Implementing
boolean operations

Intersection

The algorithm for NFAs does not work ...

a a
a a
da

—Can] Xaur

a

Solution

Apply the same idea as in the conversion NGA => NBA

1.Take two copies of the pairing A1 X A2

il SN

—Can X X

a

—Cark e

a

Solution

Apply the same idea as in the conversion NGA => NBA

1.Take two copies of the pairing A1 X A2
2.Redirect the arcs leaving F1 in the first copy to the second copy

3.
4.

—Car] D

a

—Can] X

a

Solution

Apply the same idea as in the conversion NGA => NBA

1.Take two copies of the pairing A1 X A2
2.Redirect the arcs leaving F1 in the first copy to the second copy

3.Redirect the arcs leaving F2 in the second copy to the first copy
4. '

—Car] e

a

—Car]

a

Solution

Apply the same idea as in the conversion NGA => NBA

1.Take two copies of the pairing A1 X A2
2.Redirect the arcs leaving F1 in the first copy to the second copy

3.Redirect the arcs leaving F2 in the second copy to the first copy
4.The final states dre the F1-states of the first copy

—Car] D

a

—Can] X

a

IntersNBA(A,, A>)

Input: NBAs A} = (Q1,Z,61,q901, F1), A2 = (02, X, 02, qo2, F2)
Output: NBA A, N A; = (0, %, 8, qo, F) with Lo(A; N“ As) = Lo(A1) N Lo(As)

0,0,F «< 0
qo < [qo1, go2, 1]

W < {[q01,902,1] }
while W # 0 do

pick [¢.¢42,] from W

add (g1, >, i] to Q'
ifg e Flandi =1 thenadd [q,q>, 1]

10
11
12
13
4
15
16
17
18
19
20
21
22

—

forall a € £ do
for all ¢| € 61(q1,a). 4, € 5(q2,a) do
if i = 1and ¢| ¢ F, then
add ([q1,92. 1).a,lq]. 45, 1)) to 6
if [¢],q5,1] ¢ Q' then add [q],q5,1] to W
if i = 1 and ¢| € F then
add ([q1, 92,11, a,[4}.45.2]) to 6
if [¢].45,.2] ¢ Q" then add [¢],¢5.2] to W
if i =2 and ¢, ¢ F, then
add ([¢1, 92,2, a,(4}.45.2]) to 6
if [¢],45,.2] ¢ Q' then add [¢],q¢5,2] to W
if i =2 and ¢, € F, then
add ([q1.92.2].a,14}.45. 1)) to &
if [¢).45,1] ¢ Q" then add [q],45.1] to W
return (Q, X, 9, qo, F)

Special cases / Improvements

- All states of at least one of A1 and A2 are accepting

In this case we do not need the second copy of
A1 X A2. The algorithm for NFAs works.

- Intersection of NBAs A1, A2, ..., Ak:
Do NOT apply the algorithm for two NBAs (k-1) times.

Proceed instead as in NGA => NBA
(kn1..nk states instead of exponential number in k)

Complement

Main result proved by Blichi: NBAs are closed under
complement.

Many later improvements in recent years.

Construction radically different from the one for NFAs.

Problems

- The powerset construction does not work

& &

- No other determinization construction works

- Exchanging accepting and non-accepting states in DBAS
also fails

(l (1l

10

14
First informal ideas

Let NBA A with n states. We search for a complement
automaton C(A).

If A does not accept a word w, then no run of Aon w is
accepting. C(A) must "get this information" from at least one
one of its runs on w , so that it can accept.

We first have a closer look at why the powerset construction
does not work.

Dag of A onawordw

12

Slicing a dag

13

14

The powerset construction only retains information about
which states are visited, but no information about the
connections between them.

So we have to add information to the states ...

16
Rankings
A ranking of dag(w) is a function that assigns to each node of

dag(w) a rank: a number in the range [0 ... 2n] satisfying two
conditions:

- ranks never increase along paths, and
- ranks of accepting states are even

0 0

1+

The ranks along an infinite path of dag(w) stabilize at an
stable rank.

Observe: if the stable rank of a path is odd, then the path
cannot visit accepting states infinitely often.

So: if all paths have odd stable ranks, the word is not
accepted.

If all paths have odd stable ranks, we say the ranking is

If dag(w) admits an odd ranking,
then A does not accept w.

Imagine we can prove: if A does
not accept w, then dag(w) admits an
odd ranking. Then:

design C(A) so that it accepts
w if and only if dag(w) admits
an odd ranking.

18

19
A does not accept w => dag(w) admits an odd ranking

Assume A does not accept w. We construct an odd ranking for
dag(w).

Procedure:

- we proceed in n rounds, each round with steps n.0 and n.1

- each step removes a set of nodes together with all its
descendants

- the nodes removed at step I.] get rank 2i+]

The steps

Step 1.0: remove all nodes having only finitely many
SUCCEeSSOors.

Step i.1: remove nodes none of whose descendants
(including themselves) is accepting

Observe: ranks along a path cannot increase
accepting states can only be removed at
step 1.0

Remains to prove: after n rounds there are no nodes left.

20

21

Observe:
- ranks along a path cannot increase
- accepting states can only be removed at step 1.0

Remains to prove: after n rounds there are no nodes left.

For this we first split the dag into "slices"

22

Each slice has a "width"

The "width" of the whole dag is defined as the largest width that
appears infinitely often.

23

24

Little lemma: Each round decreases the width of the dag
by at least 1.

Since the initial width is at most n, it follows that there are
at most n rounds.

S0 every node gets assigned a number between 0 and 2n.

26
Where are we?

Given: An NBA A over alphabet Sigma.

Achieved so far:

. We define a mapping dag which assigns to each word w € £ a directed acyclic
graph dag(w). We also define an odd ranking of dag(w) as a labelling of the
nodes of dag(w) by natural numbers satisfying certain properties.

2. We prove that w is rejected by A if and only if dag(w) admits an odd ranking.

To be done:

3. We construct an NBA A which accepts w if and only if dag(w) admits an odd
ranking.

2%
3. We construct an NBA A which accepts w if and only if dag(w) admits an odd
ranking.

First idea:

- Choose the states and transitions of C(A) so that the
runs of C(A) on w correspond to the rankings of

dag(w).

- Choose the accepting states so that the accepting
runs correspond to the odd rankings.

Choosing the states and transitions

28

Choosing the states and transitions

23

States: level rankings, vectors over [0,...,2n] and
Transitions: there is a transition between two level rankings
(states) if we can see them as two consecutive slices in a
ranking.

- Textual notation (lecture notes): Ir |--> Ir

31
Choosing the accepting states

Unfortunately, there is no way to characterize the odd
ranks by means of a Blichi condition.

Solution: add more information to the states.

Recall: a ranking is odd if every infinite path contains
infinitely many nodes of odd rank.

Breakpoint set: set of levels such that between any two
consecutive levels every path visits an state of odd rank at
least once.

A ranking is odd iff it has an infinite breakpoint set.

The additional information will allow C(A) to identify
breakpoints

Add to each level ranking a new component: A set O
of states.

A state g belongs to O if there is a path starting at the last
breakpoint and ending at g that does not visit any states
of odd rank.

Informally: a state of O "owes" is the endpoint of a path
that "owes" a visit to nodes of odd rank.

32

33
State: level ranking + set of owing states

Transitions take care of suitably updating the owing set.

e The initial state 1s the pair [lry, {go}], where lro(qgg) = 2n, and lro(g) = L for
every g # ¢o. Observe that gy ‘owes” a visit to a node of odd rank.

When the set of owing states is nonempty, A updates it:
o If O # 0, then (IF,0’) € 5(Ir,0),a) iff Ir v I’ and O’ = {q" € 6(0,a) |
Ir'(q") 1s even }.

When the set of owing states is empty, A has reached a checkpoint, and it starts search-
ing for the next one; all states of even rank are owing:

o If O = 0, then (I, 0’ € 5{Ir,0),a) iff Ir ¥ I and O’ = {¢ € Q |
Ir'(g") 1s even }.
The accepting states are those at which a checkpoint 1s reached:

e a state [/r, O] 1s accepting if O = 0.

34

Example 12.4 We construct the complements A, and A, of the two possible NBAs over
the alphabet {a} having one state and one transition: By = ({g},{a}, o, {q},{q}) and B, =
({g}, la}, 0, {q}, D), where 6(q,a) = {g}. The only difference between B, and B, is that the
state ¢ 1s accepting in By, but not in B>. We have L,(A;) = a“ and L,(A,) = 0.

a a
a a a .
M 219! (0,19
%

a

CompNBA(A)
Input: NBA A = (Q,2,9,q90,F) B
Output: NBA A = (Q,%,6,q,, F) with L,(A) = L,(A)

O 0 NN N D B W N -

— e —
N - O

Q,0,F <0
qo < [lro,{qo}]
W { [lro, {go}] }
while W # 0 do
pick [/r, P] from W; add [/r, P] to 0
if P = 0 then add [Ir,P] to F
for all a € X, [’ € R such that [r = I’ do
if P # () then P’ « {g € 6(P,a) | Ir'(g) is even }
else P — {ge Q| 1r(q)iseven}
add ([Ir, Pl,a,[lr',P']) to &
if [[r/,P’] ¢ O then add [I7,P'] to W
return (@, ¥, 6, 90> f)

35

Size of C(A)

Assume A has n states.

Upper bound: number of level rankings is (2n+2)*n
number of owing sets is 2*n

So C(A) has at most 4*n (n+1)*n states
l.e., 2O(n log n) states.

Lower bound: n! states, which is also 2*O(n log n)

36

LetX, = {1,...,n,#}. We associate to a word w € ¥ the following directed graph
G(w): the nodes of G(w) are 1,...,n and there is an edge from i to j if w contains
infinitely many occurrences of the word ij. Define L, as the language of infinite words

w € A for which G(w) has at least a cycle and define L, as the complement of L,.

We first show that for all n > 1, L, 1s recognized by a Biichi automaton with n + 2
states. Let A, be the automaton shown in Figure 12.10. We show that A,, accepts L,,.

3t

39

Proposition 12.4 For all n > 1, every NBA recognizing L,, has at least n! states.

Proof: We need some preliminaries. Given a permutation 7 = (7(1),...,7(n)) of
(1,...,n), we identify 7 and the word 7(1)...7(n). We make two observations:

(a) (t#)“ € L, for every permutation 7.

(b) If a word w contains infinitely many occurrences of two different permutations 7
and7’ of 1...n,thenw € L,,.

Now, let A be a Biichi automaton recognizing L,, and let 7, 7’ be two arbitrary
permutations of (1,...,n). By (a), there exist runs p and p” of A accepting (#)“ and
(7'#)“, respectively. We prove that the intersection of inf(p) and inf(p”) 1s empty. This

implies that A contains at least as many final states as permutations of (1, ..., n), which
proves the Proposition.

