the
current value of the program counter, and n,,n, € {0, 1} are the current values of x
and y. So the set C of configurations contains in this case 5 X 2 X 2 = 20 elements.
The initial configurations are [1,0,0],[1,0,1],[1,1,0],[1, 1, 1], i.e., all configurations
in which control 1s at line 1. The sequence

[1,1,1][2,1,1][3,1,1][1,0,1]15,0,1]
1s a full execution, while
[1,1,011[2,1,0][4,1,0][1,1,0]

1s also an execution, but not a full one.

Implementation: set E of executions
Specification: subset P of the potential executions that
satisfy a property
or
subset V of the potential executions that
violate a property

Implementation satisfies specification if :
E included in P or intersection of E and V empty

If E and P regular: inclusion checkable with automata
If E and V regular: emptiness checkable with automata

How often does this happen?

X

Is there a full execution such that
- Inttially y=1,
- finally y=0, and
-y never increases ?

Potential executions satisfying the property:

Y1 Y1* YO* (L5 inters YO)

[€s %, 1] [£, x, 0]

E %[[..r.l]8[5.x.0]»©

N
o

1,0,1
1,1

I

Networks of automata

A Al Ao

23,0, 1

0,1,4,5 0,2,4,6

A network of automata 1s a tuple A = (A,,...,A,) of NFAs with pairwise disjoint
sets of states. Each NFA has its own alphabet X; (the alphabets X;,...,X, are not
necessarily pairwise disjoint). Alphabet letters are called actions. Given an action a,
we say that the i-th NFA participates in a if a € ;.

A configuration of a network is a tuple (g,...,q,) of states, where ¢; € Q; for
every i € {1,...,n}. An action a is enabled at a configuration (¢, ..., q,) if for every
i € {1,...,n} such that A; participates in a there is a transition (¢;,a,q;) € ¢;. If an
action is enabled, then it can occur, and its occurrence makes all participating NFAs A;
move to the state ¢, while the non-participating NFAs do not change their state.

(30.0.0)=—1<

nc

1((S0.0.1

inc

> ‘® Inc

mnc

3 ‘lll!'i!l[llﬁl" inc

) 0 =t

fll(']

ncy
4(£L0.0

mnc

5(L52.0. D

mc

(XL

inc

nc
({1, D

Ul

i"l.‘l

AsyncProduct(Ay,...,A,)
Input: a network of automata A = A,,...A,, where

Al = (Q]s El, 5I9 qo1, Ql)a ‘e aAn — (Qm Em 51:» qon Qn)
Output: the asynchronous product A\ ®---® A, = (0, 2,9, qo, F)
0,0, F «< 0

qo < [qo1s---.qon]
W « {[q()ls ‘e -,(10;:]}
while W # () do

pick [g,,...,q,] from W
add [g,,...,g,] to QO
add |g;,...,q,] to F
forallaeZ,U...UZX, do
foralli €[1..n] do
if a € X; then Q) < 6;(g;,a) else Q. = {q;}
forall [g;...,q,] € O X...X O, do
2 if [¢},....9,] ¢ Othenadd [q],....q,] to W
add ([q1,...,qu),a,lq},....q,]) tod
14 return (Q,Z, 46, qo, F)

O 00 ~J O N B W Y =

p—r e —

Modelling concurrent programs

Lamport-Burns mutex algorithm:

Shared variables:
foreveryi e {1,...,n}

flag(i) € {0,1}, initially O, writable by i, readable by all j # i

Process I:
try,
L: flag(i):=0

forj e {1,...,i-1} do
if flag(j) = 1thengo to L

flag(i) := 1
forj e {1,...,i-1} do
if flag(j) = 1thengo to L
M: forj € {i+1,...,n} do

if flag(j) = 1 then go to M

crit,

exit,

flag(i) := 0

rem.

Checking properties

Deadlock freedom

Bounded overtaking: potential executions
violating

2 To(Z\ Co)"C1E\ Co)'NC1(Z\ Cp)"C1 X"

CheckViol(A,,...,A,, V)

Input: a network (A,,...A,), where

A; = (Qi, Zi, 6i, qoi» Qi);

an NFAV = (Qy,Z, U...UZ,,dv,qo, F,).

Output: trueif A; ®---® A, ® V is nonempty, false otherwise.

Q < 0; g0 < [g015---+q0ns Gov)
W « {qo}

while W # 0 do
pick [g1,...,q,. g] from W
add [q,...,q,.g] to QO
forallae X, U...UZ, do
forallie[l..n]do
if a € Z; then Q) « 6;(gi,a) else Q) = {q,}
Q" « oy(q,a)
forall [¢,....q,,¢')€ Q) X...XQ, X0 do
if \i_, ¢' € F; andg € F then return true
2 if [¢),....9,,9'] ¢ Qthenadd [q],....q,.4'] toW
13 return false

Seoliie TR e RV B SV A O

S

— —
NG

The state-explosion problem

Theorem 9.7 The following problem is PSPACE-complete.

Given: A network of automata A,,...,A, over alphabets Xy, ...,2,, a NFA V over
24 V..U 2.

Decide: if L(A|®-®A, V) # 0.

Symbolic exploration

| while x=1do
2 if y = 1 then
3 xe«—0

4 ye—1-x

S

end

) - An edge of
the flowgraph leading from node ¢ to node ¢’ can be associated a step relation S ;¢
containing all pairs of configurations ([£, xo. yol, [£’, x;,, y,]) such that if at control point
¢ the current values of the variables are xg, yy, then the program can take a step after
which the new control point is ¢, and the new values are x;,y,. For instance, for the
edge leading from node 4 to node 1 we have

341 = l ((4, x0, ol [1, X0, ¥) | X0 = X0,¥p=1-xo }

and for the edge leading from 1 to 2

S12={ ([1, %0, 30}, [2, %5, ¥%5]) 1 %0 =1= x5, 5 =0 }

S=|) Sa

a.beC

Reach(l, R)
Input: set / of initial configurations; relation R
Output: set of configurations reachable form /

| OldP « O0;: P « I

2 while P # OldP do

3 OldP « P

4 P « Union(P, Post(P,S))
5 return P

Variable orders

Example 9.8 Consider the set of tuples X = {[x;,x2,...,x%] | x1,...,x € {0, 1}},
and the subset Y C X of tuples satisfying x; = X, X2 = Xgsp,..., X = X2r. Consider
two possible encodings of a tuple [x), x2,...,x%]: by the word x;x;... x5, and by
the word xjxpy 1 X2X842 ... XxXor. In the first case, the encoding of Y for k = 3 is the
language

L, = {000000,001001,010010,011011, 100100, 101101, 110110, 111111}

and in the second the language

L, = {000000,000011,001100,001111, 110000, 110011,111100, 111111}

Figure 9.10: Minimal DFAs for the reachable configurations of Lamport’s algorithm.
On the left a configuration (sg, s1, vo, Vi, q) 1s encoded by the word sys;vgvig, on the
right by vysys9vp.

Safety: nothing bad can happen
Liveness: something good eventually happens

More formally:
- safety property: violations are finite executions

- liveness properties: violations are infinite executions

