omega-Automat

Automata that accept (or reject) words of infinite length

Languages of infinite words appear:
- In verification, as encodings of non-terminating
executions of a program.
- In arithmetic, as encodings of sets of real numbers.



Omega-languages

Let 2 be an alphabet. An infinite word, also called an w-word, is an infinite sequence
apaa» ... of letters of X. The concatenation of a finite word w; = a,...a, and an
w-word wy = b1b, ... 1s the w-word wyw»r = a;...a,b1b, ..., sometimes also denoted
by wy - ws. Notice that £ - w = w. We denote by X% the set of all w-words over 2. A set
L C 2“ of w-words 1s an infinitary language or w-language over X.

The concatenation of a language L, and a language or w-language L, 1s L - L, =
iwiwy € Z2¢ | wy € Li,wy € Ly}. The w-iteration of a language L C X* is the w-
language LY = {wywows... | w; € L\ {€}}. Observe that {€}* = 0, in contrast to the
case of finite words, where {€}* = {0}. Notice that {€¢}“ = {0} does not make sense,
because all the words of L“ must have infinite length.
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Omega-regular expressions

Definition 11.1 w-regular expressions s over an alphabet X are defined by the follow-
ing grammar, where r € RE(X) is a regular expression

su=0|rY|rs;| 51+ 5

Sometimes we write r - sy instead [ rs|. The set of all w-regular expressions over X is
written RE (). The language L, (s) C X of an w-regular expression s € RE(X) is
defined inductively as

o L(0)=0;

o L(r?) = (L(r)*;

o L,(rsy) = L(r) - Lu(s1); and
o L(s1+ 52)=L(~s1)UL(sr).

A language L is w-regular if there is an w-regular expression s such that L = L ().



Examples

Consider the alphabet {a,b}. We use ° instead of omega.
- Words containing infinitely many a's: (b*a)®
- Words containing only finitely a's:

- Words containing infinitely many a's
and infinitely many b's:

Consider now the alphabet {a,b,c}.

- Words containg infinitely many occurrences of ab and
infinitely many occurrences of ba:



Buchi automata

Invented by J.R. Blchi for theoretical purposes (decision
procedures in logic)

Same syntax as NFAs and DFAs, but different
interpretation.

b a a, b b

B8




Words containing
infinitely many a's

Words containing
only finitely many a's



7

Definition 11.2 A nondeterministic Blichi automaton (NBA) is a tuple A = (Q, ., 9, qo, F),
where Q, X, 0, qo, and F are defined as for NFAs. A run of A on an w-word apaa; . ..

ay a

is an infinite sequence p = po—> py— p>... such that p; € Q for 0 < i <
n and d(pi,a;)) = piy1 for 0 < i < n— 1. Let inf(p) be the set {g € Q | g =
pi for infinitely many i’s}, i.e., the set of states that occur in p infinitely often. The
run p is accepting if there is some accepting state that repeats in p infinitely often, i.e.,
if inf(p) N F # (). A accepts an w-word w € X% if it has an accepting run on w. The
language recognized by A is the set L,(A) = {w € X | w is accepted by A}.

Deterministic Buchi Automata (DBAs) are defined as for
finite words.



More examples




From omega-regular expressions to NBAs

Recall the syntax of omega-regular expressions:

su=0|r°|rs;| s+ 5

We first preprocess the omega-regular expression to
eliminate the occurrences of the emptyset-symbol.

¢ ~ 0
D-5s ~ v

0 ~
D+s ~ s s+0 ~

0
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From NBAs to omega-regular expressions

Let A = (Q,%,6,q0, F) be a NBA. For every two states ¢,q" € Q, let Ag' =
(Q,2,0,q9.1q"'}) be the NFA (not the NBA!) obtained from A by changing the initial
state to g and the final state to ¢’. Using algorithm NFAtoRE we can construct a regular

expression rz’ such that L(Afj’) = L(rff).

We use these regular expressions to find an w-regular expression for £,,(A). For
every accepting state ¢ € F, let L, € L, (A) be the set of w-words w such that some
run of A on w visits the state g infinitely often. We have L,(A) = U er Ly-

Every word w € L, can be split into an infinite sequence wywpws ... of finite,
nonempty words, where w, 1s the word read by the automaton until it visits g for the
first time, and for every i > 1 w; i1s the word read by the automaton between the i-th
and the (i + 1)-th visits to ¢. It follows wy € L(r],), and w; € L(r) for every i > 1. So

w
we have L, = L, (r] (rf,j) ), and so

qo
z : g (.9\%
4 qo (’ f'l)
qeF

is the w-regular expression we are looking for.
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Inequivalence of NBAs and DBAs

Proposition 11.4 The language L = (a + b)*b*, (i.e., L consists of all infinite words in
which a occurs only finitely many times) is not recognized by any DBA.

Proof: Assume by way of contradiction that L = L ,(A), for some DBA A = ({a, b}, O, g9, 6, F).
We extend § to a mapping Q X {a,b}* — Q in the usual way: &(g,€) = ¢ and
5(q, wa) = 8(5(q, w), a).

Consider the infinite word wy = b“. Clearly, wy is accepted by A, so A has an
accepting run on wy. Thus, wy has a finite prefix uq such that 3((}0, up) € F. Consider
now the infinite word w; = upab®. Clearly, w; is also accepted by A, so A has an
accepting run on wy. Thus, w; has a finite prefix upbu; such that S(qo, uopauy) € F. In a
similar fashion we can continue to find finite words «; such that 3((/0, upaud. ..au;) €
F. Since Q is finite, there are i, j, where 0 < i < j, such that (g, upaua. ..au;) =
o(qo, upauya .. . . au;a . . . au;). It follows that A has an accepting run on

Upaa. . .au(@uiy . .. Wj—1au;)".

But the latter word has infinitely many occurrences of a, so it does not belong to L. [



Generalized Buchi automata

Equivalent to Blchi automata, but more adequate for
some constructions.

- Several sets of accepting states.

- Arun is accepting if it visits at least one state
OF EACH SET infinitely often.

b a
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A generalized Biichi automaton (NGA) differs from a Biichi automaton in that it
has a collection of sets of accepting states F = {Fy, ..., F,,_}, instead of only one set
F. A run p 1s accepting if for every set F; € J some state of F; is visited by p infinitely
often. Formally, p 1s accepting if inf(p) N F; # O for every i € {0,...,m — 1}. Abusing
language, we speak of the generalized Biichi condition . Ordinary Biichi automata
correspond to the special case m = 1.

b a
& E

F =1 {6]},{"} }



From NGAs to NBAs

Important fact:
A1, ..., An all happen infinitely often
IS equivalent to
A1 eventually happens
and

after every occurrence of Ai there is an occurrence
of A(i+1)
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From NGAs to NBAs

Application:
F1, ..., Fn are all visited infinitely often
IS equivalent to
F1 is eventually visited

and
after every visit to Fi there is a visit to F(i+1)

19
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NGAtoNBA(A)
Input: NGA A = (0, %, q9,6,F), where F = {Fy,..., F,}
Output: NBA A’ = (Q',%.5', ¢}, F’)

T S
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Q.6 F' «<0
qy < [q0,0]
W < {lq0, 01}
while W # (0 do
pick [g,i] from W
add [q, ] to Q'
ifge Fpand i = 0 then add [g,i] to F’
forall « € X do
for all ¢’ € 6(q, a) do
if g ¢ F; then
if [¢',i] ¢ Q" then add [¢',i] to W
add ([q,1],a,[q’,i]) to &
else /* g€ F; */
if [¢,i®1]¢ Q thenadd [¢,i® 1] toW
add ([¢,i],a.[¢',i® 1]) to &
return (Q', X, ¢, q;. F")
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DGAs have the same expressive power as DBAS,
and so are nt equivalent to NGAs.

Question

Are there other classes of omega-automata with

- the same expressive power as NBAs or NGAs, and

- with equivalent deterministic and nondeterministic
versions?

The only thing we are willing to change is the
acceptance condition!

25
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Muller automata

- Muller automata only differ from Biichi automata in the acceptance con-
dition. Like a generalized Biichi automaton, a (nondeterministic) Muller automaton
(NMA) has a collection {Fy, ..., F,—} of sets of accepting states. A run p 1s accepting
if the set of states p visits infinitely often 1s equal to one of the F;’s. Formally, p 1s

accepting if inf(p) = F; for some i € {0,...,m — 1}. We speak of the Muller condition
{F()a-"&Fm—l}'



25
From Buchi to Muller automata

Let A be a Blchi automaton with Blchi condition F.
Call a set of states of A "good" if it contains at least
one state of F.

Let G be the set of all good sets of A.

Let A' be "the same automaton” as A, but with Muller

condition G.

run r of A Is accepting
Iff Inf(r) contains some state of F
Iff INnf(r) is a good set of A
Iff run r of A'is accepting



From Muller to Buchi automata

It suffices to transform a given NMA into an equivalent NGA.

Let A be a NMA with condition {F1,...,Fn}.
Let A1,..., An be NMAs with the same structure as A but
Muller conditions {F1}, {F2},..., {Fn}, respectively.

We have:
L(A) = L(A1) U L(A2) U ... U L(An)

We proceed in two steps:
(1) we construct for each NMA Ai an NGA Al
(2) we construct an NGA A' such that

L(A") = L(A1) U L(A2) U ... U L(An')

206
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(1) we construct for each NMA Ai an NGA Af’

A run of Al Is accepting iff
- it visits infinitely often every state of Fi, and
- It only visits finitely often every other state.

If Fi={q1,...,gm}, this is equivalent to:

A run of Al Is accepting iff
- from some point on it "stays within" Fi, and
- It visits infinitely often each of the sets {q1}, {92},....,{gm}
(a generalized Buchi condition).
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Equivalence of NMAs and DMAs

Theorem 11.6 (Safra) Any NBA with n states can be effectively transformed into a
DMA of size n®™,

We can easily give a deterministic Muller automaton for the language L = (a +
b)*b*, which, as shown in Proposition 11.4, 1s not recognized by any DBA. The au-
tomaton is

b a
(3 @ (y
OO0
b

with Muller condition { {1} }. The accepting runs are the runs p such that inf(p) = {1},



Rabin automata

Muller automata recognize all omega-regular languages,
and can be determinized.

But the translation from a Blchi automaton to a Muller
automaton has exponential complexity.

Rabin automata enjoy the same properties as Muller
automata, and there are back and forth polynomial
translations between Blchi and Rabin automata.
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The acceptance condition of a nondeterministic Rabin automaton (NRA) 1s a set of
pairs F = {{(Fo, Go),...,{Fn, Gn)}, where the F;’s and G;’s are sets of states. A run p
1s accepting 1if there 1s a pair (F;, G;) such that p visits some state of F; infinitely often
and all states of G; finitely often. Formally, p 1s accepting if there is i € {1, ..., m} such
that inf(p) N F; # 0 and inf(p) N G; = 0.

NBA — NRA. A Biichi condition {qi,..., gy} corresponds to the Rabin condition
{({‘11 }9 0)9 ceey ({qll}a 0)}

NRA — NBA. GivenaRabinautomaton A = (Q, X, g0, 0, {{Fo,Go), ... {(Fm-1,Gm=1)})s
it i1s easy to see that, as for Muller automata, we have L,(A) = U?;B' L, (A;), where
A; = (0O, %, qo,0,{{Fi,G;)}). In this case we directly translate each A; into an NBA.
Since an accepting run p of A; satisfies inf(p) N G; = 0, from some point on the run
only visits states of Q; \ G;. So p consists of an initial finite part, say py, that may visit
all states, and an infinite part, say p;, that only visits states of Q \ G;. Again, we take
two copies of A;. Intuitively, A? simulates p by executing p in the first copy, and p) in
the second. The condition that p; must visit some state of F; infinitely often is enforced
by taking F; as Biichi condition.



