Pattern matching

Given

aword w (the text)
and a regular expression p (the pattern),

determine

the smallest number k' such that
some [k,k']-factor of w belongsto L(p).



PatternMatchingNFA(t, p)
Input: text7 =a;...a, € X", pattern p € X*
Output: the first occurrence k of p in ¢, or L if no such occurrence exists.

A « RegtoNFA(X™ p)

]
2§ «{q0}

3 forallk=0ton—-1do

4 if S N F # () then return k
5 S « (S, a;)

6 return L

Line 1 takes O(m) time
At most n loop iterations
One iteration takes O(s*2) time where s number of states of A

Since s=0(m), total runtime is O(mM+nm*2)=0(nm*"2)



PatternMatchingDFA(t, p)
Input: textf = a;...a, € X", pattern p
Output: the first occurrence k of p in ¢, or L if no such occurrence exists.

1 A <« NFAtoDFA(RegtoNFA(X" p))
2 g < 4o

3 foralli=0ton—-1do

4 if g € F then return k

5 g < 6(q,a;)

6 return L

Line 1 takes 2*O(m) time
At most n loop iterations
One iteration takes constant time

Total runtime is O(n) + 22O(m)



The word case

- The naive algorithm has O(nm) runtime

- We give an algorithm with O(n + m) runtime, even when
the size of the alphabet is not fixed.

- Consider the minimal DFA for Sigma* p (p the pattern)

- The DFA must contain one state for each prefix of p.
(Why ?)

- We construct a DFA with exactly one state for each
prefix, which is therefore the minimal DFA



The minimal DFA

Intuition: the DFA keeps track of how close it is to
reading the pattern

More precisely: if the DFA is in state p', then p' is
the longest prefix of p that the DFA has just read
and has not been yet 'spoilt’.



The general rule is:

If the DFA 1is in state v € X* and it reads a letter @, it moves to the largest
suffix of va that 1s also a prefix of p.

Definition 7.2 We denote by ol(w) the longest suffix of w that is a prefix of p. In other words, ol(w)
is the unique longest word of the set

ueX'|Iv,vV e w=vunp=uw)



7
Definition 7.3 The eager DFA of the pattern p is the tuple eagerDFA(p) = (Q., X, d¢, qoe, Feo),

where :
o Q. is the set of prefixes of p (including &),
e foreveryu € Q,, for every a € X: 0.(u, @) = ol(ua),
® go. = &, and

e F,=1{p]

New pattern-matching algorithm: replace
A < NFAtoDFA(RegtoNFA(X" p))

by A « eagerDFA(p)



Variable alphabet size
The eager DFA of a pattern of length m has
- m+1 states and
- m |Sigma| transitions

If the alphabet is large, m|Sigma| can also be large!

If the alphabet is not fixed: |Sigma| is O(n), and the
eager DFA has size O(nm).

We introduce a more compact data structure: the lazy DFA



The lazy DFA

other n n

other, R other, N

n, R a, R 0, R
E n na nan
n, R

other, N

other, N

“1f the current state 1s not €, then the head does not move, and the eager DFA moves
to a new state which depends only on the current state, not on the current letter.



10

If the lazy DFA is at state u # €, and it reads a miss, what should be the new state?

The state 1s chosen to guarantee that the lazy DFA “simulates™ the eager DFA: a step
u—> v of the eager DFA 1s simulated by a sequence of moves

(a,N) (a,N) a.R
U—— U — VU —V

of the lazy DFA. For instance, in our example the move nan N n of the eager DFA is
simulated in the lazy DFA by the sequence

(nN)

(n.N)
> 1 >

(n,R)
> € 2>

> n .

nan



11
Formal definition of the lazy DFA

Definition 7.4 Let w be a proper prefix of p.

o We denote by h,, the unique letter such that w h,, is a prefix of p. We call h,, a hit (from state
w). Notice that h, = a,.

o Forw # & we define pol(w) (short for proper overlap) as the longest proper suffix of w that
is a prefix of p, that is, pol(w) is the unique longest word of the set

{u € ¥ | there exists v € X7,V € * such that w = vu and p = uv'’}

Notice: pol(w) is a proper suffix of w
ol(w) Isa suffix of w

For p=nana, ol(nana)=nana but pol(nana)=na



F
or nano.

PO
PO
PO
PO
PO

(ep

En) S) Z eps

(na) - eps

nan) = o

(nano) ; gp
S

For
abra
cada
bra:

I;:))gll((abra)
ab
racadabra) _;
= abra



13

Definition 7.5 The lazy DFA for p is the tuple lazyDFA(p) = (Qy, X, 61, qoi, F1), where:

o () is the set of prefixes of p;

e foreveryu € Q) a € X:

(ua, R) ifa = hy (hit)
oi(u,a) =<5 (& R) ifa # h,andu =& (miss from &)
(pol(u),N) ifa # h, and u # € (miss from other states)

® go = &, and

o F=1{p}



14

Definition 7.6 Let lazyDFA(p) = (Qy, Z, 01, qoi, F1), let u € Qy, and let @ € X. We denote by g[(u, )
the unique state v such that

(a,N) (a,N) (a,R)
U=U)y— U — Uy Uy —V

for some uy,...,u; € Q, k> 0.



Proposition 7.8 a(v, @) = 0.(v, @) for every prefix v of p and every a € X.

Proof:

a is a hit (& = h,). Then 6,(v, @) = va = 6(v, @).

a 1s a miss (@ # hy,). By induction on |v|.

lv| = 0. Then v = £ and we have 6,.(v,a@) = é;(v, @) = 3}(1}, Q).
lv| > 0. We have :

51(v, @)
= E}(p()f(V),a’) ( because 6;(v, @) = (pol(v), N))
O.(pol(v),) (|pol(v)| <|v| and ind. hyp.)

We show 6.(pol(v), @) = 6.(v, @).

(N



16

We show d.(pol(v), @) = d.(v, @).
We have é.(pol(v), @) = ol(pol(v)a) and 6.(v, @) = ol(va).
We prove: if a # h,, then ol(pol(v)a) = ol(va).

1) ol(pol(v) @) 1s a suffix of ol(va).
pol(v) 1s suffix of v = every suffix of pol(v)a is suffix of va.

2) ol(va) 1s a suffix of ol(pol(v) )

Since a is a miss, ol(va) = pol(var), so we show pol(va) is a suffix of ol(pol(v) @).
It suffices: every suffix of va that 1s prefix of p is also suffix of pol(v) @).

Nothing to show for the empty suffix.

wa 18 prefix of p and suffix of va

w 1s prefix of p and suffix of v

w 1s suffix of pol(v)

wa 1s suffix of pol(v)a

L4 d



1%

Constructing the lazy DFA in O(m) time

Reduces to computing pol(v) for every prefix v of p In
O(m) time

Recall: pol(w) is the longest proper suffix of w that is a prefix
of p. The following equation holds for every proper prefix v

of p

(& ifv=e
pol(v h,) =<3 pol(v)h, it v # & and hypi) = hy
_ pol(pol(v) h,) 1t v # g and hyyy) # hy



(& ifv=e
pol(v h,) =<3 pol(v)h, it v # & and hypi) = hy
 pol(pol(v) h,) 1t v # gand hyy) # h,y

For v=na wehave h_v=n and h_pol(na)=n
pol(nan) = pol(na) h_v=epsn=n
For v=nan we have h_v=0 h_pol(nan)=a

pol(nano) = pol(no) = eps

18



POL(v, @)

Input: a prefix v of p, a letter a € 2.

Output: pol(va).

1 if |[v]| = O then return &

2 elseif v = wp then

3 u < POLw,B)

4 if @ = h, then return ua
5 else return POL(u, )

POLiterative(m)
Input: a number 1 < m.

19
POLnum(v, k)

Input: numbers 0 < v,k < m.

Output: the length of pol(p[1]... plviplk]).
1 if v = 0 then return 0
2 else
3 u «— POLnum(v — 1, v)
4 if plk] = plu + 1] then return u + 1
5 else return POLnum(u, k)

Output: the array pol[1l..m] with
pol[i] = length of pol(p[1]... pli]) for every 1 <i < m.

1 forallyv=1tomdo

2 pol[v] « POLnum(v — 1, v)



