omega-Automat

Automata that accept (or reject) words of infinite length

Languages of infinite words appear:
- In verification, as encodings of non-terminating
executions of a program.
- In arithmetic, as encodings of sets of real numbers.

Omega-languages

Let 2 be an alphabet. An infinite word, also called an w-word, is an infinite sequence
apaa» ... of letters of X. The concatenation of a finite word w; = a,...a, and an
w-word wy = b1b, ... 1s the w-word wyw»r = a;...a,b1b, ..., sometimes also denoted
by wy - ws. Notice that £ - w = w. We denote by X% the set of all w-words over 2. A set
L C 2“ of w-words 1s an infinitary language or w-language over X.

The concatenation of a language L, and a language or w-language L, 1s L - L, =
iwiwy € Z2¢ | wy € Li,wy € Ly}. The w-iteration of a language L C X* is the w-
language LY = {wywows... | w; € L\ {€}}. Observe that {€}* = 0, in contrast to the
case of finite words, where {€}* = {0}. Notice that {€¢}“ = {0} does not make sense,
because all the words of L“ must have infinite length.

3
Omega-regular expressions

Definition 11.1 w-regular expressions s over an alphabet X are defined by the follow-
ing grammar, where r € RE(X) is a regular expression

su=0|rY|rs;| 51+ 5

Sometimes we write r - sy instead [rs|. The set of all w-regular expressions over X is
written RE (). The language L, (s) C X of an w-regular expression s € RE(X) is
defined inductively as

o L(0)=0;

o L(r?) = (L(r)*;

o L,(rsy) = L(r) - Lu(s1); and
o L(s1+ 52)=L(~s1)UL(sr).

A language L is w-regular if there is an w-regular expression s such that L = L ().

Examples

Consider the alphabet {a,b}. We use ° instead of omega.
- Words containing infinitely many a's: (b*a)®
- Words containing only finitely a's:

- Words containing infinitely many a's
and infinitely many b's:

Consider now the alphabet {a,b,c}.

- Words containg infinitely many occurrences of ab and
infinitely many occurrences of ba:

Buchi automata

Invented by J.R. Blchi for theoretical purposes (decision
procedures in logic)

Same syntax as NFAs and DFAs, but different
interpretation.

b a a, b b

B8

Words containing
infinitely many a's

Words containing
only finitely many a's

7

Definition 11.2 A nondeterministic Blichi automaton (NBA) is a tuple A = (Q, ., 9, qo, F),
where Q, X, 0, qo, and F are defined as for NFAs. A run of A on an w-word apaa; . ..

ay a

is an infinite sequence p = po—> py— p>... such that p; € Q for 0 < i <
n and d(pi,a;)) = piy1 for 0 < i < n— 1. Let inf(p) be the set {g € Q | g =
pi for infinitely many i’s}, i.e., the set of states that occur in p infinitely often. The
run p is accepting if there is some accepting state that repeats in p infinitely often, i.e.,
if inf(p) N F # (). A accepts an w-word w € X% if it has an accepting run on w. The
language recognized by A is the set L,(A) = {w € X | w is accepted by A}.

Deterministic Buchi Automata (DBAs) are defined as for
finite words.

More examples

From omega-regular expressions to NBAs

Recall the syntax of omega-regular expressions:

su=0|r°|rs;| s+ 5

We first preprocess the omega-regular expression to
eliminate the occurrences of the emptyset-symbol.

¢ ~ 0
D-5s ~ v

0 ~
D+s ~ s s+0 ~

0
S

a

a

GO

a)

NFA for r NBA for r¢

10

=5

NFA for r

o

NBA for s

1"

e)

NBA forr- s

Q
O

NBA for s

O
Q

NBA for s

D

00

Q
O

NBA for s; + $»

12

13
From NBAs to omega-regular expressions

Let A = (Q,%,6,q0, F) be a NBA. For every two states ¢,q" € Q, let Ag' =
(Q,2,0,q9.1q"'}) be the NFA (not the NBA!) obtained from A by changing the initial
state to g and the final state to ¢’. Using algorithm NFAtoRE we can construct a regular

expression rz’ such that L(Afj’) = L(rff).

We use these regular expressions to find an w-regular expression for £,,(A). For
every accepting state ¢ € F, let L, € L, (A) be the set of w-words w such that some
run of A on w visits the state g infinitely often. We have L,(A) = U er Ly-

Every word w € L, can be split into an infinite sequence wywpws ... of finite,
nonempty words, where w, 1s the word read by the automaton until it visits g for the
first time, and for every i > 1 w; i1s the word read by the automaton between the i-th
and the (i + 1)-th visits to ¢. It follows wy € L(r],), and w; € L(r) for every i > 1. So

w
we have L, = L, (r] (rf,j)), and so

qo
z : g (.9\%
4 qo (’ f'l)
qeF

is the w-regular expression we are looking for.

14

)*
C
+
)(b
C
)" (0 +)
C . |
| +

| b:C) +b
(a *(a ; N
: bb+ Ca +
r(l)] : :

rg] :

r}]

r%

0
" 4

o

+ w + + &)w
)
C
b
|
)(
C
|
(
l
(
()
d
b
|
)
C
+
(
)
d -+ b C b + C b b d d -} b
+
*(
)
C
b
+
(

15
Inequivalence of NBAs and DBAs

Proposition 11.4 The language L = (a + b)*b*, (i.e., L consists of all infinite words in
which a occurs only finitely many times) is not recognized by any DBA.

Proof: Assume by way of contradiction that L = L ,(A), for some DBA A = ({a, b}, O, g9, 6, F).
We extend § to a mapping Q X {a,b}* — Q in the usual way: &(g,€) = ¢ and
5(q, wa) = 8(5(q, w), a).

Consider the infinite word wy = b“. Clearly, wy is accepted by A, so A has an
accepting run on wy. Thus, wy has a finite prefix uq such that 3((}0, up) € F. Consider
now the infinite word w; = upab®. Clearly, w; is also accepted by A, so A has an
accepting run on wy. Thus, w; has a finite prefix upbu; such that S(qo, uopauy) € F. In a
similar fashion we can continue to find finite words «; such that 3((/0, upaud. ..au;) €
F. Since Q is finite, there are i, j, where 0 < i < j, such that (g, upaua. ..au;) =
o(qo, upauya au;a . . . au;). It follows that A has an accepting run on

Upaa. . .au(@uiy . .. Wj—1au;)".

But the latter word has infinitely many occurrences of a, so it does not belong to L. [

Generalized Buchi automata

Equivalent to Blchi automata, but more adequate for
some constructions.

- Several sets of accepting states.

- Arun is accepting if it visits at least one state
OF EACH SET infinitely often.

b a

16

1+

A generalized Biichi automaton (NGA) differs from a Biichi automaton in that it
has a collection of sets of accepting states F = {Fy, ..., F,,_}, instead of only one set
F. A run p 1s accepting if for every set F; € J some state of F; is visited by p infinitely
often. Formally, p 1s accepting if inf(p) N F; # O for every i € {0,...,m — 1}. Abusing
language, we speak of the generalized Biichi condition . Ordinary Biichi automata
correspond to the special case m = 1.

b a
& E

F =1 {6]},{"} }

From NGAs to NBAs

Important fact:
A1, ..., An all happen infinitely often
IS equivalent to
A1 eventually happens
and

after every occurrence of Ai there is an occurrence
of A(i+1)

18

From NGAs to NBAs

Application:
F1, ..., Fn are all visited infinitely often
IS equivalent to
F1 is eventually visited

and
after every visit to Fi there is a visit to F(i+1)

19

20

(output transitions of F1 ar

e
redirected to the second cy

21

NGAtoNBA(A)
Input: NGA A = (0, %, q9,6,F), where F = {Fy,..., F,}
Output: NBA A’ = (Q',%.5', ¢}, F’)

T S

O 0 NN N D B

10

12
13
14
15

16

Q.6 F' «<0
qy < [q0,0]
W < {lq0, 01}
while W # (0 do
pick [g,i] from W
add [q,] to Q'
ifge Fpand i = 0 then add [g,i] to F’
forall « € X do
for all ¢’ € 6(q, a) do
if g ¢ F; then
if [¢',i] ¢ Q" then add [¢',i] to W
add ([q,1],a,[q’,i]) to &
else /* g€ F; */
if [¢,i®1]¢ Q thenadd [¢,i® 1] toW
add ([¢,i],a.[¢',i® 1]) to &
return (Q', X, ¢, q;. F")

22

DGAs have the same expressive power as DBAS,
and so are nt equivalent to NGAs.

Question

Are there other classes of omega-automata with

- the same expressive power as NBAs or NGAs, and

- with equivalent deterministic and nondeterministic
versions?

The only thing we are willing to change is the
acceptance condition!

25

24
Muller automata

- Muller automata only differ from Biichi automata in the acceptance con-
dition. Like a generalized Biichi automaton, a (nondeterministic) Muller automaton
(NMA) has a collection {Fy, ..., F,—} of sets of accepting states. A run p 1s accepting
if the set of states p visits infinitely often 1s equal to one of the F;’s. Formally, p 1s

accepting if inf(p) = F; for some i € {0,...,m — 1}. We speak of the Muller condition
{F()a-"&Fm—l}'

25
From Buchi to Muller automata

Let A be a Blchi automaton with Blchi condition F.
Call a set of states of A "good" if it contains at least
one state of F.

Let G be the set of all good sets of A.

Let A' be "the same automaton” as A, but with Muller

condition G.

run r of A Is accepting
Iff Inf(r) contains some state of F
Iff INnf(r) is a good set of A
Iff run r of A'is accepting

From Muller to Buchi automata

It suffices to transform a given NMA into an equivalent NGA.

Let A be a NMA with condition {F1,...,Fn}.
Let A1,..., An be NMAs with the same structure as A but
Muller conditions {F1}, {F2},..., {Fn}, respectively.

We have:
L(A) = L(A1) U L(A2) U ... U L(An)

We proceed in two steps:
(1) we construct for each NMA Ai an NGA Al
(2) we construct an NGA A' such that

L(A") = L(A1) U L(A2) U ... U L(An')

206

21
(1) we construct for each NMA Ai an NGA Af’

A run of Al Is accepting iff
- it visits infinitely often every state of Fi, and
- It only visits finitely often every other state.

If Fi={q1,...,gm}, this is equivalent to:

A run of Al Is accepting iff
- from some point on it "stays within" Fi, and
- It visits infinitely often each of the sets {q1}, {92},....,{gm}
(a generalized Buchi condition).

1 NMA

O :

F-

(no accepting
states here)

28

L (transitions leaving Fi are duplicated
and sent to the copy of Fi)

|

oy

NGA wWita

{ ENIRE hm”

30
Equivalence of NMAs and DMAs

Theorem 11.6 (Safra) Any NBA with n states can be effectively transformed into a
DMA of size n®™,

We can easily give a deterministic Muller automaton for the language L = (a +
b)*b*, which, as shown in Proposition 11.4, 1s not recognized by any DBA. The au-
tomaton is

b a
(3 @ (y
OO0
b

with Muller condition { {1} }. The accepting runs are the runs p such that inf(p) = {1},

Rabin automata

Muller automata recognize all omega-regular languages,
and can be determinized.

But the translation from a Blchi automaton to a Muller
automaton has exponential complexity.

Rabin automata enjoy the same properties as Muller
automata, and there are back and forth polynomial
translations between Blchi and Rabin automata.

3L

The acceptance condition of a nondeterministic Rabin automaton (NRA) 1s a set of
pairs F = {{(Fo, Go),...,{Fn, Gn)}, where the F;’s and G;’s are sets of states. A run p
1s accepting 1if there 1s a pair (F;, G;) such that p visits some state of F; infinitely often
and all states of G; finitely often. Formally, p 1s accepting if there is i € {1, ..., m} such
that inf(p) N F; # 0 and inf(p) N G; = 0.

NBA — NRA. A Biichi condition {qi,..., gy} corresponds to the Rabin condition
{({‘11 }9 0)9 ceey ({qll}a 0)}

NRA — NBA. GivenaRabinautomaton A = (Q, X, g0, 0, {{Fo,Go), ... {(Fm-1,Gm=1)})s
it i1s easy to see that, as for Muller automata, we have L,(A) = U?;B' L, (A;), where
A; = (0O, %, qo,0,{{Fi,G;)}). In this case we directly translate each A; into an NBA.
Since an accepting run p of A; satisfies inf(p) N G; = 0, from some point on the run
only visits states of Q; \ G;. So p consists of an initial finite part, say py, that may visit
all states, and an infinite part, say p;, that only visits states of Q \ G;. Again, we take
two copies of A;. Intuitively, A? simulates p by executing p in the first copy, and p) in
the second. The condition that p; must visit some state of F; infinitely often is enforced
by taking F; as Biichi condition.

