- Which arithmetical problems can be solved using automata?
- Presburger arithmetic: a language to define some properties of (tuples of) natural numbers

#### Syntax of PA

- Symbols: variables x, y, z ...

constants 0, 1

arithmetic symbols +, =<

logical symbols or, not, Exists

parenthesis

- Terms: a variable is a term

0 and 1 are terms

if t and u are terms, then t + u is a term

- Atomic formulas: t =< u , where t and u are terms

#### Syntax of PA

- every atomic formula is a formula;
- if  $\varphi_1, \varphi_2$  are formulas, then so are  $\neg \varphi_1, \varphi_1 \lor \varphi_2$ , and  $\exists x \varphi_1$ .
- Free and bound variables:
  - a variable is bound if it is in the scope of an existential quantifier, otherwise it is free.
- A formula without free variables is called a sentence

#### **Abbreviations**

And, implication, bi-implication, universal quantification

$$n = \underbrace{1 + 1 + \ldots + 1}_{n \text{ times}} \qquad t \ge t' = t' \le t$$

$$t = t' = t \le t' \land t \ge t'$$

$$t < t' = t \le t' \land \neg (t = t')$$

$$t > t' = t' < t$$

## **Semantics (intuition)**

- The semantics of a sentence is "true" or "false"
- The semantics of a formula with free variables (x\_1, ..., x\_k) is the set containing all tuples (n\_1, ..., n\_k) of natural numbers that "satisfy the formula"

- An interpretation of a formula F is any function that assigns a natural number to every variable appearing in f (and perhaps also to others).

Given an interpretation I, a variable x, and a number n, we denote by I[n/x] the interpretation that assigns to x the number n, and to all other variables the same value as I.

- We now define when an interpretation satisfies a formula F.

```
\begin{array}{lll} \Im \models t \leq u & \text{iff} & \Im(t) \leq \Im(u) \\ \Im \models \neg \varphi_1 & \text{iff} & \Im \not\models \varphi_1 \\ \Im \models \varphi_1 \vee \varphi_2 & \text{iff} & \Im \models \varphi_1 \text{ or } \Im \models \varphi_2 \\ \Im \models \exists x \varphi & \text{iff} & \text{there exists } n \geq 0 \text{ such that } I[n/x] \models \varphi \end{array}
```

- Lemma: Let F be a formula, and let I1, I2 be two interpretations of F. If I1 and I2 assign the same values to all FREE variables of F, then either they both satisfy F or none of them satisfies F.
- Consequence: if F is a sentence, either all interpretations satisfy F, or none of them satisfies F.

- We say a sentence is true if it is satsfied by all interpretations.
- We say a sentence is false if it is not satisfied by any interpretation.
- A model or solution of a formula F is the projection of any interpretation that satisfies F onto the free variables of F.
- The set of models or solutions of F is also called the solution space of F, and denoted by Sol(F).

we encode natural numbers as strings over  $\{0, 1\}$  using the least-significant-bit-first encoding *lsbf*. If we have free variables  $x_1, \ldots, x_k$ , the elements of the solution space are encoded as a word over  $\{0, 1\}^k$ . For instance, the word

$$\begin{array}{ccc}
x_1 & \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 $\begin{array}{ccc} x_2 & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ 

is an encoding of the solution (3, 10, 0). The language of a formula is then defined to be

$$\mathcal{L}(\varphi) = \{ lsbf(s) \mid s \in Sol(\varphi) \}$$

# Constructing an NFA for the solution space

Given a formula F, we construct an NFA Aut(F) such that L(Aut(F)) = L(F).

#### We can take:

```
- Aut( not F) = CompNFA( Aut(F) )

- Aut( F or G) = UnionNFA( Aut(F), Aut(G) )

- Aut( Exists x F) = Projection x( Aut (F) )
```

So it remains to define Aut(F) for an atomic formula F.

All atomic formulas equivalent (same solutions) to atomic formulas of the form

$$\varphi = a_1x_1 + \ldots + a_nx_n \le b = a \cdot x \le b$$

where the a\_i and b can be arbitrary integers (possibly negative).

Consider a candidate solution

For every  $j \le m$ , let  $c^j \in \mathbb{N}^n$  denote the tuple of numbers encoded by the prefix  $\zeta_0 \dots \zeta_{j-1}$ . For instance, for the encoding  $\zeta_0 \zeta_1 \zeta_2$  of the tuple (0, 4, 7, 3) given by

|   | $\zeta_0$ | $\zeta_1$ | $\zeta_2$ |        |   | $\zeta_0$ | $\zeta_1$ |
|---|-----------|-----------|-----------|--------|---|-----------|-----------|
| 0 | [0]       | [0]       | [0]       |        | 0 | [0]       | [0]       |
| 4 | 0         | 0         | 1         | we get | 0 | 0         | 0         |
| 7 | 1         | 1         | 1         |        | 3 | 1         | 1         |
| 3 | [1]       | [1]       | [0]       |        | 3 | [1]       | [1]       |

and so  $c^2 = (0, 0, 3, 3)$ . Define further  $c^0 = (0, 0, 0, 0)$ ; i.e., before reading anything all components of the tuple are 0.

We construct a DFA for the solution space of  $\varphi$ . The idea is that after reading a prefix  $\zeta_0 \dots \zeta_{j-1}$  the automaton should be in the state

$$\left[\frac{1}{2^j}\left(b - a \cdot c^j\right)\right] \tag{10.1}$$

Initially we have  $c^0 = (0, ..., 0)$ , and so the initial state is the number  $\frac{1}{2^0}(b-a\cdot c^0) = b$ . For the transitions, assume that before and after reading the letter  $\zeta_j$  the automaton is in the states q and q', respectively. Then we have

$$q = \left[\frac{1}{2^{j}}\left(b - a \cdot c^{j}\right)\right]$$
 and  $q' = \left[\frac{1}{2^{j+1}}\left(b - a \cdot c^{j+1}\right)\right]$ 

From the definition of c^j we get:

$$c^{j+1} = c^j + 2^j \zeta_j$$

Inserting this in the expression for q', and comparing with q, we obtain the following relation between q and q':

$$q' = \left\lfloor \frac{1}{2}(q - a \cdot \zeta_j) \right\rfloor$$

So for every state q and every letter  $\zeta \in \{0, 1\}^n$  we take  $\delta(q, \zeta) := \frac{1}{2}(q - a \cdot \zeta)$ .

#### $PAtoDFA(\varphi)$

**Input:** PA formula  $\varphi = a \cdot x \le b$ 

**Output:** DFA  $A = (Q, \Sigma, \delta, q_0, F)$  such that  $\mathcal{L}(A) = \mathcal{L}(\varphi)$ 

- 1  $q_0 \leftarrow s_b$
- 2  $W \leftarrow \{s_b\}$
- 3 while  $W \neq \emptyset$  do
- 4 pick  $s_k$  from W
- 5 add  $s_k$  to Q
- 6 if  $k \ge 0$  then add  $s_k$  to F
- 7 **for all**  $\zeta \in \{0, 1\}^n$  **do**

- 9 if  $s_i \notin Q$  then add  $s_i$  to W
- 10 **add**  $(s_k, \zeta, s_j)$  **to**  $\delta$

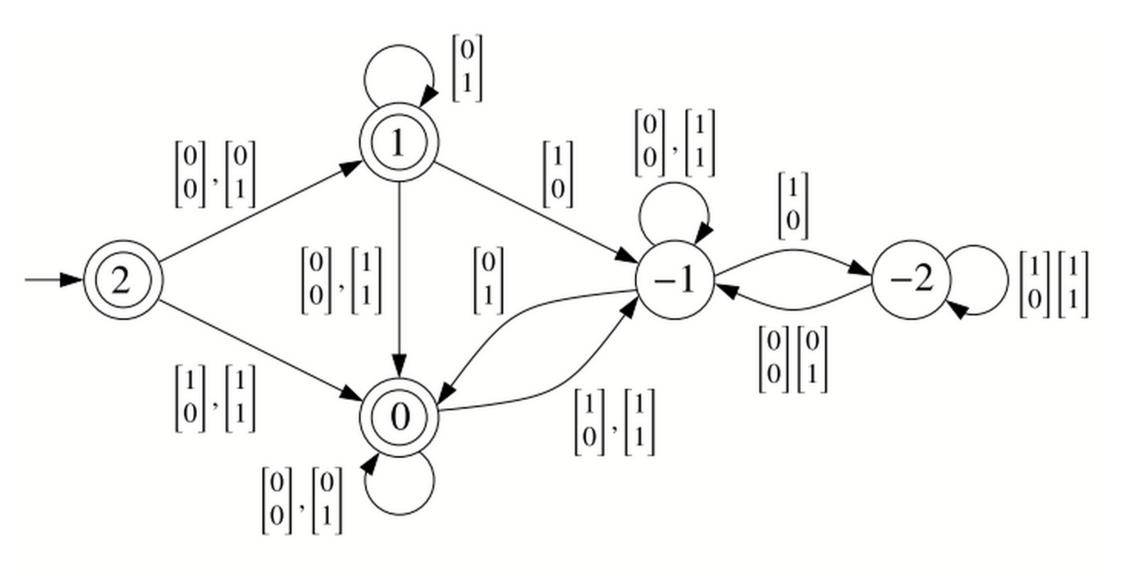


Figure 10.1: DFAs for the formula  $2x - y \le 2$ .

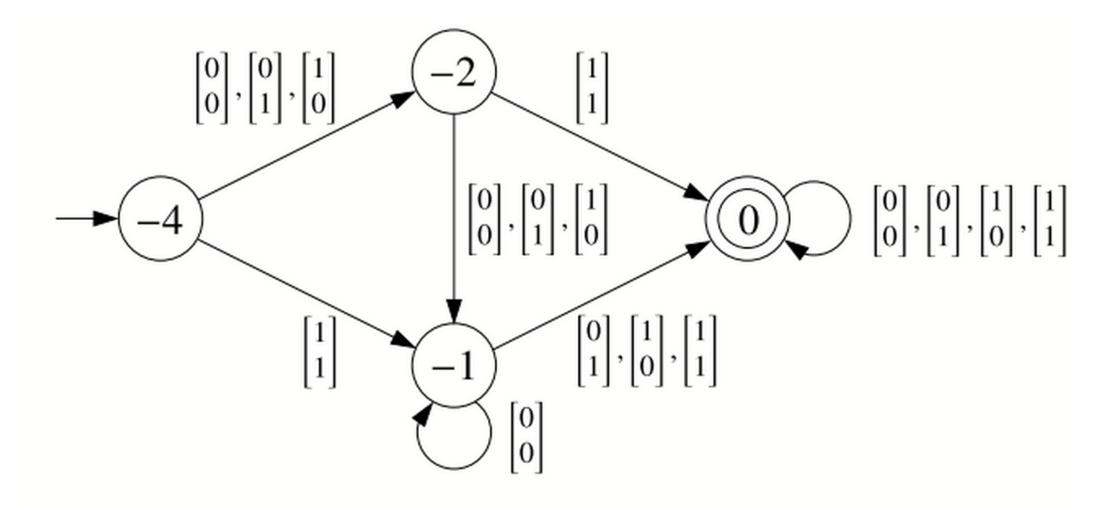


Figure 10.2: DFAs for the formula  $x + y \ge 4$ .

**Lemma 10.3** Let  $\varphi = a \cdot x \le b$  and  $s = \sum_{i=1}^{k} |a_i|$ . All states  $s_j$  added to the worklist during the execution of  $PAtoDFA(\varphi)$  satisfy

$$-|b| - s \le j \le |b| + s.$$

**Proof:** The property holds for  $s_b$ , the first state added to the worklist. We show that if all the states added to the worklist so far satisfy the property, then so does the next one.

Let  $s_j$  be this next state. Then there exists a state  $s_k$  in the worklist and  $\zeta \in \{0, 1\}^n$  such that  $j = \lfloor \frac{1}{2}(k - a \cdot \zeta) \rfloor$ . Since by assumption  $s_k$  satisfies the property we have

$$-|b|-s \le k \le |b|+s$$

and so

$$\left| \frac{-|b| - s - a \cdot \zeta}{2} \right| \le j \le \left| \frac{|b| + s - a \cdot \zeta}{2} \right| \tag{10.2}$$

Now we observe

$$-|b|-s \le \frac{-|b|-2s}{2} \le \left\lfloor \frac{-|b|-s-a\cdot\zeta}{2} \right\rfloor$$

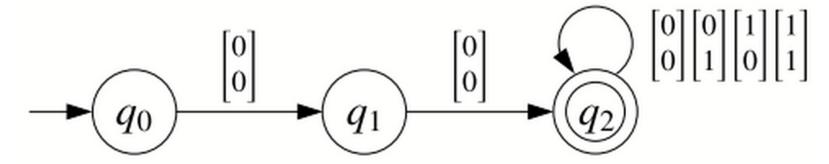
$$\left| \frac{|b|+s-a\cdot\zeta}{2} \right| \le \frac{|b|+2s}{2} \le |b|+s$$

which together with 10.2 yields

$$-|b| - s \le j \le |b| + s$$

and we are done.

 $\exists z \, x = 4z \ \land \ \exists w \, y = 4w \ \land \ 2x - y \le 2 \ \land \ x + y \ge 4$ 



DFA for the formula  $\exists zx = 4z \land \exists w y = 4w$ .

