Operations on sets:
Implementation on DFAs

Member(x, X)
Complement(X)
Intersection(X, Y)
Union(X. Y)
Empty(X)
Universal(X)
Included(X, Y)
Equal(X, Y)

returns true if x € X, false otherwise.
returns U \ X.
returns X N Y.
returns X U Y.
returns true if X = (), false otherwise.
returns true if X = U, false otherwise.
returns true if X C Y, false otherwise.
returns true if X = Y, false otherwise.

Assumption: each object encoded by one word, and
viceversa.

Membership: trivial, linear in length of word.

Complement: trivial, swap final and non-final states.
Linear (or even constant) time.

Intersection(X, Y) : returns XNY.
Union(X. Y) : returns X U Y.

SetDifference(X,Y) : returns X - Y, X\Y
Symmetric set difference: returns (X\Y) U (Y\X)

Op(X,Y,Z): returns (XUY)\Z

Pairing

Pairing

Definition 4.1 Let Ay = (Q1,2,01,901, F1) and Ay = (01, X, 02, g2, F2) be DFAs. The
pairing [Ay, A>] of Ay and A, is the tuple (Q, X, 6, qo) where:

o O={I[q1.92] | q1 € Q1,92 € Q2};
e 0 ={(q1.921.a.l9}. 43D 1(q1.a.4)) € 61,(q2,a,q;) € 6},

* go = [qgo1,g02]-
The run of [A,A>] on a word of X" is defined as for DFAs.

B
N

Another example: even number of a's and even
number of b's (and even number of C's ...)

Always remember:
an automaton for a regular language described as

“"set of words satisfying some boolean combination
of properties"

can be obtained by computing automata for the boolean
properties, and then applying the composition operators.

A generic algorithm

L16L2 = weXfl(wel)O(wel)l

Language operation by © by
Union b, V b,
Intersection by A\ by
Set difference (L; \ L») by A =b,
Symmetric difference (Li \ L, UL, \ L)) | by & -b

BiﬂOp[@](Al,Ag)
Input: DFAs Ay = (Q1, %, 81,401, F1), A2 = (Q2, %, 02, q02, F2)
Output: DFA A = (0, X, 6, qo, F) with L(A) = L(A;) © L(A>,))
Q—0;F <0
q0 < [qo1,902]
W « {qo}
while W # 0 do
pick [¢,¢»] from W
add [¢1,q2] to Q
if (g € F1)©(g> € F»2) thenadd [g,g2] to F
for all a € X do
q; < 01(q1,a); gy < 02(q2,)
if [¢},45] ¢ O then add [g|,q,] to W
add ([q1.q92].a,[q.45]) too
return (Q, 2, 9, qo, F)

— p——
o = O

Complexity: the pairing of DFAs with n1 and n2 states
has O(n1 n2) states.

Hence: for DFAs of size k1, k2, union, intersection,
etc. can be caried out in time O(n1n2)

Language tests

Emptiness: no final states
Universality: only final states
Inclusion: L1 included in L2 iff L1 \ L2 is empty

Equality: L1 = L2 iff (L1\L2) U (L2\L1) is empty

InclDFA(A,, A>)
Input: DFAs Ay = (Q1,X,91, 901, F1), A2 = (02, %, 02,90, F?)
Output: true if L(A,) C L(A,), false otherwise
Q « 0
W« {lqo1, 9021}
while W # 0 do
pick (g1, g>] from W
add [g),42] to O
if (g € Fy)and (g> ¢ F>) then return false
for all a € X do
q, < 01(q1,a); ¢5 « 62(q2,a)
if [¢1,45] ¢ O then add [g],q;] to W
10 return true

O 0 N N D B W N -

Operations on sets:
Implementation on NFAs

Member(x, X) : returns true if x € X, false otherwise.

Complement(X) . returns U \ X.

Intersection(X,Y) : returnsXnNY.

Union(X, Y) : returns X U Y.

Empty(X) : returns true if X = 0, false otherwise.

Universal(X) :returns true if X = U, false otherwise.
Included(X.Y) . returns true if X C Y, false otherwise.

Equal(X, Y) . returns true if X = Y, false otherwise.

Membership

Prefix read | W

€ {q0)

a {q2}

aa {q2, q3}

aaa 91,92, 93}
aaab (g2, g3}
aaabb {92, 43, q4}
aaabba {91, 92,93, q4}

Mem|A](w)
Input: NFA A = (0, X,96,q, F), word w € X7,
Output: true if w € L(A), false otherwise

I W« {qo};
2 whilew # £do
3 U0
4 for all g € W do
5 add 6(q, head(w)) to U
6 WU
w «— tail(w) Complexity:
8 return (WnN F # 0) while loop executed |w| times

for loop executed at most |Q| times
each execution takes O(|Q|) time

Overall: O(|w||Q|*2) time

Complement

Swapping final and non-final states doesn't work:
Solution: determinize and then swap states.

Problem: Exponential blow-up in sizel!
To be avoided whenever possible!!

No better way: there are NFAs with O(n) states such that

the smallest NFA for the complement has
O(2"n) states

(see the next exercise sheet)

Union and intersection

The pairing construction still works for union and
iIntersection, with the same complexity, but not
for set diference, or other non-monotonic operations.

There Is a better construction for union, but not for
Intersection.

IntersNFA(A, A>)

Input: NFA A, = (Q1, %, 901,901, F1), A2 = (Q2, X, 62, 902, F2)

Output: NFA A, NA = (0, %,9,q0, F) with L(A; NAy) = L(A;) N L(Ay)
Q«—0,F <0

qo < (401, go2]
W« {[q01,902] }
while W # () do

pick (¢, ¢>] from W
add [g1,¢2] to Q
if g, € F, and ¢> € F>) then add [¢;,¢>] to F
for all a € X do
for all ¢} € 6,(q1.a),q, € 62(q2,a) do
if [¢7.q5] ¢ O thenadd [q,q,] to W
1 add ([g1,92]).a,lq].45]) tod
12 return (Q, X, 6, qo, F)

O o 9 O W B W N -

-

For the complexity, observe that in the worst case the algorithm must examine all
pairs [f1, 1] of transitions of &; X 5, but every pair is examined at most once. So the
runtime 1S O(|d4]|d>]).

a,b

a,b

a, b

a,b

-0—O-

UnionNFA(A |, A3)
Input: NFA A, = (Q1,Z, 01,901, F1), A2 = (02, Z, 02,902, F2)
Output: NFA A; U A, with L(A; UA,) = L(A;) U L(Ay)
0= 01V V(g F — F1 U Fj
0 — o Ud
for all (¢gy,,a,q) € 9, do
add (([(), a, ql) to o
for all (go2,a,q) € 6> do
add (gg,a,q>) to o
return (Q, X, 6, o, F)

~N O D B W N -

O(m; + my), where m; is the number of transitions of A; starting at ¢;.

Example showing that the pairing construction does
not work for set difference:

- SetDiff(A,A) should always produce an NFA recognizing
the empty language, but this is not the case.

Emptiness and universality

Exactly one of these two sentences is true:
NFA is empty iff every state is non-final

NFA is universal iff every state is final

Emptiness and universality

Exactly one of these two sentences is true:
NFA is empty iff every state is non-final

NFA is universal iff every state is final

Emptiness decidable in linear time.

Universality is PSPACE-complete.

Theorem 4.6 The universality problem for NFAs is PSPACE-complete

Proof: We only sketch the proof. To prove that the problem is in PSPACE, we
show that it belongs to NPSPACE and apply Savitch’s theorem. The polynomial-
space nondeterministic algorithm for universality looks as follows. Given an NFA
A = (0,%,9,qo, F), the algorithm guesses a run of B = NFAtoDFA(A) leading from
{go} to a non-final state, 1.e., to a set of states of A containing no final state (if such a
run exists). The algorithm only does not store the whole run, only the current state, and
so it only needs linear space in the size of A.

We prove PSPACE-hardness by reduction from the acceptance problem for linearly
bounded automata. A linearly bounded automaton is a deterministic Turing machine
that always halts and only uses the part of the tape containing the input. A configuration
of the Turing machine on an input of length k is coded as a word of length k. The run
of the machine on an input can be encoded as a word cy#c; ... #c,, where the ¢;’s are
the encodings of the configurations.

Let 2 be the alphabet used to encode the run of the machine. Given an input x, M
accepts if there exists a word w of £* satisfying the following properties:

(a) w has the form cy#c; ... #c,, where the ¢;’s are configurations;
(b) ¢o is the initial configuration;
(¢) ¢, 1s an accepting configuration; and

(d) forevery O <i <n-—1: ¢y 1s the successor configuration of ¢; according to the
transition relation of M.

The reduction shows how to construct in polynomial time, given a linearly bounded
automaton M and an input x, an NFA A(M, x) accepting all the words of £* that do not
satisfy at least one of the conditions (a)-(d) above. We then have

e [f M accepts x, then there is a word w(M, x) encoding the accepting run of M on
x, and so L(A(M, x)) = Z* \ {w(M, x)}.

e If M rejects x, then no word encodes an accepting run of M on x, and so
L(AM, x)) = X,

So M accepts x if and only if L(A(M, x)) = X*, and we are done. L]

- Complement and check for emptiness
Exponential complexity

- Improvements:
(1) check for emptiness while complementing
(on the fly check)
(2) subsumption test

Definition 4.7 Let A be a NFA, and let B = NFAtoDFA(A). A state Q" of B is minimal
if no other state Q" satisfies Q" C Q’.

Proposition 4.8 Let A be a NFA, and let B = NFAtoDFA(A). A is universal iff every
minimal state of B is final.

Proof: Since A and B recognize the same language, A is universal iff B is universal.
So A 1s universal iff every state of B is final. But a state of B 1s final iff it contains some
final state of A, and so every state of B is final iff every minimal state of B is final. []

a a

UnivNFA(A)
Input: NFA A = (0., %,9,q, F)
Output: true if L(A) = X*, false otherwise
| Q « 0;
2 W« {{qo}}
3 while W # 0 do
4 pick Q' from W
5 if Q"N F =0 then return false
6 add Q' to Q
7 for all a € X do
8 if WU Q contains no Q" C 6(Q’, a) then add 6(Q’,a) to W
9 return true

Is it correct?

By removing a non-minimal state we might be
preventing the discovery of minimal states in the
future!

Proposition 4.10 Ler A = (Q,%,9,qo, F) be a NFA, and let B = NFAtoDFA(A). After
termination of UnivNFA(A), the set Q contains all minimal states of B.

Proof: Let Q, be the value of Q after termination of UnivNFA(A). We show that no
path of B leads from a state of Q, to a minimal state of B not in Q,. Since {go} € Q; and
all states of B are reachable from {¢gg}, it follows that every minimal state of B belongs
to Q,.

Assume there is a pathm = QO — Q>... 0,1 — O, of B such that O, € Q,,
O, ¢ 9, and Q, is minimal. Assume further that m is as short as possible. This

ay

implies Q> ¢ Q, (otherwise Q> ...Q0,-1 — Q, is a shorter path satisfying the same
properties), and so Q- is never added to the worklist. On the other hand, since Q; € 9,
the state Q) is eventually added to and picked from the worklist. When Q) is processed
at line 7 the algorithm considers Q> = 6(Q;,a;), but does not add it to the worklist
in line 8. So at that moment either the worklist or Q contain a state Q) C Q. This
state is eventually added to Q (if it is not already there), and so Q) € Q,. So B has a

path 7’ = Q) — Q... Q" —> Q. for some states Q}, ..., Q,. Since Q, C Q) we
have Q) C 5,0} € 0s,...,0, € Q, (notice that we may have Q) = Q3). By the
minimality of Q,, we get O], = Q,, and so 7’ leads from Q), which belongs to Q,, to
Qn, which is minimal and not in to Q,. This contradicts the assumption that 7 is a s

short as possible. L]

Inclusion and equality

Proposition 4.14 The inclusion problem for NFAs is PSPACE-complete

Proof: We first prove membership in PSPACE. Since PSPACE=co-PSPACE=NPSPACE,
it suffices to give a polynomial space nondeterministic algorithm that decides non-
inclusion. Given NFAs A| and A,, the algorithm guesses a word w € L(A|) \ L(A>)
letter by letter, maintaining the sets Q}, Q5 of states that A; and A, can reached by the
word guessed so far. When the guessing ends, the algorithm checks that Q] contains
some final state of Ay, but Q) does not.

Hardness follows from the fact that A is universal iff ¥ € L(A), and so the univer-
sality problem, which is PSPACE-complete, is a subproblem of the inclusion problem.

]

L, cL, iff LinL, =0.

Concatenate four algorithms:
(1) determinize A2
(2) complement the result
(3) intersect it with A1, and
(4) check for emptiness

State of (3): pair (q, Q), where g in Q1 and Q subset of Q2

Easy optimizations:

- we only need the states of (3), not its transitions

- do not perform (1), then (2), then (3): construct directly
the states of (3)

- check (4) while constructing (3)

Further optimization: subsumption test

Definition 4.12 Let A, A, be NFAs, and let B, = NFAtoDFA(A»). A state [q, Q2] of
[A1, B2] is minimal if no other state [q, Q5] satisfies ¢} = g1 and Q), C Q'

PI’OpOSitiOH 413 Let A, = (Ql,z,5|, qo1 Fi),A = (Qz, 2,09, qo2, F>) be NFAs, and
let B, = NFAtoDFA(A,). L(A)) € L(A») iff every minimal state (q,, Q>] of [A}, B>]
satisfying g, € F also satisfies Q> N F, # 0.

Proof: Since A, and B> recognize the same language, L(A;) C L(A>) iff L(A) NL(Ay) = 0
iff L(A))NL(B,) = 0iff [A,, B>] has a state [g;, Q>] such that ¢; € Fy; and Q>N F, = 0.
But [A}, B>] has some state satisfying this condition iff it has some minimal state sat-
isfying it. []

IncINFA(A,, A,)
Input: NFAs Ay = (Q1,%,01,901, F1), A2 = (02, %, 62,902, F2)
Output: true if L(A,) C L(A,), false otherwise

1 O« 0;

2 W e {lq01.{q02}] }

3 while W # 0 do

4 pick (g1, O>] from W

5 if (g € F))and (O, N F> = () then return false

6 add|[gq, Q2] to Q

7 foralla € X,q] € 61(q1,a) do

8 Q) < 02(0>,a)

9 if WU Q contains no ¢}, Q5] s.t. ¢ = ¢} and Q7 C Q) then
10 add [¢}, Q5] to W

11 return true

Complexity:
- Let A1, A2, with n1,n2 states over a k-letter alphabet

- Without the subsumption test:
- The while loop is executed at most n1 2*n2 times
- The for-loop is executed at most O(n1) times
- An execution of the loop takes O(n2"2) time
- Overall: O(k n12 n2"2 2*n2) time

- With the subsumption test the worst-case complexity is
higher. Exercise: give an upper bound.

Important special case:
- A1 i1san NFA, A2 is a DFA
- Complementing A2 is now easy

- We get O(n1%2 n2) time

Equality: check inclusion in both directions.

