Pattern matching

Given aword w (the text) and a regular expression
r (the pattern), determine the smallest k' such that some
[k,k']-factor of w belongs to L(r).



Pattern-Matching-NFA(w, r)
Input: wordw = a, ...a, € £, regular expression r
Output: the first occurrence k of r in w, or L if no such occurrence

exists.
| A « RegtoNFA(X"r)
2 S «{q0)
3 foralli=0ton-1do
4 if S N F # 0 then return i
5 S « (5, a;)
6 return L

e RegtoNFA(r) takes O(m) time. Let k be the number of states of A.

e The loop is executed at most n times; each line of the body takes at most O(k?)
time.

Since RegtoNFA(r) takes O(m) time, we have k € O(im), and so the loop runs in O(nm?)
time. The overall runtime is thus O(m + nm?) = O(nm?).



Pattern-Matching-DFA(w, r)
Input: wordw = a, ...a, € £, regular expression r
Output: the first occurrence i of r in w, or L if no such occurrence
exists.
A «— NFAtoDFA(RegtoNFA(r))

|
2 q — q()

3 foralli=0ton-1do
4 if ¢ € F then return i
5 q < 0(q, a;)

6 return L

e RegtoNFA(r) takes O(m) time, and so the call to NFAtoDFA (see Table 2.3.1)
takes 29" time and space.

e The loop is executed at most n times; each line of the body takes constant time.

The overall runtime is thus O(n) + 29,



- The naive algorithm has O(nm) runtime

- We give an algorithm with O(n + m) runtime, even when
the size of the alphabet is not fixed.

- Consider the minimal DFA for Sigma* p

- The DFA must contain one state for each prefix of p.
(Why ?)

- We construct a DFA with exactly one state for each
prefix, which is therefore the minimal DFA



Intuition: the DFA keeps track of how close it is to
reading the pattern

More precisely: if the DFA is in state p', then p' is
the longest prefix of p that the DFA has just read
and has not been yet 'spoilt’.



The general rule is:

If the DFA 1is in state v € X* and it reads a letter @, it moves to the largest
suffix of va that 1s also a prefix of p.

Definition 8.2 Letw € X" be aword and let p € X* be a pattern. We denote by overl(w)
the longest suffix of w that is a prefix of p. In other words, overl(w) is the unique longest
word of the set

ueXl' | vV e w=vuAp=uw'}



Definition 8.3 Let p € X* be a pattern. The DFA eagerDFA(p) = (Q,, Z, 0., Goe, Fe) is
defined as follows:

e O, ={ueckX|dveX.p=uv}isthe set of prefixes of p;
e foreveryu € Q,, forevery a € X: 0.(u, @) = overl(ua);
® Goo = & and

o F,={p}

Using this definition, we define Pattern-Matching-DFA(w, p) for the pattern match-
ing problem with a pattern p by replacing line 1 in Pattern-Matching-DFA(r, p) by

A « eagerDFA(p)

The algorithm stops in state p if and only if the pattern p has been read. For a pattern
of length m, eagerDFA(p) has m + 1 states and m|X| transitions. So, for a fixed alphabet
2 we get a DFA with O(m) states and transitions.



Variable alphabet size
The eager DFA of a pattern of length m has
- m+1 states and
- m |Sigma| transitions

If the alphabet is large, m|Sigma| can also be large!

If the alphabet is not fixed: |Sigma| is O(n), and the
eager DFA has size O(nm).

We introduce a more compact data structure: the lazy DFA



The lazy DFA

other n n

other, R other, N

n, R a, R 0, R
> n na nan
n, R

other, N

other, N

“1f the current state 1s not €, then the head does not move, and the eager DFA moves
to a new state which depends only on the current state, not on the current letter.



If the lazy DFA is at state u # €, and it reads a miss, what should be the new state?

The state 1s chosen to guarantee that the lazy DFA “simulates™ the eager DFA: a step
u—> v of the eager DFA 1s simulated by a sequence of moves

(a,N) (a,N) a.R
U—— U — VU —V

of the lazy DFA. For instance, in our example the move nan =5 n of the eager DFA 1s
simulated in the lazy DFA by the sequence

(nN)

(n,N) (n,R)
L n >

> € >N .

nan



Formal definition of the lazy DFA

Definition 8.4 Let p € X7 be a pattern, and let w be a proper prefix of p.

o We denote by h,, the unique letter such that wh,, is a prefix of p. We call h,, a hit
(from state w). Notice that h, = a,.

e forw # € we define overlap(w) as the longest proper suffix of w that is a prefix
of p, that is, overlap(w) is the unique longest word of the set

{u € " | there existsy € X",V € X" such that w = vu and p = uw'}

- Notice: overlap(w) is a proper suffix of w
overl(w) Isa suffix of w

overl,.,o(nano) = nano, while overl,,,,,(nano) = &.



For nano:

over
over
over
over
over

ap(eps) =eps
ap(n) = eps
ap(na) =eps
ap(nan) =n

ap(nano) = eps

For abracadabra:

overlap(abra) = a
overlap(abracadabra) = abra



Definition 8.5 Ler p € X* be a pattern. The lazy DFA lazyDFA(p) = (O}, X, 6, qor, F))
is defined as follows:

o (), is the set of prefixes of p;

e foreveryue€ Q) a € X:

[ (ua, R) if @ = h, (hit)
o(u, @) =4 (&, R) if # h, and u = & (miss from g)
| (overlap(u),N) ifa # h, and u # € (miss from other states)

® gy = &, and

o Fi={p}



Definition 8.6 Let lazyDFA(p) = (Q;,Z, 01, qo1, F1) be the lazy DFA for a pattern p,
and let u € Q;, o € X. We denote by 6;(u, @) the unique state v such that

(a,N) (a,N) (a,R)
U=U)y—DU —D Uy U ——V

for some uy,...,ux € O, k > 0.



Proposition 8.7 Let p € X" be a pattern, and let lazyDFA(p) = (Q1, X, 1, qo1, 1) and
eagerDFA(p) = (Q¢, X, 0¢, Goe, Fe). Then 6)(v, @) = .(v, @) for every prefix v of p and
every a € X.

Proof: If ais ahit,i.e., if @ = h,, then we have 6,.(v, @) = va = é(v, ). If @ 1s a miss,
we proceed by induction on |v|. If [v| = 0, then v = &£ and by the definitions of é, and
trans; we have 6.(v, @) = 0;(v,a) = 6;(v, ). If |v| > 0, then by the definition of §; we
have ¢;(v, @) = (overlap(v), N), and so:

Si(v, @)
= { 0/(v,a@) = (overlap(v), N) and definition of ¢; }
oi(overlap(v), @)

{ loverlap(v)| < |v| and induction hypothesis }
dc(overlap(v), @)

To complete the proof we show é.(overlap(v), ) = 6.(v, @). By the definition of 6, we
have o.(overlap(v), @) = overl(overlap(v)a) and 6.(v, @) = overl(va). So we have to
prove overl(overlap(v)a) = overl(va). For convenience we rename overlap(v) as u and
show overl(u, ) = overl(va’). Recall that « 1s a miss.



Constructing the lazy DFA in O(m) time

Reduces to computing overlap(v) for every prefix of p in
O(m) time.

Recall: overlap(w) is the longest proper suffix of w that is a
prefix of p. The following equation holds for every proper
and nonempty prefix v of the pattern p

Let u = overlap(v):

uh, itk = h;

overlap(vhy) = { overlap(uh,) it h, # h,



uh, itk = h;

overlap(vhy) = { overlap(uh,) 1t h, # h,

vi=na h_vi=n u:=overlap(na)=eps h_u:=n
overlap(nan) =uh_v=epsn=n
v:=nan h_v:=0 u:=overlap(nan)=n h_u:=a

overlap(nano) = overlap(no) = eps



Overlap(w) Overlap(K)

Input: a prefix w of p. Input: a number 0 < k < m.
Output: overlap(w) Output: the length of overlap(p[0]... p[k — 1]).
1 if [w| <1 then return & I ifk <1 then return O
2 ifw=vaandv # ¢ then 2 ifk > 2 then
3 u < overlap(v) 3 u «— overlap(k — 1)
4 if @ = h, then return u«e 4 if p[k] = p[u] then return u + 1
5 return overlap(uq) 5 return overlap(u + 1)

Overlaplt(m)
Input: a number m > 0.
Output: the array overlap[0..m — 1] with
overlap|i] = overlap(p|0] ... pli]) forevery 0 <i <m — 1.
1 overlap|0] « 0O
2 overlap[l] « 0O
3 forall j=2tom—1do
4 u «— overlap|j— 1]
5 if p[j] = plu] then overlap|j] = u + 1
6 else overlap| j| « overlap|u + 1]



