Verification of liveness properties

Recall:

Safety: nothing bad can happen
Liveness: something good eventually happens

More formally:
- safety property: violations are finite executions

- liveness properties: violations are infinite executions

Approach:

- represent the set of omega-executions as a NBA
(the system NBA)

- represent the set of possible omega-executions violating
the property as a NBA
(the property NBA)

- check emptiness of the intersection of the two NBAs

Some care needed when defining the omega-executions ...

hnh B W N -

while x = 1 do
if y = 1 then
x <0

. 15,0,0]

[1,1,0]

. (5,0, 1]

[1,0,1]

[3,1,1]

(4.0,1]

Lamport's algorithm

bl =0

by =0
0,0, nco, 4

b|=l

z> e
b. « 0

by « 0 by « 1
b|=]

"Finite waiting" property: if a process is trying to access
the critical section, then it eventually will.

If NCi, Ti, Ci are the sets of configurations where
process I is in the non-critical section, trying to access i,
and in the critical section, respectively, then the possible
violations are:

2T (Z\C)*

Observe: we can use the intersection algorithm for NFAs.

The "finite waiting" property does not hold because of
[0, 0, nco, ncy] [1,0,t0,nc1] [1,1, 10,21

Is this a real problem of the algorithm ?
No! We have not properly specified the property!

Reformulate: in every omega-execution in which both
processes execute actions infinitely often, if a process is
trying to access the critical section, then it eventually will.

Fairness assumption: both processes execute infinitely many
actions infinitely often

(Usually a weaker assumption is used: if a process can
execute an action infinitely often, it will. In this case they are

equivalent.)

8

The violations of the property are now the intersection of

2T, 2\ C)”

and the omega-executions in which both processes "make
a move" infinitely often.

Problem: how to represent this as an regular
omega-language?

Solution: enrich the alphabet of the NBA
Letter: pair (c, 1) where
Cc is a configuration and
| IS the index of the process making the move

by =0 3
.

b{) = 0
0,0, neq, 4

/0

Denote by MO the set of letters (c, 0)
M1 the set of letters (c,1)

The set of possible execution where both processes move
Infinitely often is now given by

(Mo + My)"MoM,)

The new finite waiting property holds for process 0 but not
for process 1 because of

0,0, nco,nci] 10, 1,nco, 111 [1, 1,100,111 [1, 1, 20, q1]
1,0,1,471[1,0,co0,47]1 [0,0,nco,q71)

Il
Temporal logic

Writing property NBAs requires training in automata
theory.

We search for a more intuitive (but still formal)
description language: Temporal Logic.

Temporal logic: extension of propositional logic with
temporal operators like "always" and "eventually”

Linear temporal logic. temporal logic interpreted over
linear structures.

Linear Temporal Logic (LTL)

The setting is as follows. We are given:

- set AP of atomic propositions
(names for basic properties)

- valuation assigning to each atomic proposition a set

of configurations
(configurations satisfying the property, assigns meaning
to each name)

12

hnh B W N -

while x = 1 do
if y = 1 then
x <0
ye—=1l-=x
end

. 15,0,0]

[1,1,0]

. (5,0, 1]

[1,0,1]

[3,1,1]

(4.0,1]

/3

Example

I whilex=1do
2 if y = 1 then
3 x—0

ye—1-x
end

(O I SN

AP ={at_1l,at_2,...,at.5,x=0,x=1,y=0,y=1}

o V(at_i) ={[{,x,y]eC| ¢ =i} foreveryie{l,...,5}.
o V(x=0)={[{,x,y] € C| x=0}, and similarly forx =1,y =0,y = 1.

/4

An infinite sequence of subsets of AP Is called a computation

Example: AP={p,q}
{p} {p,q} emp emp {p}*\omega

Every possible execution can be assigned a computation: just
assign to every configuration the set of atomic propositions
that are satisfied by it.

possible execution ====> computation
execution ====> executable computation
computation ====>in general set of possible

executions

[1,0,0]

([1,1,0

1,10, 1]
|1, 1, 1]

Example

5,0,0]¢

[2,1,0] [4,1,0])”

35,0,1]¢
2,1,1]1[3,1,1] [4,0,1] [1,0,1] [5,0,1]¢

/6

{
(
{
{
{

/#

[1,0,0] [5,0,01”

([1,1,0] [2,1,0] [4,1,0])*

[1,0,1] [5,0, 1]¢

[, 1,11 [2,1,1] [3,1,1][4,0,1] [1,0,1][5,0,1]¢

at_1,x=0,y=0} {at_5, x=0, y=0}“

fat_1,x=1,y=0} {at_2, x=1, y=0} {at_4, x=1, y=0})*
at_1,x=0,y=1} {at_5, x=0,y=1}“
at_1,x=1,y=1}{at_2,x=1,y=1} {at_3,x=1,y=1} {at_4, x=0, y=1}
at_1,x=0,y=1} {at_5,x=0,y=1}“

Syntax of LTL

Given: set AP of atomic propositions ("basic properties")
valuation assigning to each atomic proposition a set
of configurations (configurations satisfying the
property

Set of LTL formulas inductively defined as follows:

e true is a formula;
e pis aformula for every p € AP; and
e if ¢, ¢ and ¢, are formulas, then so are =¢ and ¢ A ¢,; and

o if ¢, ¢, and ¢, are formulas, then so are X ¢ and ¢ U ¢».

Semantics of formulas

Formulas are interpreted on computations
The satisfaction relation is inductively defined as follows:

= true.

= p it p € ¢(0).

= - 1T o [¢.

= ¢, A iff o | ¢ and o E ¢».
= X ¢ iff o' E ¢.

= ¢, U ¢, iff there exists k > O such that o £ ¢» and o |£ ¢, forall 0 <i < k.

20
Abbreviations

e false, v, — and <, interpreted in the usual way.

o F¢ = trueU ¢ (“eventually ¢”). According to the semantics above, o = F ¢
iff there exists k > 0 such that o E ¢..

o G¢p=-F-¢ (“always ¢” or “globally ¢”). According to the semantics above,
o E G ¢iff o | ¢ for every k > 0.

AP ={at_1,at_2,...,at_5,x=0,x=1,y=0, y=1}

e V(at_i) ={[{,x,yleC |l =i}foreveryie{l,...,5}.

o V(x=0)={[{,x,y] € C| x =0}, and similarly forx =1,y =0,y = 1.

e oo = x=1A Xy=1A X Xat_3.
¢ = F x=0.
¢ = x=0 U at_5.
&3 = y=1A F(y=0 Aat.5) A -(F(y=0 A Xy=1)).

Lamport's algorithm

AP = {NCy,Ty,Co,NC,,T;,C, My, M,}.
and valuation as expected.

Mutual exclusion:
Naive finite waiting:

Finite waiting with fairness:

22

23

The bounded overtaking property for process 0O 1s expressed by
G(To— (~CU(C,U(CUCy))))

The formula states that whenever 7y holds, the computation continues with a
(possibly empty!) interval at which we see =C| holds, followed by a (possibly
empty!) interval at which C; holds, followed by a point at which Cy holds. The

Getting used to LTL ...

Express in natural language: FGp GFp

Are these pairs of formulas equivalent?

FFp Fp GGp Gp

FGp GFp FGFp GFp

pUqg pU(pAg)

Fp pVXFp Fo p/A XFp

Gp pVXGp Gp pV GFp

pUqg pVX(pUaq) pUg pAX(pUQq)
pUqg qVX(pUaq) pUg qAX(pUQq)
pUg qV(pAX(pUQq) pUg qA(pVX(pUaQq))

From formulas to NBAs
Given: set AP of atomic propositions
Language L(f) of a formula f. set of computations satisfying f
Examples for AP={p,q}
L(F p) = s1s2s3... where p belongs to si for some |
L(G (p/Aq))= {p, q}"\omega

L(f) iIs an omega-language over the alphabet 2*AP

For AP ={p,q}, 2"AP ={ emp, {p}, {a}, {p.q} }

25

AP ={p, q;

Fp

GF p

NBAs for some formulas

26

From LTL formulas to NGAs 2t

We present an algorithm that takes a formula f
as input (over a fixed set AP) and returns a NGA
A f such that L(A_f) = L(f).

Closure cl(f) of a formula f. set containing all subformulas of
f and their "negations".

ClosureofpU~q: {p,~p,~q,q,pU~q,~(pUQq)}

28

Satisfaction sequence of a computation wrt a formula:
- add to each subset of the computation the formulas of the

closure that hold

Take {p}*\omega and p U g. The satisfaction sequence is

Take ({pHa})*\omega and p U g. The satisfaction sequence is

29

Definition 14.8 A pre-Hintikka sequence for ¢ is an infinite sequence @ = apa ;...
of atoms satisfying the following conditions for every i > O:

(l1) Forevery X ¢ € cl(p): X ¢ € a; if and only if ¢ € a;y;.

(12) For every ¢ U ¢ € cl(p): ¢ U ¢dr € «; if and only if ¢» € a; or ¢, € a and
&1 U ¢s € ajyy.

A pre-Hintikka sequence is a Hintikka sequence if it also satisfies
(g) Forevery ¢ U ¢y € ;, there exists j > i such that ¢, € «;.

A pre-Hintikka or Hintikka sequence a matches a computation o if for every atomic
proposition p € AP, p € «; if and only if p € o;.!

Main theorem: the satisfaction sequence for a formula and a
computation is the unique Hintikka sequence that can be
obtained by adding formulas of the closure to the

subsets of the computation.

30
Strategy for constructing the NGA

We have:

sigma satisfies f
Iff
f belongs to the first subset of the sat. sequence
Iff
f belongs to the first subset of the Hintikka sequence

Strategy: design the NGA so that
- the runs correspond to the pre-Hintikka sequences
such that f belongs to the first subset, and
- arun is accepting Iiff its pre-Hintikka sequence is
also a Hintikka sequence

31
- The alphabet of A is 247,

- The states of A, (apart from the distinguished initial state gg) are atoms of ¢.
T,
- The output transitions of the initial state g are the triples g — a such that
oo matches «a (i.e., for every atomic proposition p € AP, p € o if and only if
p € ap), and ¢ € a.

- The output transitions of any other state & (where « is an atom) are the triples

Q@ —s [such that o matches 3, and the pair a, 8 satisfies conditions (11) and (12)
(where a and S play the roles of a; resp. @;41).

- The accepting condition contains a set Fy, 74, Of accepting states for each sub-

formula ¢; U ¢, of ¢. An atom belongs to Fy, i 4, 1f it does not contain ¢; U ¢,
or if it contains ¢,.

32
NGA (NBA) for the formulap U g

-p,q,pUgq

p,—~q,~(pU q)
-p,—q,~(p U q)

]), —lqj

O

