Pattern matching

Given

a word w (the text) and a regular expression p (the pattern),

determine

the smallest number k' such that some [k,k']-factor of w belongs to L(p).

PatternMatchingNFA(t, p)

Input: text $t = a_1 \dots a_n \in \Sigma^+$, pattern $p \in \Sigma^*$

Output: the first occurrence k of p in t, or \bot if no such occurrence exists.

- $1 \quad A \leftarrow RegtoNFA(\Sigma^* p)$
- $S \leftarrow \{q_0\}$
- 3 **for all** k = 0 to n 1 **do**
- 4 if $S \cap F \neq \emptyset$ then return k
- $S \leftarrow \delta(S, a_i)$
- 6 return ⊥

Line 1 takes O(m) time At most n loop iterations One iteration takes O(s^2) time where s number of states of A

Since s=O(m), total runtime is $O(m+nm^2)=O(nm^2)$

PatternMatchingDFA(t, p)

Input: text $t = a_1 \dots a_n \in \Sigma^+$, pattern p

Output: the first occurrence k of p in t, or \bot if no such occurrence exists.

- 1 $A \leftarrow NFAtoDFA(RegtoNFA(\Sigma^*p))$
- $q \leftarrow q_0$
- 3 **for all** i = 0 to n 1 **do**
- 4 if $q \in F$ then return k
- 5 $q \leftarrow \delta(q, a_i)$
- 6 return ⊥

Line 1 takes 2^O(m) time
At most n loop iterations
One iteration takes constant time

Total runtime is $O(n) + 2^{O}(m)$

The word case

- The naive algorithm has O(nm) runtime
- We give an algorithm with O(n + m) runtime, even when the size of the alphabet is not fixed.
- Consider the minimal DFA for Sigma* p (p the pattern)
 - The DFA must contain one state for each prefix of p.
 (Why ?)
 - We construct a DFA with exactly one state for each prefix, which is therefore the minimal DFA

The minimal DFA

Intuition: the DFA keeps track of how close it is to reading the pattern

More precisely: if the DFA is in state p', then p' is the longest prefix of p that the DFA has just read and has not been yet 'spoilt'.

The general rule is:

If the DFA is in state $v \in \Sigma^*$ and it reads a letter α , it moves to the largest suffix of $v\alpha$ that is also a prefix of p.

Definition 7.2 We denote by ol(w) the longest suffix of w that is a prefix of p. In other words, ol(w) is the unique longest word of the set

$$\{u \in \Sigma^* \mid \exists v, v' \in \Sigma^*. w = vu \land p = uv'\}$$

Definition 7.3 The eager DFA of the pattern p is the tuple **eagerDFA** $(p) = (Q_e, \Sigma, \delta_e, q_{0e}, F_e)$, where :

- Q_e is the set of prefixes of p (including ε);
- for every $u \in Q_e$, for every $\alpha \in \Sigma$: $\delta_e(u, \alpha) = ol(u\alpha)$;
- $q_{0e} = \varepsilon$; and
- $F_e = \{p\}$

New pattern-matching algorithm: replace

$$A \leftarrow NFAtoDFA(RegtoNFA(\Sigma^*p))$$

by
$$A \leftarrow eagerDFA(p)$$

Variable alphabet size

The eager DFA of a pattern of length m has

- m+1 states and
- m |Sigma| transitions

If the alphabet is large, m|Sigma| can also be large!

If the alphabet is not fixed: |Sigma| is O(n), and the eager DFA has size O(nm).

We introduce a more compact data structure: the lazy DFA

The lazy DFA

if the current state is not ϵ , then the head *does not move*, and the eager DFA moves to a new state which depends only on the current state, not on the current letter.

If the lazy DFA is at state $u \neq \epsilon$, and it reads a miss, what should be the new state?

The state is chosen to guarantee that the lazy DFA "simulates" the eager DFA: a step $u \xrightarrow{\alpha} v$ of the eager DFA is simulated by a sequence of moves

$$u \xrightarrow{(\alpha,N)} u_1 \xrightarrow{(\alpha,N)} v_2 \cdots u_k \xrightarrow{\alpha,R} v$$

of the lazy DFA. For instance, in our example the move $nan \xrightarrow{n} n$ of the eager DFA is simulated in the lazy DFA by the sequence

$$nan \xrightarrow{(n,N)} n \xrightarrow{(n,N)} \epsilon \xrightarrow{(n,R)} n$$
.

Formal definition of the lazy DFA

Definition 7.4 *Let w be a proper prefix of p.*

- We denote by h_w the unique letter such that $w h_w$ is a prefix of p. We call h_w a hit (from state w). Notice that $h_{\varepsilon} = a_1$.
- For $w \neq \varepsilon$ we define pol(w) (short for proper overlap) as the longest proper suffix of w that is a prefix of p, that is, pol(w) is the unique longest word of the set

 $\{u \in \Sigma^* \mid there \ exists \ v \in \Sigma^+, v' \in \Sigma^* \ such \ that \ w = vu \ and \ p = uv'\}$

Notice: pol(w) is a proper suffix of w ol(w) is a suffix of w

For p=nana, ol(nana)=nana but pol(nana)=na

For nano:

For abracadabra:

pol(eps) = eps pol(n) = eps pol(na) = eps pol(nan) = n pol(nano) = eps pol(abra) = a pol(abracadabra) = abra

Definition 7.5 The lazy DFA for p is the tuple $lazyDFA(p) = (Q_l, \Sigma, \delta_l, q_{0l}, F_l)$, where:

- Q_l is the set of prefixes of p;
- for every $u \in Q_l, \alpha \in \Sigma$:

$$\delta_l(u,\alpha) = \begin{cases} (u\alpha,R) & \text{if } \alpha = h_u \\ (\varepsilon,R) & \text{if } \alpha \neq h_u \text{ and } u = \varepsilon \\ (pol(u),N) & \text{if } \alpha \neq h_u \text{ and } u \neq \varepsilon \\ \end{cases} \text{ (miss from ε)}$$

- $q_{0l} = \varepsilon$; and
- $F_l = \{p\}$

Definition 7.6 Let $lazyDFA(p) = (Q_l, \Sigma, \delta_l, q_{0l}, F_l)$, let $u \in Q_l$, and let $\alpha \in \Sigma$. We denote by $\widehat{\delta_l}(u, \alpha)$ the unique state v such that

$$u = u_0 \xrightarrow{(\alpha,N)} u_1 \xrightarrow{(\alpha,N)} u_2 \cdots u_k \xrightarrow{(\alpha,R)} v$$

for some $u_1, \ldots, u_k \in Q_l$, $k \ge 0$.

Proposition 7.8 $\widehat{\delta}_l(v,\alpha) = \delta_e(v,\alpha)$ for every prefix v of p and every $\alpha \in \Sigma$.

Proof:

 α is a hit $(\alpha = h_v)$. Then $\delta_e(v, \alpha) = v\alpha = \widehat{\delta}(v, \alpha)$. α is a miss $(\alpha \neq h_v)$. By induction on |v|. |v| = 0. Then $v = \varepsilon$ and we have $\delta_e(v, \alpha) = \delta_l(v, \alpha) = \widehat{\delta}_l(v, \alpha)$. |v| > 0. We have :

$$\widehat{\delta_l}(v, \alpha)$$
= $\widehat{\delta_l}(pol(v), \alpha)$ (because $\delta_l(v, \alpha) = (pol(v), N)$)
= $\delta_e(pol(v), \alpha)$ ($|pol(v)| < |v|$ and ind. hyp.)

We show $\delta_e(pol(v), \alpha) = \delta_e(v, \alpha)$.

- We show $\delta_e(pol(v), \alpha) = \delta_e(v, \alpha)$.
 - We have $\delta_e(pol(v), \alpha) = ol(pol(v)\alpha)$ and $\delta_e(v, \alpha) = ol(v\alpha)$.
 - We prove: if $\alpha \neq h_v$, then $ol(pol(v)\alpha) = ol(v\alpha)$.
 - 1) $ol(pol(v)\alpha)$ is a suffix of $ol(v\alpha)$. pol(v) is suffix of $v \Rightarrow$ every suffix of $pol(v)\alpha$ is suffix of $v\alpha$.
 - 2) $ol(v\alpha)$ is a suffix of $ol(pol(v)\alpha)$

Since α is a miss, $ol(v\alpha) = pol(v\alpha)$, so we show $pol(v\alpha)$ is a suffix of $ol(pol(v)\alpha)$.

It suffices: every suffix of $v\alpha$ that is prefix of p is also suffix of $pol(v)\alpha$).

Nothing to show for the empty suffix.

 $w\alpha$ is prefix of p and suffix of $v\alpha$

- \Rightarrow w is prefix of p and suffix of v
- \Rightarrow w is suffix of pol(v)
- \Rightarrow w\alpha is suffix of $pol(v)\alpha$

Constructing the lazy DFA in O(m) time

Reduces to computing pol(v) for every prefix v of p in O(m) time

Recall: pol(w) is the longest proper suffix of w that is a prefix of p. The following equation holds for every proper prefix v of p

$$pol(v h_v) = \begin{cases} \varepsilon & \text{if } v = \varepsilon \\ pol(v) h_v & \text{if } v \neq \varepsilon \text{ and } h_{pol(v)} = h_v \\ pol(pol(v) h_v) & \text{if } v \neq \varepsilon \text{ and } h_{pol(v)} \neq h_v \end{cases}$$

$$pol(v h_v) = \begin{cases} \varepsilon & \text{if } v = \varepsilon \\ pol(v) h_v & \text{if } v \neq \varepsilon \text{ and } h_{pol(v)} = h_v \\ pol(pol(v) h_v) & \text{if } v \neq \varepsilon \text{ and } h_{pol(v)} \neq h_v \end{cases}$$

For v = na we have h_v= n and h_pol(na)=n
pol(nan) = pol(na) h_v = eps n = n

For v = nan we have h_v=o h_pol(nan)=a
pol(nano) = pol(no) = eps

```
POL(v, \alpha)
```

Input: a prefix v of p, a letter $\alpha \in \Sigma$.

Output: $pol(v\alpha)$.

- 1 if |v| = 0 then return ε
- 2 else if $v = w\beta$ then
- $u \leftarrow POL(w, \beta)$
- 4 if $\alpha = h_u$ then return $u\alpha$
- 5 **else return** $POL(u, \alpha)$

POLnum(v, k)

Input: numbers $0 \le v, k \le m$.

Output: the length of $pol(p[1] \dots p[v]p[k])$.

- 1 if v = 0 then return 0
- 2 else
- $u \leftarrow \text{POLnum}(v-1,v)$
- 4 if p[k] = p[u+1] then return u+1
- 5 **else return** POLnum(u, k)

POLiterative(m)

Input: a number $1 \le m$.

Output: the array pol[1..m] with

pol[i] = length of pol(p[1] ... p[i]) for every $1 \le i \le m$.

- 1 **for all** v = 1 to m **do**
- 2 $pol[v] \leftarrow POLnum(v-1, v)$