Logics on words

Regular expressions give operational descriptions of
regular languages.

Often the natural description of a language is denotational:

- even number of a's and even number of b's
(aa+bb+(ab+ba)(aa+bb)*(ba+ab))*

- words not containing "hello"

Goal: find a denotational language able to express all the
regular languages, and only the regular languages.

Logics on words

ldea: use a logic that has an interpretation on words

A formula expresses a property that each word may satisfy
or not, like

" the word contains only a's "
" the word has even length "

" between every occurrence of an'a’ and a 'b' there is an
occurrenceofa'c'”

Every formula (indirectly) defines a language: the language

of all the words (over the given fixed alphabet) that satisfy
it.

First-order logic on words

Atomic formulas: for each letter a we introduce the

formula Qa(x), with intuitive meaning: the letter at
position x (starting at 0) is an "a".

Formulas:
Definition 7.1 LetV = {x,v,z,...} be an infinite sets of variables, and let >~ = {a, b, ¢, .. .}
be a finite alphabet. The set FO(X) of first-order formulas over X is the set of expres-
sions generated by the grammar:

¢ :=Qu(x) | x<y|-@|(pVe)l|Ixp

where a € 2.

Observe: the logic is parametrized by the alphabet.

Abbreviations

o Vxp :=-dx—yp
® 01 Ay :=(m V)

® Y1 > =P Ve

first(x) :=
last(x) :=
y=x+1 :=
y=x+2 :=

y=x+(k+1) :=

Examples (without formal semantics yet)

“The last letter 1s a b and before it there are only a’s.”

A0p(x) A Vx (last(x) — Qp(x) A —last(x) — Qu(x))
“Every a i1s immediately followed by a b.”

VX(Q(;(I) —_ 3}-‘ (._V =x+1A Qb(}’)))

“Every a 1s immediately followed by a b, unless it is the last letter.”

Vx(Qu(x) > ¥y(y=x+1 - Op(»))

“Between every a and every later b there 1s a ¢.”

VaVy (O, () A Qp(Ax<y— Tz(x<zAZ<YA Q:(2))

Semantics

Definition 9.3 The satisfaction relation (w,J) | ¢ between a formula ¢ of FO(X) and an
interpretation (w,J) of ¢ is defined by:

w,J) E Qux) iff wlix)]=a
w,J) F x<y iff Ix<Iy)
w,)) E 3dx¢ iff |wl=1andsomeic({l,...,|w|}satisfies (w,I[i/x]) E ¢

where wli] is the letter of w at position i, and J[i/x] is the interpretation that assigns i
to x and otherwise coincides with J. (Notice that J may not assign any value to x.) If
(w,J) E ¢ we say that (w,J) is a model of ¢. Two formulas are equivalent if they have the
same models.

The empty word ...

... Is'as usual a pain :-)

It satisfies all universally quantified formulas, and no
existentially quantified formula.

Can we only express regular languages?
Can we express all regular languages?

We consider one-letter alphabets.

Proposition: a language over a one-letter alphabet is
expressible in FO logic iff it is finite or co-finite (its
complement is finite)

Conseqguence: we can only express regular languages, but
not all, not even the language of words of even length.

So we extend the logic ...

Monadic second-order logic

First-order variables: interpreted on positions

Monadic second-order variables: interpreted on sets of
positions.

Diadic second-order variables: interpreted on relations
over positions

Monadic third-order variables: interpreted on sets of sets
of positions

New atomic formulas: x € X

Expressing that a word has even length

|ldea: express "there is a set X of positions such that
- X contains exactly the even positions, and
- the last position belongs to X"

/10

Formal syntax and semantics "

Definition 9.10 Let X, = {x,y,z,...} and X», = {X,Y,Z, ...} be two infinite sets of first-
order and second-order variables. Let 2 = {a, b, c, ...} be a finite alphabet. The set MSO(X)
of monadic second-order formulas over X is the set of expressions generated by the gram-
mar:

=0 |x<ylxeX|-¢pleVe|dxe|dX¢

Formal syntax and semantics

An interpretation of a formula ¢ is a pair (w,J) where w € X7, and J is a mapping that
assigns every free first-order variable x a position J(x) € {1, ..., |w|} and every free second-
order variable X a set of positions J(X) C {1,...,|wl|}. (The mapping may also assign
positions to other variables.)

The satisfaction relation (w,J) E ¢ between a formula ¢ of MSO(X) and an interpre-
tation (w,J) of ¢ is defined as for FO(X), with the following additions:

w,)) E xeX iff Ix)eIX)
w,)) E X ¢ iff |wl>0andsomeS C{0,...,|w| -1}
satisfies (w,J[S/X]) E ¢

where J|S /| X] is the interpretation that assigns S to X and otherwise coincides with J —
whether J is defined for X or not. If (w,J) E ¢ we say that (w,J) is a model of ¢. Two
formulas are equivalent if they have the same models. The language L(¢) of a sentence
@ € MSO(X) is the set L(¢) = {w e X" | w E ¢}. A language L C X" is MSO-definable if
L = L(¢) for some formula ¢ € MSO(X).

13
Expressing c*(ab)*d*

There 1s a block of consecutive positions X such that: before X there are
only c’s; after X there are only d’s; in X b’s and a’s alternate; the first letter
in X 1s an a and the lastis a b.

dX(Cons(X) A Before_only_c(X) A After_only_d(X) A
Alternate(X) A First_a(X) A Last_b(X))

e “X 1s a block of consecutive positions.”

e “Before X there are only ¢’s.”

e “After X there are only d’s.”

A4

e “a’sandb’s alternate in X.”

e the first letter in X 1s an a and the last is a b.

15

Every regular language is expressible in
MSO logic

Goal: given an arbitrary regular language L, construct an
MSO sentence having L as language

We use: if L is regular, then there is a DFA A recognizing L.

ldea: construct a formula expressing
"the run of A on this word is accepting”

16

13

Every regular language is expressible in
MSO logic

Proposition 9.12 If L C X7 is regular, then L is expressible in MSO(X).

Proof: Let A = (Q,X,0,qp, F) be a DFA with QO = {q¢,...,9,} and L(A) = L. We
construct a formula ¢, such that for every w # €, w E @4 1ft w € L(A). If € € L(A), then
we can extend the formula to ¢4 V ¢, where ¢/, 1s only satisfied by the empty word (e.g.
@, = Yxx <Xx).

We start with some notations. Letw = «, ...a,, be a word over 2, and let

pq:{ie{l,...,m}|3(6109610-~ar‘):q} ‘

In words, i € P, iff A 1s in state ¢ immediately after reading the letter a;. Then A accepts
witt m € U er Py.

18

Assume we were able to construct formula Visits(X, . . . X,,) with free variables X, ... X,
such that J(X;) = P,, holds for every model (w,J) and for every 0 < i < n. In words,
Visits(Xo, . . . X,,) 1s only true when X; takes the value P, for every 0 < i < n. Then (w,J)

would be a model of

Y = AXp ... X, Visits(Xp, ... X,) A dx {last(x) A \/ x € X;

qi€F
iff w has a last letter, and w € L. So we could take

_) ¥a ifqy ¢ F
¥a - YaVVxx<x ifgyeF

19

Let us now construct the formula Visits(Xo, ... X,). The sets P, are the unique sets
satisfying the following properties:

(@) 1 € Psiya)» 1.€., after reading the letter at position 1 the DFA is in state 6(go, a1);

(b) every position i belongs to exactly one P, 1.e., the P,’s build a partition of the set
positions; and

(c) ifi € P, and 6(q,a;41) = ¢’ theni+ 1 € Py, i.e., the P,’s “respect” the transition
function 9.

20

We express these properties through formulas. For every a € X, let g;, = 6(qo,a). The
formula for (a) 1s:

Init(Xy, ..., X,,) = dx [ﬁI’St()C) A [\/(Qa(x) AW S Xr},)]

acx

(in words: if the letter at position 1 1s a, then the position belongs to X;).

Formula for (b):

Partition(X), .

LX) =VYx

\

n

n

\/xeX,- A /\ eX; > xeX)

i=0

i,j=0
i#j

21

Formula for (c):

Respect(Xy, ..., X,) = VxVy

Altogether we get

ViSitS(X(), 5 8 X,-,) = Init(X(), o

y=x+1-

V

a€Ex
157 € {05050
o(gi,a) = q;)

: X,,_) N Partition(Xo, i

22

(x € Xi A Qu(x) Ay € X))

., X,) A Respect(Xp, ..., X,)

Every language expressible in MSO
logic is regular

An interpretation of a formula is a pair consisting of a
word and assignments to the free first and second
order variables (and perhaps to others).

(x— 0) (x> 1)
| y 2 y— 0
aab X > (1.2} ba . Y s 0

\ Y —{0,1}) \ Y — {0})

We encode interpretations of the free variables as words:

(x =0) [xH— 1)
y 2 y—0
aab | X > (1.2} ba , Y s 0
\ Y — {0,1}) \ Y - {0})
a a b b a
X 1 0 O b s 0 1
) 0O 0 1) 1 0
X 0O 1 1 X 0 O
Y 1 1 O Y 1 0

23

Definition 7.13 Let ¢ be a formula with n free variables, and let (w,J) be an interpre-
tation of ¢. We denote by enc(w,J) the word over the alphabet X X {0, 1}" described
above. The language of ¢ is L(¢) = {enc(w,]) | (w,]) E ¢}.

we prove by induction on the structure of ¢ that L(¢) is regular.

26

e ¢ = Q,(x). Then free(¢) = x, and the interpretations of ¢ are encoded as words
over X X {0, 1}. The language L(¢) is given by

_ a
L("")“Ib.}

\

Ak

by

and 1s recognized by

|

k > 0,
a; € Xand b; € {0, 1} forevery i € {1,...,k}, and
b; = 1 for exactly one index i € {1,...,k}

B

23

e ¢ = x <y. Then free(¢) = {x, y}, and interpretations are encoded as words over

¥ x {0, 1}>. The language L(¢) is given by

' k>0, |
a ay|| a; € Zand b;,c; € {0,1} foreveryie€{l,..., k},
L(p)=13|b1| = |bi|| b;i =1 forexactly oneindexi € {l,...,k}, >
ci| " |ck|| cj=1forexactly oneindex j € {1,...,k}, and
\ 1< y

and 1s recognized by

23

e ¢ = x € X. Then free(¢) = {x, X}, and interpretations are encoded as words over
¥ x {0, 1}. The language L(¢) is given by

(
ap ay
L(p)=<|bi| = |b&
el == e
\

and 1s recognized by

k>0, ‘
a; € Xand b;,c; € {0, 1} forevery i € {1,...,k},
b; = 1 for exactly one index i € {1, k} and

foreveryie {l,...,k},it b; =1 thenc, = 1

bcb (bab
101,104, 01.10{.
01 00

2%

e ¢ = . Then free(¢) = free(y), and by induction hypothesis there exists an
automaton A s.t. L(Ay) = L().

Observe that L(y) is not in general equal to L(y¥). To see why, consider for
example the case ¥ = Q,(x) and ¢ = ~Q,(x). The word

Hidla

belongs neither to L(y) nor L(¢), because it is not the encoding of any inter-
pretation: the bitstring for x contains more than one 1. What holds 1s L(¢) =
L()NEnc(y), where Enc(y) is the language of the encodings of all the interpre-
tations of ¢ (whether they are models of ¢ or not). We construct an automaton
Ay recognizing Enc(y), and so we can take A, = Ay Xn Ay,

Assume ¥ has k first-order variables. Then a word belongs to Enc(y) iff each 0% >
its projections onto the 2nd, 3rd, ..., (k + 1)-th component is a bitstring contain-
ing exactly one 1. As states of A" we take all the strings {0, 1}*. The intended
meaning of a state, say state 101 for the case k = 3, 1s “the automaton has already
read the 1’s in the bitstrings of the first and third variables, but not yet read the 1
in the second.” The initial and final states are 0f and 1, respectively. The tran-

f

a
0

0

a b

01, .10

| |
al |b al |b
01.10 01.10
0] 10 0 |10

31

e ¢ =@ Ay Then free(y) = free(p,) VU free(¢,), and by induction hypothesis
there are automata A,,, A,, such that L(A,,) = L(¢;1) and L(A,,) = L(¢2).

If free(¢)) = free(yp,), then we can take A, = A, Xn Ag,. But this need not
be the case. If free(¢,) # free(y:), then L(¢;) and L(y;) are languages over
different alphabets X, X,, or over the same alphabet, but with different intended
meaning, and we cannot just compute their intersection. For example, if ¢ =
Q.(x) and ¢, = Qp(y), then both L(¢;) and L(g;) are languages over X X {0, 1},
but the second component indicates in the first case the value of x, in the second
the value of y.

This problem is solved by extending L(¢;) and L(A,,) to languages L, and L,
over T X {0, 1}*. In our example, the language L, contains the encodings of all
interpretations (w, {x +— n;,y + ny}) such that the projection (w, {x +— n,}) be-
longs to L(Q,(x)), while L, contains the interpretations such that (w, {y — n»})
belongs to L(Q(y)). Now, given the automaton Ay, () recognizing L(Q,(x))

we transform it into an automaton A; recognizing L,

i
0f,

0] (1] 10

x
01,

b
0},

0

a

a

=z
0f,

0

a

0f,

B
0f,

o

0

LYA

e ¢ = dx . Then free(p) = free(¥) \ {x}, and by induction hypothesis there 1s
an automaton Ay s.t. L(Ay,) = L(¥). Define A5, as the result of the projec-
tion operation, where we project onto all variables but x. The operation simply
corresponds to removing in each letter of each transition of A, the component
for variable x. For example, the automaton A=, o (v 18 obtained by removing the
second components in the automaton for Ay () shown above, yielding

a, b a,b

Observe that the automaton for Jdx ¢ can be nondeterministic even if the one for
Y 1s deterministic, since the projection operation may map different letters into
the same one.

e ¢ = 14X ¢. We proceed as 1n the previous case.

33

The mega-example

¢ = dx (last(x) A Qp(x)) A Vx (mlast(x) = Qu(x))

Y = dx (last(x) A Op(x)) A —dx (=last(x) A =Q,(x))

First, we compute an automaton for last(x) = —-dy x < y.

34

Next we compute an automaton for dx (last(x) A Qp(x))

il 1o il

"” B0

[Ob(x)] [dx (last(x) A Qp(x))]

3¢

Now we compute an automaton for -dx (—last(x) A =2Q.(x)).

d
al |b al |b
01710 00

a
]

3}

38

i

[=Qu(x)]

[—last(x)]

a,b a, b

a, b

b a, b
8 > } 8 [dx (=last(x) A ~Qu(x))]

6 b >© [~dx (=last(x) A ~Qu(x))]

a. b

o o
[dx (last(x) A Op(x))] [~dx (=last(x) A ~Qu(x))]

B0

[Jx (Iast(x) A Qp(x)) A —dx (mlast(x) A =Qu(x))]

39

