Operations on sets: Implementation on DFAs **Member**(x, X): returns **true** if $x \in X$, **false** otherwise. **Complement**(X) : returns $U \setminus X$. **Intersection**(X, Y) : returns $X \cap Y$. **Union**(X, Y) : returns $X \cup Y$. **Empty**(X) : returns **true** if $X = \emptyset$, **false** otherwise. Universal(X): returns true if X = U, false otherwise. **Included**(X, Y) : returns **true** if $X \subseteq Y$, **false** otherwise. Equal(X, Y): returns **true** if X = Y, **false** otherwise. Assumption: each object encoded by one word, and viceversa. Membership: trivial, linear in length of word. Complement: trivial, swap final and non-final states. Linear (or even constant) time. **Intersection**(X, Y) : returns $X \cap Y$. **Union**(X, Y) : returns $X \cup Y$. SetDifference(X,Y): returns X - Y, X\Y Symmetric set difference: returns (X\Y) U (Y\X) Op(X,Y,Z): returns (X U Y) \ Z # **Pairing** ## **Pairing** **Definition 4.1** Let $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ be DFAs. The pairing $[A_1, A_2]$ of A_1 and A_2 is the tuple (Q, Σ, δ, q_0) where: - $Q = \{ [q_1, q_2] \mid q_1 \in Q_1, q_2 \in Q_2 \};$ - $\delta = \{ ([q_1, q_2], a, [q'_1, q'_2]) \mid (q_1, a, q'_1) \in \delta_1, (q_2, a, q'_2) \in \delta_2 \};$ - $q_0 = [q_{01}, q_{02}].$ The run of $[A_1, A_2]$ on a word of Σ^* is defined as for DFAs. Another example: even number of a's and even number of b's (and even number of c's ...) Always remember: an automaton for a regular language described as "set of words satisfying some boolean combination of properties" can be obtained by computing automata for the boolean properties, and then applying the composition operators. ## A generic algorithm $$L_1\widehat{\odot}L_2 = \{w \in \Sigma^* \mid (w \in L_1) \odot (w \in L_2)\}$$ | Language operation | $b_1 \odot b_2$ | |---|--------------------------------| | Union | $b_1 \vee b_2$ | | Intersection | $b_1 \wedge b_2$ | | Set difference $(L_1 \setminus L_2)$ | $b_1 \wedge \neg b_2$ | | Union Intersection Set difference $(L_1 \setminus L_2)$ Symmetric difference $(L_1 \setminus L_2 \cup L_2 \setminus L_1)$ | $b_1 \Leftrightarrow \neg b_2$ | ``` BinOp[\odot](A_1,A_2) Input: DFAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2) Output: DFA A = (Q, \Sigma, \delta, q_0, F) with \mathcal{L}(A) = \mathcal{L}(A_1) \odot \mathcal{L}(A_2) 1 Q \leftarrow \emptyset; F \leftarrow \emptyset 2 q_0 \leftarrow [q_{01}, q_{02}] W \leftarrow \{q_0\} 4 while W \neq \emptyset do pick [q_1, q_2] from W add [q_1, q_2] to Q 6 if (q_1 \in F_1) \odot (q_2 \in F_2) then add [q_1, q_2] to F for all a \in \Sigma do q_1' \leftarrow \delta_1(q_1, a); q_2' \leftarrow \delta_2(q_2, a) 9 if [q'_1, q'_2] \notin Q then add [q'_1, q'_2] to W 10 add ([q_1, q_2], a, [q'_1, q'_2]) to \delta 11 return (Q, \Sigma, \delta, q_0, F) 12 ``` Complexity: the pairing of DFAs with n1 and n2 states has O(n1 n2) states. Hence: for DFAs of size k1, k2, union, intersection, etc. can be caried out in time O(n1n2) #### Language tests Emptiness: no final states Universality: only final states Inclusion: L1 included in L2 iff L1 \ L2 is empty Equality: L1 = L2 iff $(L1\L2)$ U $(L2\L1)$ is empty ``` InclDFA(A_1, A_2) Input: DFAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2) Output: true if \mathcal{L}(A_1) \subseteq \mathcal{L}(A_2), false otherwise 1 Q \leftarrow \emptyset; 2 W \leftarrow \{[q_{01}, q_{02}]\} 3 while W \neq \emptyset do pick [q_1, q_2] from W 5 add [q_1, q_2] to Q 6 if (q_1 \in F_1) and (q_2 \notin F_2) then return false for all a \in \Sigma do 8 q_1' \leftarrow \delta_1(q_1, a); q_2' \leftarrow \delta_2(q_2, a) if [q'_1, q'_2] \notin Q then add [q'_1, q'_2] to W 9 10 return true ``` ## Operations on sets: Implementation on NFAs **Member**(x, X): returns **true** if $x \in X$, **false** otherwise. **Complement**(X) : returns $U \setminus X$. **Intersection**(X, Y) : returns $X \cap Y$. **Union**(X, Y) : returns $X \cup Y$. **Empty**(X) : returns **true** if $X = \emptyset$, **false** otherwise. Universal(X): returns true if X = U, false otherwise. **Included**(X, Y) : returns **true** if $X \subseteq Y$, **false** otherwise. Equal(X, Y): returns **true** if X = Y, **false** otherwise. ## Membership | Prefix read | W | |-------------|-----------------------| | ϵ | $\{q_0\}$ | | a | $\{q_2\}$ | | aa | $\{q_2, q_3\}$ | | aaa | $\{q_1, q_2, q_3\}$ | | aaab | $\{q_2, q_3\}$ | | aaabb | $\{q_2, q_3, q_4\}$ | | aaabba | $\{q_1,q_2,q_3,q_4\}$ | ``` Mem[A](w) Input: NFA A = (Q, \Sigma, \delta, q_0, F), word w \in \Sigma^*, Output: true if w \in \mathcal{L}(A), false otherwise W \leftarrow \{q_0\}; 2 while w \neq \varepsilon do 3 U \leftarrow \emptyset for all q \in W do 4 5 add \delta(q, head(w)) to U W \leftarrow U 6 w \leftarrow tail(w) Complexity: return (W \cap F \neq \emptyset) while loop executed |w| times for loop executed at most |Q| times each execution takes O(|Q|) time ``` Overall: O(|w||Q|^2) time #### Complement Swapping final and non-final states doesn't work: Solution: determinize and then swap states. Problem: Exponential blow-up in size!! To be avoided whenever possible!! No better way: there are NFAs with O(n) states such that the smallest NFA for the complement has O(2ⁿ) states (see the next exercise sheet) #### Union and intersection The pairing construction still works for union and intersection, with the same complexity, but not for set difference, or other non-monotonic operations. There is a better construction for union, but not for intersection. ``` IntersNFA(A_1, A_2) Input: NFA A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2) Output: NFA A_1 \cap A_2 = (Q, \Sigma, \delta, q_0, F) with \mathcal{L}(A_1 \cap A_2) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2) 1 Q \leftarrow \emptyset; F \leftarrow \emptyset 2 q_0 \leftarrow [q_{01}, q_{02}] W \leftarrow \{ [q_{01}, q_{02}] \} 4 while W \neq \emptyset do pick [q_1, q_2] from W add [q_1, q_2] to Q 6 if q_1 \in F_1 and q_2 \in F_2) then add [q_1, q_2] to F for all a \in \Sigma do 8 9 for all q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a) do if [q'_1, q'_2] \notin Q then add [q'_1, q'_2] to W 10 add ([q_1, q_2], a, [q'_1, q'_2]) to \delta 11 return (Q, \Sigma, \delta, q_0, F) 12 ``` For the complexity, observe that in the worst case the algorithm must examine all pairs $[t_1, t_2]$ of transitions of $\delta_1 \times \delta_2$, but every pair is examined at most once. So the runtime is $O(|\delta_1||\delta_2|)$. ## Union ``` UnionNFA(A_1, A_2) Input: NFA A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2) Output: NFA A_1 \cup A_2 with \mathcal{L}(A_1 \cup A_2) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2) 1 Q \leftarrow Q_1 \cup Q_2 \cup \{q_0\}; F \leftarrow F_1 \cup F_2 2 \delta \leftarrow \delta_1 \cup \delta_2 3 for all (q_{01}, a, q) \in \delta_1 do 4 add (q_0, a, q_1) to \delta 5 for all (q_{02}, a, q) \in \delta_2 do 6 add (q_0, a, q_2) to \delta 7 return (Q, \Sigma, \delta, q_0, F) ``` $\mathcal{O}(m_1 + m_2)$, where m_i is the number of transitions of A_i starting at q_{0i} . Example showing that the pairing construction does not work for set difference: SetDiff(A,A) should always produce an NFA recognizing the empty language, but this is not the case. #### **Emptiness and universality** Exactly one of these two sentences is true: NFA is empty iff every state is non-final NFA is universal iff every state is final ### **Emptiness and universality** Exactly one of these two sentences is true: NFA is empty iff every state is non-final NFA is universal iff every state is final Emptiness decidable in linear time. Universality is PSPACE-complete. #### **Theorem 4.6** The universality problem for NFAs is PSPACE-complete **Proof:** We only sketch the proof. To prove that the problem is in PSPACE, we show that it belongs to NPSPACE and apply Savitch's theorem. The polynomial-space nondeterministic algorithm for universality looks as follows. Given an NFA $A = (Q, \Sigma, \delta, q_0, F)$, the algorithm guesses a run of B = NFAtoDFA(A) leading from $\{q_0\}$ to a non-final state, i.e., to a set of states of A containing no final state (if such a run exists). The algorithm only does not store the whole run, only the current state, and so it only needs linear space in the size of A. We prove PSPACE-hardness by reduction from the acceptance problem for linearly bounded automata. A linearly bounded automaton is a deterministic Turing machine that always halts and only uses the part of the tape containing the input. A configuration of the Turing machine on an input of length k is coded as a word of length k. The run of the machine on an input can be encoded as a word $c_0\#c_1\dots\#c_n$, where the c_i 's are the encodings of the configurations. Let Σ be the alphabet used to encode the run of the machine. Given an input x, M accepts if there exists a word w of Σ^* satisfying the following properties: - (a) w has the form $c_0 \# c_1 \dots \# c_n$, where the c_i 's are configurations; - (b) c_0 is the initial configuration; - (c) c_n is an accepting configuration; and - (d) for every $0 \le i \le n-1$: c_{i+1} is the successor configuration of c_i according to the transition relation of M. The reduction shows how to construct in polynomial time, given a linearly bounded automaton M and an input x, an NFA A(M, x) accepting all the words of Σ^* that do *not* satisfy at least one of the conditions (a)-(d) above. We then have - If M accepts x, then there is a word w(M, x) encoding the accepting run of M on x, and so $\mathcal{L}(A(M, x)) = \Sigma^* \setminus \{w(M, x)\}.$ - If M rejects x, then no word encodes an accepting run of M on x, and so $\mathcal{L}(A(M,x)) = \Sigma^*$. So *M* accepts *x* if and only if $\mathcal{L}(A(M, x)) = \Sigma^*$, and we are done. - Complement and check for emptiness Exponential complexity - Improvements: - (1) check for emptiness while complementing (on the fly check) - (2) subsumption test **Definition 4.7** Let A be a NFA, and let B = NFAtoDFA(A). A state Q' of B is minimal if no other state Q'' satisfies $Q'' \subset Q'$. **Proposition 4.8** Let A be a NFA, and let B = NFA to DFA(A). A is universal iff every minimal state of B is final. **Proof:** Since A and B recognize the same language, A is universal iff B is universal. So A is universal iff every state of B is final. But a state of B is final iff it contains some final state of A, and so every state of B is final iff every minimal state of B is final. \Box #### UnivNFA(A) **Input:** NFA $A = (Q, \Sigma, \delta, q_0, F)$ Output: true if $\mathcal{L}(A) = \Sigma^*$, false otherwise - 1 $\Omega \leftarrow \emptyset$; - 2 $\mathcal{W} \leftarrow \{\{q_0\}\}$ - 3 while $W \neq \emptyset$ do - 4 pick Q' from W - 5 if $Q' \cap F = \emptyset$ then return false - 6 add Q' to Q - 7 **for all** $a \in \Sigma$ **do** - if $W \cup Q$ contains no $Q'' \subseteq \delta(Q', a)$ then add $\delta(Q', a)$ to W - 9 return true #### Is it correct? By removing a non-minimal state we might be preventing the discovery of minimal states in the future! **Proposition 4.10** Let $A = (Q, \Sigma, \delta, q_0, F)$ be a NFA, and let B = NFA to DFA(A). After termination of UnivNFA(A), the set Q contains all minimal states of B. **Proof:** Let Ω_t be the value of Ω after termination of UnivNFA(A). We show that no path of B leads from a state of Ω_t to a minimal state of B not in Ω_t . Since $\{q_0\} \in \Omega_t$ and all states of B are reachable from $\{q_0\}$, it follows that every minimal state of B belongs to Ω_t . Assume there is a path $\pi = Q_1 \xrightarrow{a_1} Q_2 \dots Q_{n-1} \xrightarrow{a_n} Q_n$ of B such that $Q_1 \in Q_t$, $Q_n \notin \mathcal{Q}_t$, and Q_n is minimal. Assume further that π is as short as possible. This implies $Q_2 \notin Q_t$ (otherwise $Q_2 \dots Q_{n-1} \xrightarrow{a_n} Q_n$ is a shorter path satisfying the same properties), and so Q_2 is never added to the worklist. On the other hand, since $Q_1 \in \mathcal{Q}_t$, the state Q_1 is eventually added to and picked from the worklist. When Q_1 is processed at line 7 the algorithm considers $Q_2 = \delta(Q_1, a_1)$, but does not add it to the worklist in line 8. So at that moment either the worklist or \mathbb{Q} contain a state $Q'_2 \subset Q_2$. This state is eventually added to Q (if it is not already there), and so $Q'_2 \in Q_t$. So B has a path $\pi' = Q_2' \xrightarrow{a_2} Q_3' \dots Q_{n-1}' \xrightarrow{a_n} Q_n'$ for some states Q_3, \dots, Q_n' . Since $Q_2' \subset Q_2$ we have $Q_2 \subset Q_2, Q_3 \subseteq Q_3, \ldots, Q_n \subseteq Q_n$ (notice that we may have $Q_3 = Q_3$). By the minimality of Q_n , we get $Q'_n = Q_n$, and so π' leads from Q'_2 , which belongs to Ω_t , to Q_n , which is minimal and not in to Q_t . This contradicts the assumption that π is a s short as possible. ## Inclusion and equality **Proposition 4.14** The inclusion problem for NFAs is PSPACE-complete **Proof:** We first prove membership in PSPACE. Since PSPACE=co-PSPACE=NPSPACE, it suffices to give a polynomial space nondeterministic algorithm that decides non-inclusion. Given NFAs A_1 and A_2 , the algorithm guesses a word $w \in \mathcal{L}(A_1) \setminus \mathcal{L}(A_2)$ letter by letter, maintaining the sets Q_1' , Q_2' of states that A_1 and A_2 can reached by the word guessed so far. When the guessing ends, the algorithm checks that Q_1' contains some final state of A_1 , but Q_2' does not. Hardness follows from the fact that A is universal iff $\Sigma \subseteq \mathcal{L}(A)$, and so the universality problem, which is PSPACE-complete, is a subproblem of the inclusion problem. $$L_1 \subseteq L_2$$ iff $L_1 \cap \overline{L_2} = \emptyset$. #### Concatenate four algorithms: - (1) determinize A2 - (2) complement the result - (3) intersect it with A1, and - (4) check for emptiness State of (3): pair (q, Q), where q in Q1 and Q subset of Q2 #### Easy optimizations: - we only need the states of (3), not its transitions - do not perform (1), then (2), then (3): construct directly the states of (3) - check (4) while constructing (3) #### Further optimization: subsumption test **Definition 4.12** Let A_1, A_2 be NFAs, and let $B_2 = NFAtoDFA(A_2)$. A state $[q_1, Q_2]$ of $[A_1, B_2]$ is minimal if no other state $[q'_1, Q'_2]$ satisfies $q'_1 = q_1$ and $Q'_2 \subset Q'$. **Proposition 4.13** Let $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ be NFAs, and let $B_2 = NFAtoDFA(A_2)$. $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$ iff every minimal state $[q_1, Q_2]$ of $[A_1, B_2]$ satisfying $q_1 \in F_1$ also satisfies $Q_2 \cap F_2 \neq \emptyset$. **Proof:** Since A_2 and B_2 recognize the same language, $\mathcal{L}(A_1) \subseteq \mathcal{L}(A_2)$ iff $\mathcal{L}(A_1) \cap \overline{\mathcal{L}(A_2)} = \emptyset$ iff $\mathcal{L}(A_1) \cap \overline{\mathcal{L}(B_2)} = \emptyset$ iff $[A_1, B_2]$ has a state $[q_1, Q_2]$ such that $q_1 \in F_1$ and $Q_2 \cap F_2 = \emptyset$. But $[A_1, B_2]$ has some state satisfying this condition iff it has some minimal state satisfying it. ``` InclNFA(A_1, A_2) Input: NFAs A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2) Output: true if \mathcal{L}(A_1) \subseteq \mathcal{L}(A_2), false otherwise 1 Q \leftarrow \emptyset; 2 W \leftarrow \{ [q_{01}, \{q_{02}\}] \} while W \neq \emptyset do pick [q_1, Q_2] from W 5 if (q_1 \in F_1) and (Q_2 \cap F_2 = \emptyset) then return false add [q_1, Q_2] to Q 6 7 for all a \in \Sigma, q'_1 \in \delta_1(q_1, a) do Q_2' \leftarrow \delta_2(Q_2, a) if W \cup Q contains no [q_1'', Q_2''] s.t. q_1'' = q_1' and Q_2'' \subseteq Q_2' then 9 add [q'_1, Q'_2] to \mathcal{W} 10 11 return true ``` #### Complexity: - Let A1, A2, with n1,n2 states over a k-letter alphabet - Without the subsumption test: - The while loop is executed at most n1 2ⁿ2 times - The for-loop is executed at most O(n1) times - An execution of the loop takes O(n2^2) time - Overall: O(k n1^2 n2^2 2^n2) time - With the subsumption test the worst-case complexity is higher. Exercise: give an upper bound. Important special case: - A1 is an NFA, A2 is a DFA - Complementing A2 is now easy - We get O(n1² n2) time Equality: check inclusion in both directions.