- Which arithmetical problems can be solved using automata?

- Presburger arithmetic: a language to define some properties
of (tuples of) natural numbers



Syntax of PA

- Symbols: variables X, Y,Z..
constants 0, 1
arithmetic symbols + =<
logical symbols or, not, Exists

parenthesis

- Terms: avariable is a term
0 and 1 are terms
If t and u are terms, then t+ u iIs aterm

- Atomic formulas: t=<u,where t and u are terms



Syntax of PA

e cvery atomic formula 1s a formula;

e if |,y are formulas, then so are -y, ¢ V ¢,, and dxyp;.

- Free and bound variables:
- a variable is bound if it is in the scope of an existential
quantifier, otherwise it is free.

- A formula without free variables is called a sentence



Abbreviations

- And, implication, bi-implication, universal
qguantification

n = 1+1+...+41 >0/ = <t
J-zt?l;cs = = fo,/\fo’
nx = X+x+...+X (<t = tSt AsS(t=1)
n times I>t = t'<t



Semantics (intuition)

- The semantics of a sentence is "true" or "false"

- The semantics of a formula with free variables (x_1, ..., x_k)
IS the set containing all tuples (n_1, ..., n_k) of natural
numbers that "satisfy the formula”



Semantics (more formally)

- An interpretation of a formula F is any function that assigns
a natural number to every variable appearing in f (and
perhaps also to others).

Given an interpretation |, a variable x, and a number n, we
denote by I[n/x] the interpretation that assigns to x the
number n, and to all other variables the same value as |.



Semantics (more formally)

- We now define when an interpretation satisfies a formula F.
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- Lemma: Let F be a formula, and let 11, 12 be two
interpretations of F. If 11 and |2 assign the same
values to all FREE variables of F, then either they
both satisfy F or none of them satisfies F.

- Consequence: if F is a.sentence, either all interpretations

satisfy F, or none of them satisfies F.



Semantics (more formally)
- We say a sentence is true if it is satsfied by all interpretations.

- We say a sentence is false if it is not satisfied by any
interpretation.

- A model or solution of a formula F is the projection of any
Interpretation that satisfies F onto the free variables of F.

- The set of models or solutions of F is also called the solution
space of F, and denoted by Sol(F).



Semantics (more formally)

we encode natural numbers as strings over {0, 1} using the least-significant-bit-first
encoding [sbf. If we have free variables xi, ..., x;, the elements of the solution space
are encoded as a word over {0, 1}*. For instance, the word

xi o [1][o][1][0
x [of{1]]o]|1
x |o]]o][o][o]

is an encoding of the solution (3, 10,0). The language of a formula is then defined to
be
L(g) = {Ishf(s) | s € Sol(p))



Constructing an NFA for the
solution space

Given a formula F, we construct an NFA Aut(F) such that
L(Aut(F)) = L(F).

We can take:
- Aut( not F) = CompNFA( Aut(F))
- Aut( F or G) = UnionNFA( Aut(F), Aut(G) )

- Aut( Exists x F) Projection_x( Aut (F) )

So it remains to define Aut(F) for an atomic formula F.



All atomic formulas equivalent (same solutions) to
atomic formulas of the form

o= a1Xx1+...+ax, <b= a-x<b

where the a_i and b can be arbitrary integers (possibly
negative).

Consider a candidate solution
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For every j < m, let ¢/ € IN" denote the tuple of numbers encoded by the prefix
{o ... {j-1. For instance, for the encoding {y{;¢> of the tuple (0,4,7, 3) given by

o & & o G
0 [0] [07] [O] 0 [0] [O
8 01 10 | we get 0 0] |0
7 | | ] 3 | 1
3 [1] [1] [0 3 (1] |1

and so ¢* = (0,0, 3, 3). Define further ¢’ = (0,0, 0, 0); i.e., before reading anything all
components of the tuple are 0.

We construct a DFA for the solution space of ¢. The idea is that after reading a
prefix {o ... ;-1 the automaton should be in the state

[i (b—a-cj)‘ (10.1)



Initially we have ¢ = (0,...,0), and so the initial state is the number i'—(;(b—a'c“) =
b. For the transitions, assume that before and after reading the letter {; the automaton
is in the states g and ¢’, respectively. Then we have

g = [% (b—a : cj)‘ and g = lZJ']“ (b —a- cj”)‘

From the definition of c?) we get:

=l +2¢;

Inserting this in the expression for ¢’, and comparing with g, we obtain the following
relation between ¢ and ¢’:

1
q = [E(CI -a- (:j)‘

So for every state g and every letter € {0, 1}" we take d(q, ) := %(q —a- ().



PAtoDFA(y)
Input: PA formulag =a-x<b
Output: DFA A = (0, X, 6, go, F) such that L(A) = L(p)

1 qo < Sh

2 W« {sp}

3 while W # 0 do

4 pick s; from W

5 add s; to O

6 if £k > 0 then add s, to F
7 for all £ € {0,1}" do

]
8 j*lz(k—a'.{)J

9 if s; ¢ O then add s; to W
10 add (s, ¢, 5;) too



Figure 10.1: DFAs for the formula 2x —y < 2.
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Figure 10.2: DFAs for the formula x + y > 4.



Lemma 10.3 Let ¢ = a-x < band s = Y1, |a;)|. All states s; added to the worklist
during the execution of PAtoDFA(yp) satisfy

—|bl—=s< j<|b|l+s.

Proof: The property holds for s, the first state added to the worklist. We show that if
all the states added to the worklist so far satisfy the property, then so does the next one.

Let s; be this next state. Then there exists a state s; in the worklist and £ € {0, 1}" such
that j = L%(k —a - {)]. Since by assumption s; satisfies the property we have

—bl=s<k<Z|bl+s

and so




Now we observe

—|b| — 2 —bl-s—-a-{
—bl-s < <
ol=s < 2 = 2
bl|+s—a-( |b| + 25
- < b
[

which together with 10.2 yields
—=bl=s< j<|bl+s

and we are done.



dzx=4z A dwy=4w A 2x—-y<2 A x+y =>4

@ lg‘ @ [8‘ |8‘ |(1)‘ |(]>H:‘

DFA for the formula dzx =4z A dwy = 4w.






