
Automata theory
An algorithmic approach

Lecture Notes

Javier Esparza

January 29, 2012

2

Many thanks to Jörg Kreiker for many discussions on the topic of this notes, and for his con-
tributions to several chapters. The chapter on boolean operations for Büchi automata is based on
material by Orna Kupferman and Moshe Vardi. Breno Faria helped to draw many figures. He
was funded by Studiengebühren. I also profited from lots of discussions with Jan Kretinsky, who
also contributed a lot to the chapter on pattern-matching. Thanks also to Birgit Engelmann, Moritz
Fuchs, Stefan Krusche, Philipp Müller, Martin Perzl, Marcel Ruegenberg, Franz Saller, and Hayk
Shoukourian, who attended a course based on these notes, and provided very helpful comments.

Contents

1 Introduction and Preliminaries 7

I Automata on Finite Words 9

2 Automata Classes and Conversions 11
2.1 Languages and regular expressions . 11
2.2 Automata classes . 12
2.3 Conversion Algorithms between Finite Automata 14

2.3.1 From NFA to DFA. 14
2.3.2 From NFA-ε to NFA. 16

2.4 Conversion algorithms between regular expressions and automata 21
2.4.1 From regular expressions to NFA-ε’s . 22
2.4.2 From NFA-ε’s to regular expressions . 23

2.5 A Tour of Conversions . 26

3 Minimization and Reduction 35
3.1 Minimal DFAs . 36
3.2 Minimizing DFAs . 39

3.2.1 Computing the language partition . 39
3.2.2 Quotienting . 42

3.3 Reducing NFAs . 44
3.3.1 The reduction algorithm . 45

3.4 A Characterization of the Regular Languages . 49

4 Operations on Sets: Implementations 55
4.1 Implementation on DFAs . 56

4.1.1 Membership. 56
4.1.2 Complement. 56
4.1.3 Binary Boolean Operations . 57
4.1.4 Emptiness. 60

3

4 CONTENTS

4.1.5 Universality. 60
4.1.6 Inclusion. 61
4.1.7 Equality. 61

4.2 Implementation on NFAs . 61
4.2.1 Membership. 62
4.2.2 Complement. 63
4.2.3 Union and intersection. 63
4.2.4 Emptiness and Universality. 66
4.2.5 Inclusion and Equality. 69

5 Operations on Relations: Implementations 79
5.1 Encodings . 80
5.2 Transducers and Regular Relations . 81
5.3 Implementing Operations on Relations . 82

5.3.1 Projection . 83
5.3.2 Join, Post, and Pre . 84

5.4 Relations of Higher Arity . 90

6 Finite Universes 95
6.1 The Master Automaton . 95
6.2 A Data Structure for Fixed-length Languages . 97
6.3 Operations on fixed-length languages . 98
6.4 Determinization and Minimization . 106
6.5 Operations on Fixed-length Relations . 106
6.6 Decision Diagrams . 110

6.6.1 Z-automata and Kernels . 112
6.6.2 The Master Z-automaton . 113
6.6.3 A Data Structure . 114
6.6.4 Operations on Kernels . 116

7 Applications I: Pattern matching 125
7.1 The general case . 125
7.2 The word case . 127

7.2.1 Lazy DFAs . 129
7.2.2 Constructing the lazy DFA in O(m) time 132

8 Applications II: Verification 135
8.1 The Automata-Theoretic Approach to Verification 135
8.2 Networks of Automata. 138

8.2.1 Checking Properties . 142
8.3 The State-Explosion Problem . 144

CONTENTS 5

8.3.1 Symbolic State-space Exploration . 145
8.4 Safety and Liveness Properties . 149

9 Automata and Logic 157
9.1 First-Order Logic on Words . 157

9.1.1 Expressive power of FO(Σ) . 160
9.2 Monadic Second-Order Logic on Words . 161

9.2.1 Expressibility of MSO(Σ) . 162

10 Applications III: Presburger Arithmetic 177
10.1 Syntax and Semantics . 177
10.2 Constructing an NFA for the Solution Space. 179

II Automata on Infinite Words 187

11 Classes of ω-Automata and Conversions 189
11.1 ω-languages and ω-regular expressions . 189
11.2 Büchi automata . 190

11.2.1 From ω-regular expressions to NBAs and back 192
11.2.2 Non-equivalence of NBA and DBA . 194

11.3 Generalized Büchi automata . 195
11.4 Other classes of ω-automata . 197

11.4.1 Co-Büchi Automata . 197
11.4.2 Muller automata . 200
11.4.3 Rabin automata . 203

12 Boolean operations: Implementations 209
12.1 Union and intersection . 209
12.2 Complement . 212

12.2.1 The problems of complement . 212
12.2.2 Rankings and ranking levels . 214
12.2.3 A (possible infinite) complement automaton 215
12.2.4 The size of A . 220

13 Emptiness check: Implementations 223
13.1 Algorithms based on depth-first search . 223

13.1.1 The nested-DFS algorithm . 226
13.1.2 The two-stack algorithm . 232

13.2 Algorithms based on breadth-first search . 244
13.2.1 Emerson-Lei’s algorithm . 245
13.2.2 A Modified Emerson-Lei’s algorithm . 247

6 CONTENTS

13.2.3 Comparing the algorithms . 249

14 Verification and Temporal Logic 253
14.1 Automata-Based Verification of Liveness Properties 253

14.1.1 Checking Liveness Properties . 254
14.2 Linear Temporal Logic . 257
14.3 From LTL formulas to generalized Büchi automata 260

14.3.1 Satisfaction sequences and Hintikka sequences 260
14.3.2 Constructing the NGA . 263
14.3.3 Reducing the NGA . 265
14.3.4 Size of the NGA . 266

14.4 Automatic Verification of LTL Formulas . 267

III Pushdown Automata 271

Chapter 1

Introduction and Preliminaries

Courses on data structures show how to represent sets of objects in a computer, so that operations
like insertion, deletion, and lookup can be efficiently implemented. Typical representations are
different variants of hash tables, search trees, or heaps.

In this course we also deal with the problem of representing and manipulating sets, but we are
interested in the basic operations of set theory: union, intersection, complement with respect to
some universe. We also wish to implement procedures for checking if a set is empty, or contains all
elements of the universe. Finally, we also are interested in relations, and basic operations on them.
Here is a more systematic list of operations, where U is the universe of objects, X,Y are subsets of
U, x is an element of U, and R, S ⊆ U × U are binary relations on U:

Member(x, X) : returns true if x ∈ X, false otherwise.
Complement(X) : returns U \ X.
Intersection(X, Y) : returns X ∩ Y .
Union(X, Y) : returns X ∪ Y .
Empty(X) : returns true if X = ∅, false otherwise.
Universal(X) : returns true if X = U, false otherwise.
Included(X,Y) : returns true if X ⊆ Y , false otherwise.
Equal(X,Y) : returns true if X = Y , false otherwise.
Projection 1(R) : returns the set π1(R) = {x | ∃y (x, y) ∈ R}.
Projection 2(R) : returns the set π2(R) = {y | ∃x (x, y) ∈ R}.
Join(R, S) : returns R ◦ S = {(x, z) | ∃y ∈ X (x, y) ∈ R ∧ (y, z) ∈ S }
Post(X, R) : returns postR(X) = {y ∈ U | ∃x ∈ X : (x, y) ∈ R}.
Pre(X, R) : returns preR(X) = {y ∈ U | ∃x ∈ X : (y, x) ∈ R}.

Observe that many other operations, e.g. set difference, can be reduced to the ones above.
Similarly, operations on n-ary relations for n ≥ 3 can be reduced to operations on binary relations.

An important point is that we are not only interested on finite sets, we wish to have a data
structure able to deal with infinite sets over some infinite universe. Observe, however, that no data

7

8 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

structure can represent all infinite sets. The reason is that there are uncountably many subsets of
an infinite universe, but, since every instance of a data structure must have finite size, every data
structure has only countably many instances. So, loosely speaking, there are many more sets to
be represented than representations available, which implies that not all sets can be represented.
Because of this limitation every good data structure for infinite sets must find a reasonable compro-
mise between expressibility (how large is the set of representable sets) and manipulability (which
operations can be carried out, and at which cost). The goal of these notes is to present the compro-
mise offered by word automata, which, as shown by 50 years of research on the theory of formal
languages, is the best one available for most purposes. Word automata, or just automata, are a
data structure for representing and manipulating sets whose elements are encoded as words, i.e., as
sequences of letters over an alphabet1

Notice that any kind of object can, at least in principle, be represented by a word. Natural
numbers, for instance, are represented in computer science as sequences of digits, i.e., as words
over the alphabet of digits. Vectors and lists can also be represented as words by concatenating the
word representations of their elements. In fact, whenever we store an object in a file we are always
representing it as a word over some alphabet, like ASCII. So word automata are a very general
and powerful structure. However, while any object can be represented by a word, not every object
can be represented by a finite word, that is, a word of finite length. A typical example are real
numbers, but there are others, like non-terminating executions of a program. When objects cannot
be represented by finite words, computers usually only represent some approximation: a float
instead of a real number, or a finite prefix instead of a non-terminating computation. A fascinating
possibility, which we study in the second part of the notes, is to use automata to exactly represent
certain sets of infinite objects.

Automata for representing sets of finite words and sets of infinite words are studied in Part I and
Part II of these notes. The theory of automata on finite words is often considered a “gold standard”
of theoretical computer science, a powerful and beautiful theory with lots of important applications
in many fields. Automata on infinite words are harder, and their theory does not achieve the same
degree of “perfection”. This gives us a structure for Part II of the notes: we follow the steps of
Part I, always comparing the solutions for infinite words with the “gold standard”. We point out
why some techniques cannot be extended from finite to infinite words, and present replacements,
or why no replacement is possible.

1There are generalizations of word automata in which objects are encoded as trees. The theory of tree automata is
also very well developed, but not the subject of these notes. So we shorten word automaton to just automaton.

Part I

Automata on Finite Words

9

Chapter 2

Automata Classes and Conversions

In Section 2.1 we introduce basic definitions about words and languages, and then introduce reg-
ular expressions, a textual notation for defining languages of finite words. Like any other formal
notation, it cannot be used to define each possible language. However, the next chapter shows that
they are an adequate notation when dealing with automata, since they define exactly the languages
that can be represented by automata on words.

2.1 Languages and regular expressions

An alphabet is a finite, nonempty set. The elements of an alphabet are called letters. A finite,
possibly empty sequence of letters is a word. A word a1a2 . . . an has length n. The empty word is
the only word of length 0 and it is written ε. The concatenation of two words w1 = a1 . . . an and
w2 = b1 . . . bm is the word w1w2 = a1 . . . anb1 . . . bm, sometimes also denoted by w1 · w2. Notice
that ε · w = w = w · ε = w. For every word w, we define w0 = ε and wk+1 = wkw.

Given an alphabet Σ, we denote by Σ∗ the set of all words over Σ. A set L ⊆ Σ∗ of words is a
language over Σ.

The complement of a language L is the language Σ∗ \ L, which we often denote by L (notice
that this notation implicitly assumes the alphabet Σ is fixed). The concatenation of two languages
L1 and L2 is L1 · L2 = {w1w2 ∈ Σ∗ | w1 ∈ L1,w2 ∈ L2}. The iteration of a language L ⊆ Σ∗ is the
language L∗ =

⋃
i≥0 Li, where L0 = {ε} and Li+1 = Li · L for every i ≥ 0.

Definition 2.1 Regular expressions r over an alphabet Σ are defined by the following grammar,
where a ∈ Σ

r ::= ∅ | ε | a | r1r2 | r1 + r2 | r∗

The set of all regular expressions over Σ is written RE(Σ). The language L(r) ⊆ Σ∗ of a regular
expression r ∈ RE(Σ) is defined inductively as

• L(∅) = ∅,

11

12 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

• L(ε) = {ε},

• L(a) = {a},

• L(r1r2) = L(r1) · L(r2),

• L(r1 + r2) = L(r1) ∪ L(r2), and

• L(r∗) = L(r)∗.

A language L is regular if there is a regular expression r such that L = L(r).

In the coming chapters we often abuse language, and write “the language r” instead of “the
language L(r).”

2.2 Automata classes

We briefly recapitulate the definitions of deterministic and nondeterministic finite automata, as well
as nondeterministic automata with ε-transitions and regular expressions.

Definition 2.2 A deterministic automaton (DA) is a tuple A = (Q,Σ, δ, q0, F), where

• Q is a set of states,

• Σ is an alphabet,

• δ : Q × Σ→ Q is a transition function,

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

A run of A on input a0a1 . . . an is a sequence p0
a0
−−−→ p1

a1
−−−→ p2 . . .

an−1
−−−−→ pn, such that pi ∈ Q for

0 ≤ i ≤ n, p0 = q0, and δ(pi, ai) = pi+1 for 0 ≤ i < n − 1. A run is accepting if pn ∈ F. A accepts
a word w ∈ Σ∗, if there is an accepting run on input w. The language recognized by A is the set
L(A) = {w ∈ Σ∗ | w is accepted by A}.

A deterministic finite automaton (DFA) is a DA with a finite set of states.

Notice that a DA has exactly one run on a given word. Given a DA, we often say “the word w
leads from q0 to q”, meaning that the unique run of the DA on the word w ends at the state q.

Definition 2.3 A non-deterministic automaton (NA) is a tuple A = (Q,Σ, δ, q0, F), where Q, Σ, q0,
and F are as for DAs and

• δ : Q × Σ→ P(Q) is a transition relation.

2.2. AUTOMATA CLASSES 13

The runs of NAs are defined as for DAs, but substituting pi+1 ∈ δ(pi, ai) for δ(pi, ai) = pi+1.
Acceptance and the language recognized by a NA are defined as for DAs. A nondeterministic finite
automaton (NFA) is a NA with a finite set of states.

We often identify the transition function δ of a DA with the set of triples (q, a, q′) such that q′ =

δ(q, a), and the transition relation δ of a NFA with the set of triples (q, a, q′) such that q′ ∈ δ(q, a);
so we often write (q, a, q′) ∈ δ, meaning q′ = δ(q, a) for a DA, or q′ ∈ δ(q, a) for a NA.

Definition 2.4 A non-deterministic automaton with ε-transitions (NA-ε) is a tuple A = (Q,Σ, δ, q0, F),
where Q, Σ, q0, and F are as for NAs and

• δ : Q × (Σ ∪ {ε})→ P(Q) is a transition relation.

The runs and accepting runs of NA-ε are defined as for NAs. A accepts a word a1 . . . an ∈ Σ∗ if A
has an accepting run on εk0a1ε

k1 . . . εkn−1anε
kn ∈ (Σ ∪ {ε})∗ for some k0, k1, . . . , kn ≥ 0.

A nondeterministic finite automaton with ε-transitions (NFA-ε) is a NA-ε with a finite set of
states.

Definition 2.5 Let A = (Q,Σ, δ, q0, F) be an automaton. A state q ∈ Q is reachable from q′ ∈ Q if
q = q′ or if there exists a run q′

a1
−−−→ . . .

an
−−−→ q on some input a1 . . . an ∈ Σ∗. A is in normal form if

every state is reachable from the initial state.

Convention: Unless otherwise stated, we assume that automata are in normal form.
All our algorithms preserve normal forms, i.e., when the output is an automaton, the
automaton is in normal form.

We extend NAs to allow regular expressions on transitions. Such automata are called NA-reg
and they are obviously a generalization of both regular expressions and NA-εs. They will be useful
to provide a uniform conversion between automata and regular expressions.

Definition 2.6 A non-deterministic automaton with regular expression transitions (NA-reg) is a
tuple A = (Q,Σ, δ, q0, F), where Q, Σ, q0, and F are as for NAs, and where

• δ : Q × RE(Σ) → P(Q) is a relation such that δ(q, r) = ∅ for all but a finite number of pairs
(q, r) ∈ Q × RE(Σ).

Accepting runs are defined as for NFAs. A accepts a word w ∈ Σ∗ if A has an accepting run on
r1 . . . rk such that w = L(r1) · . . . · L(rk).

A nondeterministic finite automaton with regular expression transitions (NFA-reg) is a NA-reg
with a finite set of states.

14 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

2.3 Conversion Algorithms between Finite Automata

We recall that all our data structures can represent exactly the same languages. Since DFAs are
a special case of NFA, which are a special case of NFA-ε, it suffices to show that every language
recognized by an NFA-ε can also be recognized by an NFA, and every language recognized by an
NFA can also be recognized by a DFA.

2.3.1 From NFA to DFA.

The powerset construction transforms an NFA A into a DFA B recognizing the same language. We
first give an informal idea of the construction. Recall that a NFA may have many different runs on
a word w, possibly leading to different states, while a DFA has exactly one run on w. Denote by
Qw the set of states q such that some run of A on w leads from its initial state q0 to q. Intuitively,
B “keeps track” of the set Qw: its states are sets of states of A, with {q0} as initial state, and its
transition function is defined to ensure that the run of B on w leads from {q0} to Qw (see below).
It is then easy to ensure that A and B recognize the same language: it suffices to choose the final
states of B as the sets of states of A containing at least one final state, because for every word w:

B accepts w
iff Qw is a final state of B
iff Qw contains at least a final state of A
iff some run of A on w leads to a final state of A
iff A accepts w.

Let us now define the transition function of B, say ∆. “Keeping track of the set Qw” amounts to
satisfying ∆(Qw, a) = Qwa for every word w. But we have Qwa =

⋃
q∈Qw δ(q, a), and so we define

∆(Q′, a) =
⋃
q∈Q′

δ(q, a)

for every Q′ ⊆ Q. Notice that we may have Q′ = ∅; in this case, ∅ is a state of B, and, since
∆(∅, a) = ∅ for every a ∈ ∆, a “trap” state.

Summarizing, given A = (Q,Σ, δ, q0, F) we define the DFA B = (Q,Σ,∆,Q0,F) as follows:

• Q = P(Q);

• ∆(Q′, a) =
⋃
q∈Q′

δ(q, a) for every Q′ ⊆ Q and every a ∈ Σ;

• Q0 = {q0}; and

• F = {Q′ ∈ Q | Q′ ∩ F , ∅}.

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 15

NFAtoDFA(A)
Input: NFA A = (Q,Σ, δ, q0, F)
Output: DFA B = (Q,Σ,∆,Q0,F) with L(B) = L(A)

1 Q,∆,F ← ∅; Q0 ← {q0}

2 W = {Q0}

3 while W , ∅ do
4 pick Q′ from W

5 add Q′ to Q

6 if Q′ ∩ F , ∅ then add Q′ to F

7 for all a ∈ Σ do
8 Q′′ ←

⋃
q∈Q′

δ(q, a)

9 if Q′′ < Q then add Q′′ to W

10 add (Q′, a,Q′′) to ∆

Table 2.1: NFAtoDFA(A)

Notice, however, that B may not be in normal form: it may have many states non-reachable
from Q0. For instance, assume A happens to be a DFA with states {q0, . . . , qn−1}. Then B has
2n states, but only the singletons {q0}, . . . , {qn−1} are reachable. The conversion algorithm shown
in Table 2.3.1 constructs only the reachable states. It is written in pseudocode, with abstract sets
as data structure. Like nearly all the algorithms presented in the next chapters, it is a worklist
algorithm. Worklist algorithms maintain a worklist of objects waiting to be processed. The name
‘worklist” is actually misleading, because the worklist is in fact a workset, it does not impose any
order onto its elements, and it contains at most one copy of an element (i.e., if an element already
in the workset is added to it again, the contents of the workset do not change). We however keep
the name ‘worklist” for historical reasons.

In NFAtoDFA() the worklist is called W, in other algorithms just W (we use a calligraphic font
to emphasize that in this case the objects of the worklist are sets). Worklist algorithms repeatedly
pick an object from the worklist (instruction pick Q from W), and process it; notice that picking
an object removes it from the worklist. Processing an object may generate new objects that are
added to the list. The algorithm terminates when the worklist is empty. Since objects removed
from the list may generate new objects, worklist algorithms may potentially fail to terminate, even
if the set of all objects is finite, because the same object might be added to and removed from the
worklist infinitely many times. Termination is guaranteed by making sure that no object that has
been removed from the list once is ever added to it again. For this, objects picked from the worklist
are stored (in NFAtoDFA() they are stored in Q), and objects are added to the worklist only if they
have not been stored yet.

16 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

Figure 2.1 shows an NFA at the top, and some snapshots of the run of NFAtoDFA() on it. The
states of the DFA are labelled with the corresponding sets of states of the NFA. The algorithm picks
states from the worklist in order {1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 4}. Snapshots (a)-(d) are taken right
after it picks the states {1, 2}, {1, 3}, {1, 4}, and {1, 2, 4}, respectively. Snapshot (e) is taken at the
end. Notice that out of the 24 = 16 subsets of states of the NFA only 5 are constructed, because the
rest are not reachable from {1}.

Complexity. If A has n states, then the output of NFAtoDFA(A) can have up to 2n states. To show
that this bound is essentially reachable, consider the family {Ln}n≥1 of languages over Σ = {a, b}
given by Ln = (a + b)∗a(a + b)(n−1). That is, Ln contains the words of length at least n whose n-th
letter starting from the end is an a. The language Ln is accepted by the NFA with n+1 states shown
in Figure 2.2(a): intuitively, the automaton chooses one of the a’s in the input word, and checks
that it is followed by exactly n − 1 letters before the word ends. Applying the subset construction,
however, yields a DFA with 2n states. The DFA for L3 is shown on the left of Figure 2.2(b). The
states of the DFA have a natural interpretation: they “store” the last n letters read by the automaton.
If the DFA is in the state storing a1a2 . . . an and it reads the letter an+1, then it moves to the state
storing a2 . . . an+1. States are final if the first letter they store is an a. The interpreted version of the
DFA is shown on right of Figure 2.2(b).

We can also easily prove that any DFA recognizing Ln must have at least 2n states. Assume
there is a DFA An = (Q,Σ, δ, q0, F) such that |Q| < 2n and L(An) = Ln. We can extend δ to a
mapping δ̂ : Q × {a, b}∗ → Q, where δ̂(q, ε) = q and δ̂(q,w · σ) = δ(δ̂(q,w), σ) for all w ∈ Σ∗ and
for all σ ∈ Σ. Since |Q| < 2n, there must be two words u · a · v1 and u · b · v2 of length n for which
δ̂(q0, u · a · v1) = δ̂(q0, u · b · v2). But then we would have that δ̂(q0, u · a · v1 · u) = δ̂(q0, u · b · v2 · u);
that is, either both u · a · v1 · u and u · b · v2 · u are accepted by An or neither do. Since, however,
|a · v1 · u| = |b · v2 · u| = n, this contradicts the assumption that An consists of exactly the words with
an a at the n-th position from the end.

2.3.2 From NFA-ε to NFA.

Let A be a NFA-ε over an alphabet Σ. In this section we use a to denote an element of Σ, and α, β
to denote elements of Σ ∪ {ε}.

Loosely speaking, the conversion first adds to A new transitions that make all ε-transitions
redundant, without changing the recognized language: every word accepted by A before adding the
new transitions is accepted after adding them by a run without ε-transitions. The conversion then
removes all ε-transitions, delivering an NFA that recognizes the same language as A.

The new transitions are shortcuts: If A has transitions (q, α, q′) and (q′, β, q′′) such that α = ε

or β = ε, then the shortcut (q, αβ, q′′) is added. (Notice that either αβ = a for some a ∈ Σ, or
αβ = ε.) Shortcuts may generate further shortcuts: for instance, if αβ = a and A has a further
transition (q′′, ε, q′′′), then a new shortcut (q, a, q′′′) is added. We call the process of adding all
possible shortcuts saturation. Obviously, saturation does not change the language of A, and if

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 17

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
ba

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
ba

ba

a

1 1, 2
b

b

1, 3

a

a

1 1, 2
b

b

1, 3

a

1, 4 1, 2, 4
a

ba

a

b

b

a

1 1, 2
b

b

1 2 3 4
b a

a, b

a, b

(b)(a)

(c) (d)

(e)

Figure 2.1: Conversion of a NFA into a DFA.

18 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

...1 2 n + 1

a, b

a a, b
n

a, ba, b

(a) NFA for Ln.

bbb

babbba

baa

a

a

aab

a

a a

a

b

b

b b

aba

aaa

a

b

b

abb1

1, 31, 2

1, 2, 3

a

a

1, 3, 4

a

a a

a

b

b

b b

1, 2, 4

1, 2, 3, 4

a

b

b

1, 4

b b

a

b b

a

(b) DFA for L3 and interpretation.

Figure 2.2: NFA for Ln, and DFA for L3.

2.3. CONVERSION ALGORITHMS BETWEEN FINITE AUTOMATA 19

before saturation A has a run accepting a nonempty word, for example

q0
ε
−−→ q1

ε
−−→ q2

a
−−→ q3

ε
−−→ q4

b
−−→ q5

ε
−−→ q6

then after saturation it has a run accepting the same word, and visiting no ε-transitions, namely

q0
a
−−→ q4

b
−−→ q6

However, we cannot yet remove ε-transitions. The NFA-ε of Figure 2.3(a) accepts ε. After
saturation we get the NFA-ε of Figure 2.3(b). However, removing all ε-transitions yields an NFA
that no longer accepts ε. To solve this problem, if A accepts ε, then we mark its initial state as final,

ε ε

0 1 2

(a) NFA-ε accepting L(0∗1∗2∗)

ε ε

0 1 2

1, 20, 1

0, 1, 2

(b) After saturation

0 1 2

0, 1 1, 2

0, 1, 2

(c) After marking the initial state and final and removing all ε-transitions.

Figure 2.3: Conversion of an NFA-ε into an NFA by shortcutting ε-transitions.

which clearly does not change the language. To decide whether A accepts ε, we check if some state
reachable from A by a sequence of ε-transitions is final. Figure 2.3(c) shows the final result. Notice
that, in general, after removing ε-transitions the automaton may not be in normal form, because
some states may no longer be reachable. So the naı̈ve procedure runs in three phases: saturation,

20 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

ε-check, and normalization. However, it is possible to carry all three steps in a single pass. We
give a worklist implementation of this procedure in which the check is done while saturating, and
only the reachable states are generated (in the pseudocode α and β stand for either a letter of Σ or
ε, and a stands for a letter of Σ):

NFAεtoNFA(A)
Input: NFA-ε A = (Q,Σ, δ, q0, F)
Output: NFA B = (Q′,Σ, δ′, q′0, F

′) with L(B) = L(A)
1 q′0 ← q0

2 Q′ ← {q0}; δ′ ← ∅; F′ ← F ∩ {q0}

3 δ′′ ← ∅; W ← {(q, α, q′) ∈ δ | q = q0}

4 while W , ∅ do
5 pick (q1, α, q2) from W
6 if α , ε then
7 add q2 to Q′; add (q1, α, q2) to δ′; if q2 ∈ F then add q2 to F′

8 for all q3 ∈ δ(q2, ε) do
9 if (q1, α, q3) < δ′ then add (q1, α, q3) to W

10 for all a ∈ Σ, q3 ∈ δ(q2, a) do
11 if (q2, a, q3) < δ′ then add (q2, a, q3) to W
12 else / ∗ α = ε ∗ /

13 add (q1, α, q2) to δ′′; if q2 ∈ F then add q0 to F′

14 for all β ∈ Σ ∪ {ε}, q3 ∈ δ(q2, β) do
15 if (q1, β, q3) < δ′ ∪ δ′′ then add (q1, β, q3) to W

The correctness proof is conceptually easy, but the different cases require some care, and so we
devote it a proposition.

Proposition 2.7 Let A be a NFA-ε, and let B = NFAεtoNFA(A). Then B is a NFA and L(A) = L(B).

Proof: Notice first that every transition that leaves W is never added to W again: when a transition
(q1, α, q2) leaves W it is added to either δ′ or δ′′, and a transition enters W only if it does not belong
to either δ′ or δ′′. Since every execution of the while loop removes a transition from the worklist,
the algorithm eventually exits the loop and terminates.

To show that B is a NFA we have to prove that it only has non-ε transitions, and that it is
in normal form, i.e., that every state of Q′ is reachable from q0 in B. For the first part, observe
that transitions are only added to δ′ in line 7, and none of them is an ε-transition because of the
guard in line 6. For the second part, we need the following invariant, which can be easily proved
by inspection: for every transition (q1, α, q2) added to W, if α = ε then q1 = q0, and if α , ε,
then q2 is reachable in B (after termination). Now, since new states are added to Q′ only at line 7,
applying the invariant we get that every state of Q′ is reachable from q0 in B. It remains to prove

2.4. CONVERSION ALGORITHMS BETWEEN REGULAR EXPRESSIONS AND AUTOMATA21

L(A) = L(B). The inclusion L(A) ⊇ L(B) follows from the fact that every transition added to δ′

is a shortcut, which can be proved by inspection. For the inclusion L(A) ⊆ L(B), we first prove
that ε ∈ L(A) implies ε ∈ L(B). Let q0

ε
−−→ q1 . . . qn−1

ε
−−→ qn be a run of A such that qn ∈ F. If

n = 0 (i.e., qn = q0), then we are done. If n > 0, then we prove by induction on n that a transition
(q0, ε, qn) is eventually added to W (and so eventually picked from it), which implies that q0 is
eventually added to F′ at line 13. If n = 1, then (q0, ε, qn) is added to W at line 3. If n > 1,
then by hypothesis (q0, ε, qn−1) is eventually added to W, picked from it at some later point, and so
(q0, ε, qn) is added to W at line 15. We now prove that for every w ∈ Σ+ , if w ∈ L(A) then w ∈ L(B).
Let w = a1a2 . . . an with n ≥ 1. Then A has a run

q0
ε
−−→ . . .

ε
−−→ qm1

a1
−−−→ qm1+1

ε
−−→ . . .

ε
−−→ qmn

an
−−−→ qmn+1

ε
−−→ . . .

ε
−−→ qm

such that qm ∈ F. We have just proved that a transition (q0, ε, qm1) is eventually added to W. So
(q0, a1, qm1+1) is eventually added at line 15, (q0, a1, qm+2), . . . , (q0, a1, qm2) are eventually added at
line 9, and (qm2 , a2, qm2+1) is eventually added at line 11. Iterating this argument, we obtain that

q0
a1
−−−→ qm2

a2
−−−→ qm3 . . . qmn

an
−−−→ qm

is a run of B. Moreover, qm is added to F′ at line 7, and so w ∈ L(B).

Complexity. Observe that the algorithm processes pairs of transitions (q1, α, q2), (q2, β, q3),
where (q1, α, q2) comes from W and (q2, β, q3) from δ (lines 8, 10, 14). Since every transition
is removed from W at most once, the algorithm processes at most |Q|2 · |Σ| · |δ| pairs. The runtime
is dominated by the processing of the pairs, and so it is O(|Q|2 · |Σ| · |δ|).

2.4 Conversion algorithms between regular expressions and automata

To convert regular expressions to automata and vice versa we use NFA-regs as introduced in Defi-
nition 2.6. Both NFA-ε’s and regular expressions can be seen as subclasses of NFA-regs: an NFA-ε
is an NFA-reg whose transitions are labeled by letters or by ε, and a regular expression r “is” the
NFA-reg Ar having two states, the one initial and the other final, and a single transition labeled r
leading from the initial to the final state.

We present algorithms that, given an NFA-reg belonging to one of this subclasses, produces a
sequence of NFA-regs, each one recognizing the same language as its predecessor in the sequence,
and ending in an NFA-reg of the other subclass.

22 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

2.4.1 From regular expressions to NFA-ε’s

Given a regular expression s over alphabet Σ, it is convenient do some preprocessing by exhaus-
tively applying the following rewrite rules:

∅ · r { ∅ r · ∅ { ∅

r + ∅ { r ∅ + r { r
∅∗ { ε

Since the left- and right-hand-sides of each rule denote the same language, the result of the pre-
processing is a regular expression for the same language as the original one. Moreover, if r is the
resulting regular expression, then either r = ∅, or r does not contain any occurrence of the ∅ symbol.
In the former case, we can directly produce an NFA-ε. In the second, we transform the NFA-reg
Ar into an equivalent NFA-ε by exhaustively applying the transformation rules of Figure 2.4.

a

Automaton for the regular expression a, where a ∈ Σ ∪ {ε}

{
r1r2 r1 r2

Rule for concatenation

r1

r2

r1 + r2 {

Rule for choice
r

r∗
{

εε

Rule for Kleene iteration

Figure 2.4: Rules converting a regular expression given as NFA-reg into an NFA-ε.

It is easy to see that each rule preserves the recognized language (i.e., the NFA-regs before and
after the application of the rule recognize the same language). Moreover, since each rule splits a
regular expression into its constituents, we eventually reach an NFA-reg to which no rule can be
applied. Furthermore, since the initial regular expression does not contain any occurrence of the ∅
symbol, this NFA-reg is necessarily an NFA-ε.

2.4. CONVERSION ALGORITHMS BETWEEN REGULAR EXPRESSIONS AND AUTOMATA23

Example 2.8 Consider the regular expression (a∗b∗ + c)∗d. The result of applying the transforma-
tion rules is shown in Figure 2.5 on page 24.

Complexity. It follows immediately from the rules that the final NFA-ε has the two states of Ar

plus one state for each occurrence of the concatenation or the Kleene iteration operators in r. The
number of transitions is linear in the number of symbols of r. The conversion runs in linear time.

2.4.2 From NFA-ε’s to regular expressions

Given an NFA-ε A, we transform it into the NFA-reg Ar for some regular expression r. It is again
convenient to apply some preprocessing to guarantee that the NFA-ε has one single final state, and
that this final state has no outgoing transition:

• Add a new state q f and ε-transitions leading from each final state to q f , and replace the set
of final states by {q f }. Graphically:

{
ε

ε

... ... q f

Rule 1

After preprocessing, the algorithm runs in phases. Each phase consist of two steps. The first step
yields an automaton with at most one transition between any two given states:

• Repeat exhaustively: replace a pair of transitions (q, r1, q′), (q, r2, q′) by a single transition
(q, r1 + r2, q′).

{
r1 + r2

r2

r1

Rule 2

The second step reduces the number of states by one, unless the only states left are the initial state
and the final state q f .

• Pick a non-final and non-initial state q, and shortcut it: If q has a self-loop (q, r, q)1, replace
each pair of transitions (q′, s, q), (q, t, q′′) (where q′ , q , q′′, but possibly q′ = q′′) by a
shortcut (q′, sr∗t, q′′); otherwise, replace it by the shortcut (q′, st, q′′). After shortcutting all
pairs, remove q. Graphically:

1Notice that it can have at most one, because otherwise we would have two parallel edges.

24 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

ε

a∗b∗ + c

dε

ε

a∗b∗

c

ε d

c

ε ε d

a b

εε

ε ε

(a∗b∗ + c)∗d

d(a∗b∗ + c)∗

c

ε ε d

b∗a∗

Figure 2.5: The result of converting (a∗b∗ + c)∗d into an NFA-ε.

2.4. CONVERSION ALGORITHMS BETWEEN REGULAR EXPRESSIONS AND AUTOMATA25

. {

s

. . .

r1s∗s1

r1s∗sm

rns∗s1

rns∗sm

rn sm

s1r1

Rule 3

At the end of the last phase we have now an NFA-reg with exactly two states, the initial state q0
(which is non-final) and the final state q f . Moreover, q f has no outgoing transitions, because it was
initially so and the application of the rules cannot change it. After apply Rule 2 exhaustively to
guarantee that there is at most one transition from q0 to itself, and from q0 to q f , we are left with
an NFA-reg having at most two transitions left: a transition (q0, r1, q f), plus possibly a self-loop
(q0, r2, q0). If there is no self-loop, then we are done, the NFA-reg is Ar1 . Otherwise we apply some
post-processing:

• If the automaton has a self-loop (q0, r2, q0), remove it, and replace the transition (q0, r1, q f)
by (q0, r∗2r1, q f). The resulting automaton is Ar∗2r1 .

{
r2

r1

r∗1r2

Rule 4

The complete algorithm is:

NFAtoRE(A)
Input: NFA-ε A = (Q,Σ, δ, q0, F)
Output: regular expression r with L(r) = L(A)

1 apply Rule 1
2 while Q′ \ (F ∪ {q0}) , ∅ do
3 pick q from Q \ (F ∪ {q0})
4 apply exhaustively Rule 2
5 apply Rule 3 to q
6 apply exhaustively Rule 2
7 if there is a transition from q0 to itself then apply Rule 4
8 return the label of the (unique) transition

Example 2.9 Consider the automaton of Figure 2.6(a) on page 27. It is a DFA for the language of
all words over the alphabet {a, b} that contain an even number of a’s and an even number of b’s.

26 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

(The DFA is in the states on the left, respectively on the right, if it has read an even, respectively an
odd, number of a’s. Similarly, it is in the states at the top, respectively at the bottom, if it has read
an even, respectively an odd, number of b’s.) The rest of the figure shows some snapshots of the
run of NFAtoRE() on this automaton. Snapshot (b) is taken right after applying rule 1. Snapshots
(c) to (e) are taken after each execution of the body of the while loop. Snapshot (f) shows the final
result.

Complexity. The complexity of this algorithm depends on the data structure used to store regular
expressions. If regular expresions are stored as strings or trees (following the syntax tree of the
expression), then the complexity can be exponential. To see this, consider for each n ≥ 1 the NFA
A = (Q,Σ, δ, q0, F) where Q = {q0, . . . , qn−1}, Σ = {ai j | 0 ≤, i, j ≤ n − 1}, δ = {(qi, ai j, q j) |
0 ≤, i, j ≤ n − 1}, and F = {q0}. By symmetry, the runtime of the algorithm is independent of
the order in which states are eliminated. Consider the order q1, q2, . . . , qn−1. It is easy to see that
after eliminating the state qi the NFA-reg contains some transitions labeled by regular expressions
with 3i occurrences of letters. The exponental blowup cannot be avoided: It can be shown that
every regular expression recognizing the same language as A contains at least 2(n−1) occurrences of
letters.

If regular expressions are stored as acyclic directed graphs (the result of sharing common subex-
pressions in the syntax tree), then the algorithm works in polynomial time, because the label for a
new transition is obtained by concatenating aor starring already computed labels.

2.5 A Tour of Conversions

We present an example illustrating all conversions of this chapter. We start with the DFA of Figure
2.6(a) recognizing the words over {a, b} with an even number of a’s and an even number of b’s.
The figure converts it into a regular expression. Now we convert this expression into a NFA-ε:
Figure 2.7 on page 28 shows four snapshots of the process of applying rules 1 to 4. In the next
step we convert the NFA-ε into an NFA. The result is shown in Figure 2.8 on page 29. Finally, we
transform the NFA into a DFA by means of the subset construction. The result is shown in Figure
2.9. Observe that we do not recover the DFA we started with, but another one recognizing the same
language. A last step allowing us to close the circle is presented in the next chapter.

Exercises

Exercise 1 Transform this DFA

2.5. A TOUR OF CONVERSIONS 27

(c) (d)

(e) (f)

(a) (b)

bb

a

a

bb

a

a

ε

aa

bb

ab

ba

aa

a

bb

ε

aa

ε
aa + bb

aa + bb
ba + ab

ab + ba

a

bb

a

a

bb

a

a

aa

ε aa + bb +

(ab + ba)(aa + bb)∗(ba + ab)

(aa + bb +

(ab + ba)(aa + bb)∗(ba + ab))∗

Figure 2.6: Run of NFA-εtoRE() on a DFA

28 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

(c) (d)

(a)

(b)

(aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

(ab + ba)(aa + bb)∗(ab + ba)

ε ε

aa bb

aa + bb

ε ε

b
ba

a
ε

b
ε

b

a

ε ε

ab + ba ab + ba b b

aa
b

a

a
a b

ε ε

b
ba

a

Figure 2.7: Constructing a NFA-ε for (aa + bb + (ab + ba)(aa + bb)∗(ab + ba))∗

2.5. A TOUR OF CONVERSIONS 29

a
a b b

a

a

b

b

b a

b

a

a
a b

b

a b

bb

a
a

a b

11 12

9

87

10

6

4

5

32

1

Figure 2.8: NFA for the NFA-ε of Figure 2.7(d)

start

a

b

a

b

a, b

into an equivalent regular expression, then transform this expression into an NFA (with ε-transitions),
remove the ε-transitions, and determinize the automaton.

Exercise 2 Prove or disprove: the languages of the regular expressions (1 + 10)∗ and 1∗(101∗)∗

are equal.

Exercise 3 Give a regular expression for the words over {0, 1} that do not contain 010 as subword.

Exercise 4 Which regular expressions r satisfy the implication (rr = r ⇒ r = r∗) ?

Exercise 5 (R. Majumdar) Consider a deck of cards (with arbitrary many cards) in which black
and red cards alternate, and the top card is black. Cut the deck at any point into two piles, and then

30 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

3, 7

a

b

2, 6

a

a

a

a
a

a

b

b

b

b b

b

4, 5

9, 12 8, 11

10

1

Figure 2.9: DFA for the NFA of Figure 2.8

perform a riffle (also called a dovetail shuffle) to yield a new deck. E.g., we can cut a deck with
six cards 123456 into two piles 12 and 3456, and the riffle yields 132456 or 314256, depending on
the pile we start the riffle with. Now, take thecards from the new deck two at a time (if the riffle
yields 132456, then this exposes the cards 3, 4, and 6; if it yields 314256, then the cards 1, 2, and
6). Prove with the help of regular expressions that all the exposed cards have the same color.

Hint: The expression (BR)∗(ε + B) represents the possible initial decks. Give a regular expres-
sion for the set of possible decks after the riffle.

Exercise 6 Extend the syntax and semantics of regular expressions as follows: If r and r′ are
regular expressions over Σ, then r and r ∩ r′ are also regular expressions, where L(r) = L(r) and
L(r ∩ r′) = L(r) ∩ L(r′). A language L ⊆ Σ∗ is called star-free if there exists an extended regular
expression r without any occurrence of a Kleene star operation such that L = L(r). For example,
Σ∗ is star-free, because Σ∗ = L(∅). Show that L((01 + 10)∗) is star-free.

Exercise 7 Prove or disprove: Every regular language is recognized by a NFA . . .

• . . . having one single final state.

• . . . whose states are all final.

• . . . whose initial state has no incoming transitions.

• . . . whose final state has no outgoing transitions.

Which of the above hold for DFAs?

2.5. A TOUR OF CONVERSIONS 31

Exercise 8 Given a language L, let Lpref and Lsuf denote the languages of all prefixes and all
suffixes, respectively, of words in L. E.g. for L = {abc, d}, we have Lpref = {abc, ab, a, ε, d} and
Lsuf = {abc, bc, c, ε, d}.

1. Given an automaton A, construct automata Apref and Asuf so that L(Apref) = L(A)pref and
L(Asuf) = L(A)suf .

2. Consider the regular expression r = (ab + b)∗c. Give a regular expression rpref so that
L(rpref) = L(rpref).

3. More generally, give an algorithm that receives a regular expression r as input and returns a
regular expression rpref so that L(rpref) = L(r)pref .

Exercise 9 Recall that a nondeterministic automaton A accepts a word w if at least one of the
runs of A on w is accepting. This is sometimes called the existential accepting condition. Consider
the variant in which A accepts w if all runs of A on w are accepting (in particular, if A has no run
on w then it accepts w). This is called the universal accepting condition. Notice that a DFA accepts
the same language with both the existential and the universal accepting conditions.

Give an algorithm that transforms an automaton with universal accepting condition into a DFA
recognizing the same language.

Exercise 10 Consider the family Ln of languages over the alphabet {0, 1} given by Ln = {ww ∈
Σ2n | w ∈ Σn}.

• Give an automaton of size O(n) with universal accepting condition that recognizes Ln.

• Prove that every NFA (and so in particular every DFA) recognizing Ln has at least O(2n)
states.

Exercise 11 The existential and universal accepting conditions can be combined, yielding al-
ternating automata. The states of an alternating automaton are partitioned into existential and
universal states. An existential state q accepts a word w (i.e., w ∈ L(q)) if w = ε and q ∈ F or
w = aw′ and there exists a transition (q, a, q′) such that q′ accepts w′. A universal state q accepts a
word w if w = ε and q ∈ F or w = aw′ and for every transition (q, a, q′) the state q′ accepts w′. The
language recognized by an alternating automaton is the set of words accepted by its initial state.

Give an algorithm that transforms an alternating automaton into a DFA recognizing the same
language.

Exercise 12 Let L be an arbitrary language over a 1-letter alphabet. Prove that L∗ is regular.

32 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

Exercise 13 In algorithm NFAεtoNFA for the removal of ε-transitions, no transition that has been
added to the worklist, processed and removed from the worklist is ever added to the worklist again.
However, transitions may be added to the worklist more than once. Give a NFA-ε A and a run of
NFAεtoNFA(A) in which this happens.

Exercise 14 We say that u = a1 · · · an is a scattered subword of w, denoted by u / w, if there
are words w0, · · · ,wn ∈ Σ∗ such that w = w0a1w1a2 · · · anwn. The upward closure of a language
L is the language L ↑= {u ∈ Σ∗ | ∃w ∈ L : w / u}. The downward closure of L is the language
L ↓:= {u ∈ Σ∗ | ∃w ∈ L : u / w}. Give algorithms that take a NFA A as input and return NFAs for
L(A)↑ and L(A)↓, respectively.

Exercise 15 Algorithm NFAtoRE transforms a finite automaton into a regular expression repre-
senting the same language by iteratively eliminating states of the automaton. In this exercise we see
that eliminating states corresponds to eliminating variables from a system of language equations.

1. Arden’s Lemma states that given two languages A, B ⊆ Σ∗ with ε < A, the smallest language
X ⊆ Σ∗ satisfying X = AX ∪ B (i.e., the smallest language L such that AL ∪ B is again L,
where AL is the concatenation of A and L) is the language A∗B. Prove Arden’s Lemma.

2. Consider the following system of equations, where the variables X,Y represent languages
over the alphabet Σ = {a, b, c, d, e, f }, the operator · represents language concatenation, and
∪ represents set union.

X = {a}X ∪ {b} · Y ∪ {c}
Y = {d}X ∪ {e} · Y ∪ { f }.

(Here {a}X denotes the concatenation of the language {a} containing only the word a and X.)
This system has many solutions. For example, X,Y = Σ∗ is a solution. But there is a unique
minimal solution, i.e., a solution contained in every other solution. Find the smallest solution
with the help of Arden’s Lemma.
Hint : In a first step, consider X not as a variable, but as a constant language, and solve the
equation for Y using Arden’s Lemma.

We can associate to any NFA A = (Q,Σ, δ, qI , F) a system of linear equations as follows. We take
as variables the states of the automaton, which we call here X,Y,Z, . . ., with X as initial state. The
system has an equation for each state of the form

X =
⋃

(X,a,Y)∈δ

{a}Y

if X < F, or

X =

 ⋃
(X,a,Y)∈δ

{a} · Y

 ∪ {ε}
if X ∈ F.

2.5. A TOUR OF CONVERSIONS 33

3. Consider the DFA of Figure 2.6(a). Let X,Y,Z,W be the states of the automaton, read from
top to bottom and from left to right. The associated system of linear equations is

X = {a}Y ∪ {b}Z ∪ {ε}
Y = {a}X ∪ {b}W
Z = {b}X ∪ {a}W
W = {b}Y ∪ {a}Z

Calculate the solution of this linear system by iteratively eliminating variables. Start with Y ,
then eliminate Z, and finally W. Compare with the elimination procedure shown in Figure
2.6.

Exercise 16 Given n ∈ IN0, let msbf(n) be the set of most-significant-bit-first encodings of n, i.e.,
the words that start with an arbitrary number of leading zeros, followed by n written in binary. For
example:

msbf(3) = 0∗11 and msbf(9) = 0∗1001 msbf(0) = 0∗.

Similarly, let lsbf(n) denote the set of least-significant-bit-first encodings of n, i.e., the set contain-
ing for each word w ∈ msbf(n) its reverse. For example:

lsbf(6) = L(0110∗) and lsbf(0) = L(0∗).

1. Construct and compare DFAs recognizing the encodings of the even numbers n ∈ IN0 w.r.t.
the unary encoding, where n is encoded by the word 1n, the msbf-encoding, and the lsbf-
encoding.

2. Same for the set of numbers divisible by 3.

3. Give regular expressions corresponding to the languages in (a) and (b).

Exercise 17

• Give a regular expression of size O(n) such that the smallest DFA equivalent to it has O(2n)
states.

• Give a regular expression of size O(n) without + such that the smallest DFA equivalent to it
has O(2n) states.

• Give a regular expression of size O(n) without + and of start-height 1 such that the smallest
DFA equivalent to it has O(2n) states. (Paper by Shallit at STACS 2008).

34 CHAPTER 2. AUTOMATA CLASSES AND CONVERSIONS

Chapter 3

Minimization and Reduction

In the previous chapter we showed through a chain of conversions that the two DFAs of Figure
3.1 recognize the same language. Obviously, the automaton on the left of the figure is better as a
data structure for this language, since it has smaller size. A DFA (respectively, NFA) is minimal if

a

b

a

a

a

a
a

a

b

b

b

b b

b

bb

a

a

bb

a

a

Figure 3.1: Two DFAs for the same language

no other DFA (respectively, NFA) recognizing the same language has fewer states. We show that
every regular language has a unique minimal DFA up to isomorphism (i.e., up to renaming of the
states). and present an efficient algorithm that “minimizes” a given DFA, i.e., converts it into the
unique minimal DFA. In particular, the algorithm converts the DFA on the right of Figure 3.1 into
the one on the left.

From a data structure point of view, the existence of a unique minimal DFA has two important
consequences. First, as mentioned above, the minimal DFA is the one that can be stored with a
minimal amount of memory. Second, the uniqueness of the minimal DFA makes it a canonical
representation of a regular language. As we shall see, canonicity leads to a fast equality check: In
order to decide if two regular languages are equal, we can construct their minimal DFAs, and check

35

36 CHAPTER 3. MINIMIZATION AND REDUCTION

if they are isomorphic .
In the second part of the chapter we show that, unfortunately, computing a minimal NFA is

a PSPACE complete problem, for which no efficient algorithm is likely to exist. Moreover, the
minimal NFA is not unique. However, we show that a generalization of the minimization algorithm
for DFAs can be used to at least reduce the size of an NFA while preserving its language.

3.1 Minimal DFAs

We start with a simple but very useful definition.

Definition 3.1 Given a language L ⊆ Σ∗ and w ∈ Σ∗, the w-residual of L is the language Lw = {u ∈
Σ∗ | wu ∈ L} . A language L′ ⊆ Σ∗ is a residual of L if L′ = Lw for at least one w ∈ Σ∗.

A language may be infinite but have a finite number of residuals. An example is the language
of the DFAs in Figure 3.1. Recall it is the language of all words over {a, b} with an even number
of a’s and an even number of b’s, which we denote in what follows by EE. The language has
four residuals, namely EE, EO,OE,OO, where EO contains the words with an even number of
a’s and an odd number of b’s, etc. For example, we have EEε = EE, EEa = EEaaa = OE, and
EEab = OO.

There is a close connection between the states of a DA (not necessarily finite) and the residuals
of its language. In order to formulate it we introduce the following definition:

Definition 3.2 Let A = (Q,Σ, δ, q0, F) be a DA and let q ∈ Q. The language recognized by q,
denoted by LA(q), or just L(q) if there is no risk of confusion, is the language recognized by A with
q as initial state, i.e., the language recognized by the DA (Q,Σ, δ, q, F).

Figure 3.2 shows the result of labeling the states of the two DFAs of Figure 3.1 with the lan-
guages they recognize, which are residuals of EE.

Lemma 3.3 Let L be a language and let A = (Q,Σ, δ, q0, F) be a DA recognizing L.

(1) Every residual of L is recognized by some state of A. Formally: for every w ∈ Σ∗ there is
q ∈ Q such that LA(q) = Lw.

(2) Every state of A recognizes a residual of L. Formally: for every q ∈ Q there is w ∈ Σ∗ such
that LA(q) = Lw.

Proof: (1) Let w ∈ Σ∗, and let q be the state reached by the unique run of A on w. Then a word
wu ∈ Σ∗ is recognized by A iff u is recognized by A with q as initial state. So LA(q) = Lw.

(2) Since A is in normal form, q can be reached from q0 by at least a word w. So LA(q) = Lw,
and we are done.

3.1. MINIMAL DFAS 37

a

b

a

a

a

a
a

a

b

b

b

b b

b

bb

a

a

bb

a

a
EE OE

OOEO

EE

OE

EE

OE EO

EO

OO

Figure 3.2: Languages recognized by the states of the DFAs of Figure 3.1.

The notion of residuals allows to define the canonical deterministic automaton for a language
L ⊆ Σ∗.

Definition 3.4 Let L ⊆ Σ∗ be a language. The canonical DA for L is the DA CL = (QL,Σ, δL, q0L, FL),
where:

• QL is the set of residuals of L; i.e., QL = {Lw | w ∈ Σ∗};

• δ(K, a) = Ka for every K ∈ QL and a ∈ Σ;

• q0L = L; and

• FL = {K ∈ QL | ε ∈ K}.

Notice that the number of states of CL is equal to the number of residuals of L, and both may be
infinite.

Example 3.5 The canonical DA for the language EE is shown on the left of Figure 3.2. It has four
states, corresponding to the four residuals of EE. Since, for instance, we have EEa = OE, we have
a transition labeled by a leading from EE to OE.

It is intuitively clear, and easy to show, that the canonical DA for a language L recognizes L:

Proposition 3.6 For every language L ⊆ Σ∗, the canonical DA for L recognizes L.

Proof: Let CL be the canonical DA for L. We prove L(CL) = L.
Let w ∈ Σ∗. We prove by induction on |w| that w ∈ L iff w ∈ L(CL).

38 CHAPTER 3. MINIMIZATION AND REDUCTION

If |w| = 0 then w = ε, and we have

ε ∈ L (w = ε)
⇔ L ∈ FL (definition of FL)
⇔ q0L ∈ FL (q0L = L)
⇔ ε ∈ L(CL) (q0L is the initial state of CL)

If |w| > 0, then w = aw′ for some a ∈ Σ and w′ ∈ Σ∗, and we have

aw′ ∈ L
⇔ w′ ∈ La (definition of La)
⇔ w′ ∈ L(CLa) (induction hypothesis)
⇔ aw′ ∈ L(CL) (δL(L, a) = La)

We now prove that CL is the unique minimal DFA recognizing a regular language L (up to
isomorphism). The informal argument goes as follows. Since every DFA for L has at least one
state for each residual and CL has exactly one state for each residual, CL is minimal, and every
other minimal DFA for L also has exactly one state for each residual. But the transitions, initial and
final states of a minimal DFA are completely determined by the residuals of the states: if state q
recognizes residual R, then the a-transition leaving q necessarily leads to the state recognizing Ra;
q is final iff ε ∈ R, and q is initial iff R = L. So all minimal DFAs are isomorphic. A more formal
proof looks as follows:

Theorem 3.7 If L is regular, then CL is the unique minimal DFA up to isomorphism recognizing L.

Proof: Let L be a regular language, and let A = (Q,Σ, δ, q0, F) be an arbitrary DFA recognizing L.
By Lemma 3.3 the number the number of states of A is greater than or equal to the number of states
of CL, and so CL is a minimal automaton for L. To prove uniqueness of the minimal automaton up
to isomorphism, assume A is minimal. By Lemma 3.3(2), LA is a mapping that assigns to each state
of A a residual of L, and so LA : Q → QL. We prove that LA is an isomorphism. LA is bijective
because it is surjective (Lemma 3.3(2)), and |Q| = |QL| (A is minimal by assumption). Moreover, if
δ(q, a) = q′, then LA(q′) = (LA(q))a, and so δL(LA(q), a) = LA(q′). Also, LA maps the initial state
of A to the initial state of CL: LA(q0) = L = q0L. Finally, LA maps final to final and non-final to
non-final states: q ∈ F iff ε ∈ LA(q) iff LA(q) ∈ FL.

The following simple corollary is often useful to establish that a given DFA is minimal:

Corollary 3.8 A DFA is minimal if and only if L(q) , L(q′) for every two distinct states q and q′.

3.2. MINIMIZING DFAS 39

Proof: (⇒): By Theorem 3.7, the number of states of a minimal DFA is equal to the number of
residuals of its language. Since every state of recognizes some residual, each state must recognize
a different residual.

(⇐): If all states of a DFA A recognize different languages, then, since every state recognizes
some residual, the number of states of A is less than or equal to the number of residuals. So A has
at most as many states as CL(A), and so it is minimal.

3.2 Minimizing DFAs

We present an algorithm that converts a given DFA into (a DFA isomorphic to) the unique minimal
DFA recognizing the same language. The algorithm first partitions the states of the DFA into
blocks, where a block contains all states recognizing the same residual. We call this partition the
language partition. Then, the algorithm “merges” the states of each block into one single state, an
operation usually called quotienting with respect to the partition. Intuitively, this yields a DFA in
which every state recognizes a different residual. These two steps are described in Section 3.2.1
and Section 3.2.2.

For the rest of the section we fix a DFA A = (Q,Σ, δ, q0, F) recognizing a regular language L.

3.2.1 Computing the language partition

We need some basic notions on partitions. A partition of Q is a finite set P = {B1, . . . , Bn} of
nonempty subsets of Q, called blocks, such that Q = B1 ∪ . . . ∪ Bn, and Bi ∩ B j = ∅ for every
1 ≤ i , j ≤ n. The block containing a state q is denoted by [q]P. A partition P′ refines or is a
refinement of another partition P if every block of P′ is contained in some block of P. If P′ refines
P and P′ , P, then P is coarser than P′.

The language partition, denoted by P`, puts two states in the same block if and only if they
recognize the same language (i.e, the same residual). Formally, [q]P` = [q′]P` if and only if L(q) =

L(q′). To compute P` we iteratively refine an initial partition P0 while maintaining the following
invariant:

Invariant: States in different blocks recognize different languages.

P0 consists of two blocks containing the final and the non-final states, respectively (or just one of
the two if all states are final or all states are nonfinal). That is, P0 = {F,Q \ F} if F and Q \ F are
nonempty, P0 = {F} if Q \ F is empty, and P0 = {Q \ F} if F is empty. Notice that P0 satisfies the
invariant, because every state of F accepts the empty word, but no state of Q \ F does.

A partition is refined by splitting a block into two blocks. To find a block to split, we first
observe the following:

Fact 3.9 If L(q1) = L(q2), then L(δ(q1, a)) = L(δ(q2, a)) for every a ∈ Σ.

40 CHAPTER 3. MINIMIZATION AND REDUCTION

Now, by contraposition, if L(δ(q1, a)) , L(δ(q2, a)), then L(q1) , L(q2), or, rephrasing in terms of
blocks: if δ(q1, a) and δ(q2, a) belong to different blocks, but q1 and q2 belong to the same block B,
then B can be split, because q1 and q2 can be put in different blocks while respecting the invariant.

Definition 3.10 Let B, B′ be (not necessarily distinct) blocks of a partition P, and let a ∈ Σ. The
pair (a, B′) splits B if there are q1, q2 ∈ B such that δ(q1, a) ∈ B′ and δ(q2, a) < B′. The result of
the split is the partition Ref P[B, a, B′] = (P \ {B}) ∪ {B0, B1}, where

B0 = {q ∈ B | δ(q, a) < B′} and B1 = {q ∈ B | δ(q, a) ∈ B′} .

A partition is unstable if it contains blocks B, B′ such that (a, B′) splits B for some a ∈ Σ, and
stable otherwise.

The partition refinement algorithm LanPar(A) iteratively refines the initial partition of A until
it becomes stable. The algorithm terminates because every iteration increases the number of blocks
by one, and a partition can have at most |Q| blocks.

LanPar(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: The language partition P`.

1 if F = ∅ or Q \ F = ∅ then return {Q}
2 else P← {F,Q \ F}
3 while P is unstable do
4 pick B, B′ ∈ P and a ∈ Σ such that (a, B′) splits B
5 P← Ref P[B, a, B′]
6 return P

Notice that if all states of a DFA are nonfinal then every state recognizes ∅, and if all are
final then every state recognizes Σ∗. In both cases all states recognize the same language, and the
language partition is {Q}.

Example 3.11 Figure 3.3 shows a run of LanPar() on the DFA on the right of Figure 3.1. States
that belong to the same block are given the same color. The initial partition, shown at the top,
consists of the yellow and the pink states. The yellow block and the letter a split the pink block
into the green block (pink states with an a-transition to the yellow block) and the rest (pink states
with an a-transition to other blocks), which stay pink. In the final step, the green block and the
letter b split the pink block into the magenta block (pink states with a b transition into the green
block) and the rest, which stay pink.

We prove in two steps that LanPar(A) computes the language partition. First, we show that it
computes the coarsest stable refinement of P0, denoted by CSR; in other words we show that after
termination the partition P is coarser than every other stable refinement of P0. Then we prove that
CSR is equal to P`.

3.2. MINIMIZING DFAS 41

a

b

a

a

a

a
a

a

b

b

b

b b

b

a

b

a

a

a

a
a

a

b

b

b

b b

b

a

b

a

a

a

a
a

a

b

b

b

b b

b

Figure 3.3: Computing the language partition for the DFA on the left of Figure 3.1

42 CHAPTER 3. MINIMIZATION AND REDUCTION

Lemma 3.12 LanPar(A) computes CSR.

Proof: LanPar(A) clearly computes a stable refinement of P0. We prove that after termination P
is coarser than any other stable refinement of P0, or, equivalently, that every stable refinement of
P0 refines P. Actually, we prove more: we show that this is in fact an invariant of the program: it
holds not only after termination, but at any time.

Let P′ be an arbitrary stable refinement of P0. Initially P = P0, and so P′ refines P. Now,
we show that if P′ refines P, then P′ also refines Ref P[B, a, B′]. For this, let q1, q2 be two states
belonging to the same block of P′. We show that they belong to the same block of Ref P[B, a, B′].
Assume the contrary. Since the only difference between P and Ref P[B, a, B′] is the splitting of B
into B0 and B1, exactly one of q1 and q2, say q1, belongs to B0, and the other belongs to B1. So
there exists a transition (q2, a, q′2) ∈ δ such that q′2 ∈ B′. Since P′ is stable and q1, q2 belong to the
same block of P′, there is also a transition (q1, a, q′1) ∈ δ such that q′1 ∈ B′. But this contradicts
q1 ∈ B0.

Theorem 3.13 CSR is equal to P`.

Proof: The proof has three parts:

(a) P` refines P0. Obvious.

(b) P` is stable. By Fact 3.9, if two states q1, q2 belong to the same block of P`, then δ(q1, a), δ(q2, a)
also belong to the same block, for every a. So no block can be split.

(c) Every stable refinement P of P0 refines P`. Let q1, q2 be states belonging to the same block
B of P. We prove that they belong to the same block of P`, i.e., that L(q1) = L(q2). By
symmetry, it suffices to prove that, for every word w, if w ∈ L(q1) then w ∈ L(q2). We
proceed by induction on the length of w. If w = ε then q1 ∈ F, and since P refines P0 , we
have q2 ∈ F, and so w ∈ L(q2). If w = aw′, then there is (q1, a, q′1) ∈ δ such that w′ ∈ L(q′1).
Let B′ be the block containing q′1. Since P is stable, B′ does not split B, and so there is
(q2, a, q′2) ∈ δ such that q′2 ∈ B′. By induction hypothesis, w′ ∈ L(q′1) iff w′ ∈ L(q′2). So
w′ ∈ L(q′2), which implies w ∈ L(q2).

3.2.2 Quotienting

It remains to define the quotient of A with respect to a partition. The states of the quotient are the
blocks of the partition, and there is a transition (B, a, B′) from block B to block B′ if A contains
some transition (q, a, q′) for states q and Q′ belonging to B and B′, respectively. Formally:

Definition 3.14 The quotient of A with respect to a partition P is the DFA A/P = (QP,Σ, δP, q0P, FP)
where

3.2. MINIMIZING DFAS 43

• QP is the set of blocks of P;

• (B, a, B′) ∈ δP if (q, a, q′) ∈ δ for some q ∈ B, q′ ∈ B′;

• q0P is the block of P containing q0; and

• FP is the set of blocks of P that contain at least one state of F.

Example 3.15 Figure 3.4 shows on the right the result of quotienting the DFA on the left with
respect to its language partition. The quotient has as many states as colors, and it has a transition
between two colors (say, an a-transition from pink to magenta) if the DFA on the left has such a
transition.

a

b

a

a

a

a
a

a

b

b

b

b b

b

bb

a

a

bb

a

a

Figure 3.4: Quotient of a DFA with respect to its language partition

We show that A/P`, the quotient of A with respect to the language partition, is the minimal
DFA for L. The main part of the argument is contained in the following lemma. Loosely speaking,
it says that any partition in which states of the same block recognize the same language “is good”
for quotienting, because the quotient recognizes the same language as the original automaton.

Lemma 3.16 Let P be a refinement of P`, let q be a state of A, and let B be the block of P containing
q. Then LA(q) = LA/P(B). In particular, L(A) = L(A/P).

Proof: We prove that for every w ∈ Σ∗ we have w ∈ LA(q) iff w ∈ LA/P(B). The proof is by
induction on |w|.
|w| = 0. Then w = ε and we have

ε ∈ LA(q)
iff q ∈ F
iff B ⊆ F (P refines P`, and so also P0)
iff B ∈ FP

iff ε ∈ LA/P(B)

44 CHAPTER 3. MINIMIZATION AND REDUCTION

|w| > 0. Then w = aw′ for some a ∈ Σ. So w ∈ LA(q) iff there is a transition (q, a, q′) ∈ δ
such that w′ ∈ LA(q′). Let B′ be the block containing q′. By the definition of A/P we have
(B, a, B′) ∈ δP, and so:

aw′ ∈ LA(q)
iff w′ ∈ LA(q′) (definition of q′)
iff w′ ∈ LA/P(B′) (induction hypothesis)
iff aw′ ∈ LA/P(B) ((B, a, B′) ∈ δP)

Proposition 3.17 The quotient A/P` is the minimal DFA for L.

Proof: By Lemma 3.16, the states of A/P` recognize residuals of L. Moreover, two states of
A/P` recognize different residuals by definition. So A/P` has as many states as residuals, and we
are done.

3.3 Reducing NFAs

There is no canonical minimal NFA for a given regular language. The simplest witness of this fact
is the language aa∗, which is recognized by the two non-isomorphic, minimal NFAs of Figure 3.5.

a

a a

a

Figure 3.5: Two minimal NFAs for aa∗.

Moreover, computing any of the minimal NFAs equivalent to a given NFA is computationally
hard. Recall that the universality problem is PSPACE-complete: given a NFA A over an alphabet
Σ, decide whether L(A) = Σ∗. Using this result, we can easily prove that deciding the existence of
a small NFA for a language is PSPACE-complete.

Theorem 3.18 The following problem is PSPACE-complete: given a NFA A and a number k ≥ 1,
decide if there exists an NFA equivalent to A having at most k states.

Proof: To prove membership in PSPACE, observe first that if A has at most k states, then we can
answer A. So assume that A has more than k states. We use NPSPACE = PSPACE = co-PSPACE.
Since PSPACE = co-PSPACE, it suffices to give a procedure to decide if no NFA with at most
k states is equivalent to A. For this we construct all NFAs with at most k states (over the same
alphabet as A), reusing the same space for each of them, and check that none of them is equivalent

3.3. REDUCING NFAS 45

to A. Now, since NPSPACE=PSPACE, it suffices to exhibit a nondeterministic algorithm that,
given a NFA B with at most k states, checks that B is not equivalent to A (and runs in polynomial
space). The algorithm nondeterministically guesses a word, one letter at a time, while maintaining
the sets of states in both A and B reached from the initial states by the word guessed so far. The
algorithm stops when it observes that the current word is accepted by exactly one of A and B.

PSPACE-hardness is easily proved by reduction from the universality problem. If an NFA is
universal, then it is equivalent to an NFA with one state, and so, to decide if a given NFA A is
universal we can proceed as follows: Check first if A accepts all words of length 1. If not, then A
is not universal. Otherwise, check if some NFA with one state is equivalent to A. If not, then A is
not universal. Otherwise, if such a NFA, say B, exists, then, since A accepts all words of length 1,
B is the NFA with one final state and a loop for each alphabet letter. So A is universal.

However, we can reuse part of the theory for the DFA case to obtain an efficient algorithm to
possibly reduce the size of a given NFA.

3.3.1 The reduction algorithm

We fix for the rest of the section an NFA A = (Q,Σ, δ, q0, F) recognizing a language L. A look
at Definition 3.14 and Lemma 3.16 shows that the definition of the quotient automaton extends to
NFA, and that Lemma 3.16 still holds for NFAs with exactly the same proof. So L(A) = L(A/P)
holds for every refinement P of P`, and so any refinement of P` can be used to reduce A. The
largest reduction is obtained for P = P`, but P` is hard to compute for NFA. On the other extreme,
the partition that puts each state in a separate block is always a refinement of P`, but it does not
provide any reduction.

To find a reasonable trade-off we examine again Lemma 3.12, which proves that LanPar(A)
computes CSR for deterministic automata. Its proof only uses the following property of stable
partitions: if q1, q2 belong to the same block of a stable partition and there is a transition (q2, a, q′2) ∈
δ such that q′2 ∈ B′ for some block B′, then there is also a transition (q1, a, q′1) ∈ δ such that q′1 ∈ B′.
We extend the definition of stability to NFAs so that stable partitions still satisfy this property: we
just replace condition

δ(q1, a) ∈ B′ and δ(q2, a) < B′

of Definition 3.10 by

δ(q1, a) ∩ B′ , ∅ and δ(q2, a) ∩ B′ = ∅.

Definition 3.19 (Refinement and stability for NFAs) Let B, B′ be (not necessarily distinct) blocks
of a partition P, and let a ∈ Σ. The pair (a, B′) splits B if there are q1, q2 ∈ B such that δ(q1, a)∩B′ ,
∅ and δ(q2, a)∩B′ = ∅. The result of the split is the partition Ref NFA

P [B, a, B′] = (P\ {B})∪{B0, B1},
where

B0 = {q ∈ B | δ(q, a) ∩ B′ = ∅} and B1 = {q ∈ B | δ(q, a) ∩ B′ , ∅} .

A partition is unstable if it contains blocks B, B′ such that B′ splits B, and stable otherwise.

46 CHAPTER 3. MINIMIZATION AND REDUCTION

Using this definition we generalize LanPar(A) to NFAs in the obvious way: allow NFAs as
inputs, and replace Ref P by Ref NFA

P as new notion of refinement. Lemma 3.12 still holds: the
algorithm still computes CSR, but with respect to the new notion of refinement. Notice that in the
special case of DFAs it reduces to LanPar(A), because Ref P and Ref NFA

P coincide for DFAs.

CSR(A)
Input: NFA A = (Q,Σ, δ, q0, F)
Output: The partition CSR of A.

1 if F = ∅ or Q \ F = ∅ then P← {Q}
2 else P← {F,Q \ F}
3 while P is unstable do
4 pick B, B′ ∈ P and a ∈ Σ such that (a, B′) splits B
5 P← Ref NFA

P [B, a, B′]
6 return P

Notice that line 1 is different from line 1 in algorithm LanPar. If all states of a NFA are
nonfinal then every state recognizes ∅, but if all are final we can no longer conclude that every state
recognizes Σ∗, as was the case for DFAs. In fact, all states might recognize different languages.

In the case of DFAs we had Theorem 3.13, stating that CSR is equal to P`. The theorem does
not hold anymore for NFAs, as we will see later. However, part (c) of the proof, which showed that
CSR refines P`, still holds, with exactly the same proof. So we get:

Theorem 3.20 Let A = (Q,Σ, δ, q0, F) be a NFA. The partition CSR refines P`.

Now, Lemma 3.16 and Theorem 3.13 lead to the final result:

Corollary 3.21 Let A = (Q,Σ, δ, q0, F) be a NFA. Then L(A/CSR) = L(A).

Example 3.22 Consider the NFA at the top of Figure 3.6. CSR is the partition indicated by the
colors. A possible run of CSR(A) is graphically represented at the bottom of the figure as a tree.
Initially we have the partition with two blocks shown at the top of the figure: the block {1, . . . , 14}
of non-final states and the block {15} of final states. The first refinement uses (a, {15}) to split
the block of non-final states, yielding the blocks {1, . . . , 8, 11, 12, 13} (no a-transition to {15}) and
{9, 10, 14} (an a-transition to {15}). The leaves of the tree are the blocks of CSR.

In this example we have CSR , P`. For instance, states 3 and 5 recognize the same language,
namely (a + b)∗aa(a + b)∗, but they belong to different blocks of CSR.

The quotient automaton is shown in Figure 3.7.

We finish the section with a remark.

Remark 3.23 If A is an NFA, then A/P` may not be a minimal NFA for L. The NFA of Figure 3.8
is an example: all states accept different languages, and so A/P` = A, but the NFA is not minimal,
since, for instance, the state at the bottom can be removed without changing the language.

3.3. REDUCING NFAS 47

a a a a

6

a, b

a a a a

a, ba, b

a, b a, b a, b

a

a a

a a

a

a

a

a

a

a a

aa

1 2

7

1211 13

8

4

9

14 15

10

53

{2, 7, 12}

(a, {4, 8})

{7, 12} {2}

(b, {6, 11})

{6, 11}

{6} {11}

{1, . . . , 8, 11, 12, 13}

(a, {15})

{1, . . . , 14}

{9, 10, 14}

(a, {9, 10, 14})

{15}

(a, {3, 4, 5, 8, 13})

{1, 2, 6, 7, 11, 12}

{1, 6, 11}

(a, {4, 8})

{1}

{3, 4, 5, 8, 13}

(b, {3, 4, 5, 8, 13})

{4, 8} {3, 5, 13}

(a, {4, 8})

{3} {5, 13}

Figure 3.6: An NFA and a run of CSR() on it.

48 CHAPTER 3. MINIMIZATION AND REDUCTION

a, b

a

a

a

a, b

a

a, b a, b

a, b

a
a

a

a

a

a

a
aa

a a

Figure 3.7: The quotient of the NFA of Figure 3.6.

a

a b

a, b

Figure 3.8: An NFA A such that A/P` is not minimal.

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 49

It is not difficult to show that if two states q1, q2 belong to the same block of CSR, then they not
only recognize the same language, but also satisfy the following far stronger property: for every
a ∈ Σ and for every q′1 ∈ δ(q1, a), there exists q′2 ∈ δ(q2, a) such that L(q′1) = L(q′2). This can
be used to show that two states belong to different blocks of CSR. For instance, consider states 2
and 3 of the NFA on the left of Figure 3.9. They recognize the same language, but state 2 has a
c-successor, namely state 4, that recognizes {d}, while state 3 has no such successor. So states 2
and 3 belong to different blocks of CSR. A possible run of of the CSR algorithm on this NFA is
shown on the right of the figure. For this NFA, CSR has as many blocks as states.

{1, 3}

(b, {1, 3})

{1} {3}

(c, {5})

{1, 2, 3}

{2}

{1, 2, 3, 5}

(e, {7})

{5}

{4, 6}

(e, {7})

{4} {6}

c

d, e

c

c d

ea

b

1

2

3

5

6

7

4 (d, {7})

{1, . . . , 6} {7}

Figure 3.9: An NFA such that CSR , P`.

3.4 A Characterization of the Regular Languages

We present a useful byproduct of the results of Section 3.1.

Theorem 3.24 A language L is regular iff it has finitely many residuals.

Proof: If L is not regular, then no DFA recognizes it. Since, by Proposition 3.6, the canonical
automaton CL recognizes L, then CL necessarily has infinitely many states, and so L has infinitely
many residuals.

If L is regular, then some DFA A recognizes it. By Lemma 3.3, the number of states of A is
greater than or equal to the number of residuals of L, and so L has finitely many residuals.

This theorem provides a useful technique for proving that a given language L ⊆ Σ∗ is not regular:
exhibit an infinite set of words W ⊆ Σ∗ with pairwise different residuals, i.e., W must satisfy
Lw , Lv for every two distinct words w, v ∈ W. Let us apply the technique to some typical
examples.

50 CHAPTER 3. MINIMIZATION AND REDUCTION

• {anbn | n ≥ 0} is not regular. Let W = {ak | k ≥ 0}. For every two distinct words ai, a j ∈ W
(i.e., i , j), we have bi ∈ Lai

but bi < La j
.

• {ww | w ∈ Σ∗} is not regular. Let W = Σ∗. For every two distinct words w, v ∈ W (i.e., w , v),
we have w ∈ Lw but w < Lv.

• {an2
| n ≥ 0}. Let W = {an2

| n ≥ 0} (W = L in this case). For every two distinct
words ai2 , a j2 ∈ W (i.e., i , j), we have that a2i+i belongs to the ai2-residual of L, because
ai2+2i+1 = a(i+1)2

, but not to the a j2-residual, because a j2+2i+1 is only a square number for
i = j.

Exercises

Exercise 18 Consider the most-significant-bit-first encoding (msbf encoding) of natural numbers
over the alphabet Σ = {0, 1}. Recall that every number has infinitely many encodings, because
all the words of 0 ∗ w encode the same number as w. Construct the minimal DFAs accepting the
following languages.

• {w | msbf−1(w) mod 3 = 0} ∩ Σ4.

• {w | msbf−1(w) is a prime } ∩ Σ4.

Exercise 19 Consider the family of languages Lk = {ww | w ∈ Σk}, where k ≥ 2.

• Construct the minimal DFA for L4.

• How many states has the minimal DFA accepting Lk ?

Exercise 20 Consider the following DFA over the alphabet Σ = {00, 01, 10, 11}:

start

00

10

11

00

01

11

We interpret a word wΣ∗ as a pair of natural numbers (X(w),Y(w)) ∈ IN0 × IN0 by reading the bits
at odd positions as the msbf encoding encoding of X(w), and the bits as even positions as the mbsf
encoding of Y(w). For example, if w = 00001011 then X(w) = 3 abd Y(w) = 1, because

00001011→ 00001011→ (0011, 0001)→ (3, 1)

1. Show that a word w is accepted by the DFA iff X(w) = 3 · Y(w).

2. Construct the minimal DFA representing the language {w ∈ {0, 1}∗ | msbf−1(w) is divisible by 3}.

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 51

Exercise 21 Consider the language partition algorithm LanPar. Since every execution of its while
loop increases the number of blocks by one, the loop can be executed at most |Q| − 1 times. Show
that this bound is tight, i.e. give a family of DFAs for which the loops is executed |Q| − 1 times.
Hint: You can take a one-letter alphabet.

Exercise 22 Describe in words the language of the following NFA, and compute CSR, i.e., the
coarsest stable refinement of P0.

q0start

q1 q2

q3 q4

q f

a

a

b

a

a

a, b

a

b

a

a, b

a

a

1. Describe L(A).

2. Determine the CSR of A using the algorithm presented in the lecture.

Exercise 23 Determine the residuals of the following languages over Σ = {a, b}:

• (ab + ba)∗,

• (aa)∗,

• {w ∈ {a, b}∗ | w contains the same number of occurrences of ab and ba}.

• {anbncn | n ≥ 0}.

Exercise 24 Given a language L ⊆ Σ∗ and w ∈ Σ∗, we denote wL = {u ∈ Σ∗ | uw ∈ L} . A
language L′ ⊆ Σ∗ is an inverse residual of L if L′ = wL for some w ∈ Σ∗.

• Determine the inverse residuals of the first two languages in Exercise 23.

• Show that a language is regular iff it has finitely many inverse residuals.

• Does a language always have as many residuals as inverse residuals?

52 CHAPTER 3. MINIMIZATION AND REDUCTION

Exercise 25 Given a language L ⊆ Σ∗ and w ∈ Σ∗, the w-context of L is the set of pairs {(u, v) ∈
Σ∗ | uwv ∈ L} . A language is a context of L if it is a w-context for at least one w ∈ Σ∗.

• Determine the contexts of L2 in Exercise 23.

• Can a language have more residuals than contexts? And more contexts than residuals?

Exercise 26 A DFA with negative transitions (DFA-n) is a DFA whose transitions are partitioned
into positive and negative transitions. A run of a DFA-n is accepting if:

• it ends in a final state and the number of occurrences of negative transitions is even, or

• it ends in a non-final state and the number of occurrences of negative transitions is odd.

The intuition is that taking a negative transition “inverts the polarity” of the acceptance condition:
after taking the transition we accept iff we would not accept were the transition positive.

• Prove that the languages recognized by DFAs with negative transitions are regular.

• Give a DFA-n for a regular language having fewer states than the minimal DFA for the
language.

• Show that the minimal DFA-n for a language is not unique (even for languages whose mini-
mal DFA-n’s have fewer states than their minimal DFAs).

Exercise 27 A residual of a regular language L is composite if it is the union of other residuals of
L. A residual of L is prime if it is not composite. Show that every regular language L is recognized
by an NFA whose number of states is equal to the number of prime residuals of L.

Exercise 28 Show that the following languages over {0, 1, 2} are not regular:

• {0n1n2m | n,m ≥ 0}

• {02n123n | n ≥ 0}

• {w | |w|0 = |w|2}, where |w|σ denotes the number of occurrences of the letter σ in word w.

Exercise 29 Prove or disprove:

• A subset of a regular language is regular.

• A superset of a regular language is regular.

• If L1 and L1L2 are regular, then L2 is regular.

• If L2 and L1L2 are regular, then L1 is regular.

3.4. A CHARACTERIZATION OF THE REGULAR LANGUAGES 53

Exercise 30 (T. Henzinger) Which of these languages over the alphabet {0, 1} are regular?

• The set of words containing the same number of 0’s and 1’s.

• The set of words containing the same number of occurrences of the strings 01 and 10.
(E.g., 01010001 contains three occurrences of 01 and two occurrences of 10.)

• Same for the pairs of strings 00 and 11, the pair 001 and 110, and the pair 001 and 100.

Exercise 31 A word w = a1 . . . an is a subword of v = b1 . . . bm, denoted by w � v, if there are
indices 1 ≤ i1 < i2 . . . < in ≤ m such that ai j = b j for every j ∈ {1, . . . n}. Higman’s lemma states
that every infinite set of words over a finite alphabet contains two words w1, w2 such that w1 � w2.

A language L ⊆ Σ∗ is upward-closed if for every two words w, v ∈ Σ∗, if w ∈ L and w � v, then
v ∈ l. The upward-closure of a language L is the upward-closed language obtained by adding to L
all words v such that w � v for some v ∈ L.

• Prove using Higman’s lemma that every upward-closed language is regular.

• Give regular expressions for the upward-closures of the languages in Execise 28.

• Give an algorithm that transforms a regular expression for a language into a regular expres-
sion for its upward-closure.

Exercise 32 A word of a language L is minimal if it is not a proper subword of another word of
L. We denote the set of minimal words of L by min(L). Give a family of regular languages {Ln}

∞
n=1

such that every Ln is recognized by a NFA with O(n) states, but the smallest NFA recognizing
min(L) has O(2n) states.

Exercise 33 Consider the alphabet Σ = {up, down, left, right}. A word over Σ corresponds to a
line in a grid consisting of concatenated segments drawn in the direction specified by the letters. In
the same way, a language corresponds to a set of lines.

The set of all staircases can be specified as the set of lines given by the regular language
(upright)∗. It is a regular language.

• Specify the set of all skylines as a regular language.

• Show that the set of all rectangles is not regular.

54 CHAPTER 3. MINIMIZATION AND REDUCTION

Chapter 4

Operations on Sets: Implementations

Recall the list of operations on sets that should be supported by our data structures, where U is the
universe of objects, X,Y are subsets of U, x is an element of U:

Member(x, X) : returns true if x ∈ X, false otherwise.
Complement(X) : returns U \ X.
Intersection(X, Y) : returns X ∩ Y .
Union(X, Y) : returns X ∪ Y .
Empty(X) : returns true if X = ∅, false otherwise.
Universal(X) : returns true if X = U, false otherwise.
Included(X,Y) : returns true if X ⊆ Y , false otherwise.
Equal(X,Y) : returns true if X = Y , false otherwise.

We fix an alphabet Σ, and assume that there exists a bijection between U and Σ∗, i.e., we assume
that each object of the universe is encoded by a word, and each word is the encoding of some object.
Under this assumption, the operations on sets and elements become operations on languages and
words. For instance, the first two operations become

Member(w, L) : returns true if w ∈ L, false otherwise.
Complement(L) : returns L.

The assumption that each word encodes some object may seem too strong. Indeed, the language
E of encodings is usually only a subset of Σ∗. However, once we have implemented the operations
above under this strong assumption, we can easily modify them so that they work under a much
weaker assumption, that almost always holds: the assumption that the language E of encodings is
regular. Assume, for instance, that E is a regular subset of Σ∗ and L is the language of encodings
of a set X. Then, we implement Complement(X) so that it returns, not L, but Intersection(L, E).

For each operation we present an implementation that, given automata representations of the

55

56 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

operands, returns an automaton representing the result (or a boolean, when that is the return type).
Sections 4.1 and 4.2 consider the cases in which the representation is a DFA and a NFA, respec-
tively.

4.1 Implementation on DFAs

In order to evaluate the complexity of the operations we must first make explicit our assumptions
on the complexity of basic operations on a DFA A = (Q,Σ, δ, q0, F). We assume that dictionary
operations (lookup, add, remove) on Q and δ can be performed in constant time using hashing. We
assume further that, given a state q, we can decide in constant time if q = q0, and if q ∈ F, and that
given a state q and a letter a ∈ Σ, we can find in constant time the unique state δ(q, a).

4.1.1 Membership.

To check membership for a word w we just execute the run of the DFA on w. It is convenient for
future use to have an algorithm Member[A](w, q) that takes as parameter a DFA A, a state q of
A, and a word w, and checks if w is accepted with q as initial state. Member(w, L) can then be
implemented by Mem[A](w, q0), where A is the automaton representing L.

Writing head(aw) = a and tail(aw) = w for a ∈ Σ and w ∈ Σ∗, the algorithm looks as follows:

MemDFA[A](w, q)
Input: DFA A = (Q,Σ, δ, q0, F), state q ∈ Q, word w ∈ Σ∗,
Output: true if w ∈ L(q), false otherwise

1 if w = ε then return q ∈ F
2 else return Member[A](δ(q, head(w)) , tail(w))

The complexity of the algorithm is O(|w|).

4.1.2 Complement.

Implementing the complement operations on DFAs is easy. Recall that a DFA has exactly one run
for each word, and the run is accepting iff it reaches a final state. Therefore, if we swap final and
non-final states, the run on a word becomes accepting iff it was non-accepting, and so the new DFA
accepts the word iff the new one did not accept it. So we get the following linear-time algorithm:

CompDFA(A)
Input: DFA A = (Q,Σ, δ, q0, F),
Output: DFA B = (Q′,Σ, δ′, q′0, F

′) with L(B) = L(A)

1 Q′ ← Q; δ′ ← δ; q′0 ← q0; F′ = ∅

2 for all q ∈ Q do
3 if q < F then add q to F′

4.1. IMPLEMENTATION ON DFAS 57

Observe that complementation of DFAs preserves minimality. By construction, each state of
Comp(A) recognizes the complement of the language recognized by the same state in A. Therefore,
if the states of A recognize pairwise different languages, so do the states of Comp(A). Apply now
Corollary 3.8, stating that a DFA is minimal iff their states recognize different languages.

4.1.3 Binary Boolean Operations

Instead of specific implementations for union and intersection, we give a generic implementation
for all binary boolean operations. Given two DFAs A1 and A2 and a binary boolean operation
like union, intersection, or difference, the implementation returns a DFA recognizing the result of
applying the operation to L(A1) and L(A2). The DFAs for different boolean operations always have
the same states and transitions, they differ only in the set of final states. We call this DFA with a
yet unspecified set of final states the pairing of A1 and A2, denoted by [A1, A2]. Formally:

Definition 4.1 Let A1 = (Q1,Σ, δ1, q01, F1) and A2 = (Q2,Σ, δ2, q02, F2) be DFAs. The pairing
[A1, A2] of A1 and A2 is the tuple (Q,Σ, δ, q0) where:

• Q = { [q1, q2] | q1 ∈ Q1, q2 ∈ Q2};

• δ = { ([q1, q2], a, [q′1, q
′
2]) | (q1, a, q′1) ∈ δ1, (q2, a, q′2) ∈ δ2};

• q0 = [q01, q02].

The run of [A1, A2] on a word of Σ∗ is defined as for DFAs.

It follows immediately from this definition that the run of [A1, A2] over a word w = a1a2 . . . an is
also a “pairing” of the runs of A1 and A2 over w. Formally,

q01
a1
−−−→ q11

a2
−−−→ q21 . . . q(n−1)1

an
−−−→ qn1

q02
a1
−−−→ q12

a2
−−−→ q22 . . . q(n−1)2

an
−−−→ qn2

are the runs of A1 and A2 on w if and only if[
q01
q02

]
a1
−−−→

[
q11
q12

]
a2
−−−→

[
q21
q22

]
. . .

[
q(n−1)1
q(n−1)2

]
an
−−−→

[
qn1
qn2

]
is the run of [A1, A2] on w.

DFAs for different boolean operations are obtained by adding an adequate set of final states
to [A1, A2]. Let L1, L2 be the languages For intersection, [A1, A2] must accept w if and only if
A1 accepts w and A2 accepts w. This is achieved by declaring a state [q1, q2] final if and only if
q1 ∈ F1 and q2 ∈ F2. For union, we just replace and by or. For difference, [A1, A2] must accept w
if and only if A1 accepts w and A2 does not accepts w, and so we declare [q1, q2] final if and only
if q1 ∈ F1 and not q2 ∈ F2.

58 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Example 4.2 Figure 4.2 shows at the top two DFAs over the alphabet Σ = {a}. They recognize
the words whose length is a multiple of 2 and a multiple of three, respectively. We denote these
languages by Mult 2 and Mult 3. The Figure then shows the pairing of the two DFAs (for clarity
the states carry labels x, y instead of [x, y]), and three DFAs recognizing Mult 2∩Mult 3, Mult 2∪
Mult 3, and Mult 2 \Mult 3, respectively.

3 4
aa

a

5

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a a a a a
2, 51, 3 2, 4 1, 5 2, 3 1, 4

a

a

a

a

a

a

21

Figure 4.1: Two DFAs, their pairing, and DFAs for the intersection, union, and difference of their
languages.

Example 4.3 The tour of conversions of Chapter 2 started with a DFA for the language of all
words over {a, b} containing an even number of a’s and an even number of b’s. This language is
the intersection of the language of all words containing an even number of a’s, and the language of
all words containing an even number of b’s. Figure 4.2 shows DFAs for these two languages, and
the DFA for their intersection.

We can now formulate a generic algorithm that, given two DFAs recognizing languages L1, L2
and a binary boolean operation, returns a DFA recognizing the result of “applying” the boolean
operation to L1, L2. First we formally define what this means. Given an alphabet Σ and a binary

4.1. IMPLEMENTATION ON DFAS 59

a

a

a

a

b b

bb

a

a

bb

1 2 3 4b

b

a a

1, 3 2, 3

2, 41, 4

Figure 4.2: Two DFAs and a DFA for their intersection.

boolean operator � : {true, false} × {true, false} → {true, false}, we lift � to a function �̂ : 2Σ∗ ×

2Σ∗ → 2Σ∗ on languages as follows

L1�̂L2 = {w ∈ Σ∗ | (w ∈ L1) � (w ∈ L2)}

That is, in order to decide if w belongs to L1�̂L2, we first evaluate (w ∈ L1) and (w ∈ L2) to true
of false, and then apply �̂ to the results. For instance we have L1 ∩ L2 = L1∧L2. The generic
algorithm, parameterized by �, looks as follows:

BinOp[�](A1, A2)
Input: DFAs A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: DFA A = (Q,Σ, δ, q0, F) with L(A) = L(A1) �̂ L(A2)

1 Q, δ, F ← ∅
2 q0 ← [q01, q02]
3 W ← {q0}

4 while W , ∅ do
5 pick [q1, q2] from W
6 add [q1, q2] to Q
7 if (q1 ∈ F1) � (q2 ∈ F2) then add [q1, q2] to F
8 for all a ∈ Σ do
9 q′1 ← δ1(q1, a); q′2 ← δ2(q2, a)

10 if [q′1, q
′
2] < Q then add [q′1, q

′
2] to W

11 add ([q1, q2], a, [q′1, q
′
2]) to δ

Popular choices of boolean language operations are summarized in the left column below, while
the right column shows the corresponding boolean operation needed to instantiate BinOp[�].

60 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Language operation b1 � b2

Union b1 ∨ b2
Intersection b1 ∧ b2
Set difference (L1 \ L2) b1 ∧ ¬b2
Symmetric difference (L1 \ L2 ∪ L2 \ L1) b1 ⇔ ¬b2

The output of BinOp is a DFA with O(|Q1| · |Q2|), states, regardless of the boolean operation
being implemented. To show that the bound is reachable, let Σ = {a}, and for every n ≥ 1 let Multn

denote the language of words whose length is a multiple of n. As in Figure 4.2, the minimal DFA
recognizing Ln is a cycle of n states, with the initial state being also the only final state. For any
two relatively prime numbers n1 and n2, we have Mult n1 ∩Mult n2 = Mult (n1 · n2). Therefore,
any DFA for Mult (n1 · n2) has at least n1 · n2 states. In fact, if we denote the minimal DFA for
Mult k by Ak, then BinOp[∧](An, Am) = An·m.

Notice however, that in general minimality is not preserved: the product of two minimal DFAs
may not be minimal. In particular, given any regular language L, the minimal DFA for L ∩ L has
one state, but the result of the product construction is a DFA with the same number of states as the
minimal DFA for L.

4.1.4 Emptiness.

A DFA accepts the empty language if and only if it has no final states (recall our normal form,
where all states must be reachable!).

Empty(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: true if L(A) = ∅, false otherwise

1 return F = ∅

The runtime depends on the implementation. If we keep a boolean indicating whether the DFA
has some final state, then the complexity of Empty() is O(1). If checking F = ∅ requires a linear
scan over Q, then the complexity is O(|Q|).

4.1.5 Universality.

A DFA accepts Σ∗ iff all its states are final, again an algorithm with complexity O(1) given normal
form, and O(|Q|) otherwise.

UnivDFA(A)
Input: DFA A = (Q,Σ, δ, q0, F)
Output: true if L(A) = Σ∗, false otherwise

1 return F = Q

4.2. IMPLEMENTATION ON NFAS 61

4.1.6 Inclusion.

Given two regular languages L1, L2, the following lemma characterizes when L1 ⊆ L2 holds.

Lemma 4.4 Let A1 = (Q1,Σ, δ1, q01, F1) and A2 = (Q2,Σ, δ2, q02, F2) be DFAs. L(A1) ⊆ L(A2) if
and only if every state [q1, q2] of the pairing [A1, A2] satisfying q1 ∈ F1 also satisfies q2 ∈ F2.

Proof: Let L1 = L(A1) and L2 = L(A1). We have L1 * L2 iff L1 \ L2 , ∅ iff at least one state
[q1, q2] of the DFA for L1 \ L2 is final iff q1 ∈ F1 and q2 < F2.

The condition of the lemma can be checked by slightly modifying BinOp. The resulting algorithm
checks inclusion on the fly:

InclDFA(A1, A2)
Input: DFAs A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: true if L(A1) ⊆ L(A2), false otherwise

1 Q← ∅;
2 W ← {[q01, q02]}
3 while W , ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if (q1 ∈ F1) and (q2 < F2) then return false
7 for all a ∈ Σ do
8 q′1 ← δ1(q1, a); q′2 ← δ2(q2, a)
9 if [q′1, q

′
2] < Q then add [q′1, q

′
2] to W

10 return true

4.1.7 Equality.

For equality, just observe that L(A1) = L(A2) holds if and only if the symmetric difference of L(A1)
and L(A2) is empty. The algorithm is obtained by replacing Line 7 of IncDFA(A1, A2) by

if ((q1 ∈ F1) and q2 < F2)) or ((q1 < F1) and (q2 ∈ F2)) then return false .

4.2 Implementation on NFAs

For NFAs we make the same assumptions on the complexity of basic operations as for DFAs.
For DFAs, however, we had the assumption that, given a state q and a letter a ∈ Σ, we can find
in constant time the unique state δ(q, a). This assumption no longer makes sense for NFA, since
δ(q, a) is a set.

62 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

4.2.1 Membership.

Membership testing is slightly more involved for NFAs than for DFAs. An NFA may have many
runs on the same word, and examining all of them one after the other in order to see if at least one
is accepting is a bad idea: the number of runs may be exponential in the length of the word. The
algorithm below does better. For each prefix of the word it computes the set of states in which the
automaton may be after having read the prefix.

MemNFA[A](w)
Input: NFA A = (Q,Σ, δ, q0, F), word w ∈ Σ∗,
Output: true if w ∈ L(A), false otherwise

1 W ← {q0};
2 while w , ε do
3 U ← ∅
4 for all q ∈ W do
5 add δ(q, head(w)) to U
6 W ← U
7 w← tail(w)
8 return (W ∩ F , ∅)

Example 4.5 Consider the NFA of Figure 4.3, and the word w = aaabba. The successive values
of W, that is, the sets of states A can reach after reading the prefixes of w, are shown on the right.
Since the final set contains final states, the algorithm returns true.

1

2

3

4

a

b

a
a, b

b

a, b

a

a
b

Prefix read W

ε {1}
a {2}
aa {2, 3}
aaa {1, 2, 3}
aaab {2, 3, 4}
aaabb {2, 3, 4}
aaabba {1, 2, 3, 4}

Figure 4.3: An NFA A and the run of Mem[A](aaabba) .

For the complexity, observe first that the while loop is executed |w| times. The for loop is exe-
cuted at most |Q| times. Each execution takes at most time O(|Q|), because δ(q, head(w)) contains
at most |Q| states. So the overall runtime is O(|w| · |Q|2).

4.2. IMPLEMENTATION ON NFAS 63

4.2.2 Complement.

Recall that an NFA A may have multiple runs on a word w, and it accepts w if at least one is
accepting. In particular, an NFA can accept w because of an accepting run ρ1, but have another
non-accepting run ρ2 on w. It follows that the complementation operation for DFAs cannot be
extended to NFAs: after exchanging final and non-final states the run ρ1 becomes non-accepting,
but ρ2 becomes accepting. So the new NFA still accepts w (at least ρ2 accepts), and so it does not
recognize the complement of L(A).

For this reason, complementation for NFAs is carried out by converting to a DFA, and comple-
menting the result.

CompNFA(A)
Input: NFA A,
Output: DFA A with L(A) = L(A)

1 A← CompDFA (NFAtoDFA(A))

Since making the NFA deterministic may cause an exponential blow-up in the number of states,
the number of states of A may be O(2|Q|).

4.2.3 Union and intersection.

On NFAs it is no longer possible to uniformly implement binary boolean operations. The pairing
operation can be defined exactly as in Definition 4.1. The runs of a pairing [A1, A2] of NFAs on a
given word are defined as for NFAs. The difference with respect to the DFA case is that the pairing
may have multiple runs or no run at all on a word. But we still have that

q01
a1
−−−→ q11

a2
−−−→ q21 . . . q(n−1)1

an
−−−→ qn1

q02
a1
−−−→ q12

a2
−−−→ q22 . . . q(n−1)2

an
−−−→ qn2

are runs of A1 and A2 on w if and only if[
q01
q02

]
a1
−−−→

[
q11
q12

]
a2
−−−→

[
q21
q22

]
. . .

[
q(n−1)1
q(n−1)2

]
an
−−−→

[
qn1
qn2

]
is a run of [A1, A2] on w.

Let us now discuss separately the cases of intersection, union, and set difference.

Intersection. Let [q1, q2] be a final state of [A1, A2] if q1 is a final state of A1 and q2 is a final
state of q2. Then it is still the case that [A1, A2] has an accepting run on w if and only if A1 has an
accepting run on w and A2 has an accepting run on w. So, with this choice of final states, [A1, A2]
recognizes L(A1) ∩ L(A2). So we get the following algorithm:

64 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

IntersNFA(A1, A2)
Input: NFA A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: NFA A1 ∩ A2 = (Q,Σ, δ, q0, F) with L(A1 ∩ A2) = L(A1) ∩ L(A2)

1 Q, δ, F ← ∅
2 q0 ← [q01, q02]
3 W ← { [q01, q02] }
4 while W , ∅ do
5 pick [q1, q2] from W
6 add [q1, q2] to Q
7 if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F
8 for all a ∈ Σ do
9 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ2(q2, a) do

10 if [q′1, q
′
2] < Q then add [q′1, q

′
2] to W

11 add ([q1, q2], a, [q′1, q
′
2]) to δ

Notice that we overload the symbol ∩, and denote the output by A1∩A2. The automaton A1∩A2 is
often called the product of A1 and A2. It is easy to see that, as operation on NFAs, ∩ is associative
and commutative in the following sense:

L((A1 ∩ A2) ∩ A3) = L(A1) ∩ L(A2) ∩ L(A3) = L(A1 ∩ (A2 ∩ A3))
L(A1 ∩ A2) = L(A1) ∩ L(A2) = L(A2 ∩ A1)

For the complexity, observe that in the worst case the algorithm must examine all pairs [t1, t2]
of transitions of δ1 × δ2, but every pair is examined at most once. So the runtime is O(|δ1||δ2|).

Example 4.6 Consider the two NFAs of Figure 4.4 over the alphabet {a, b}. The first one recog-
nizes the words containing at least two blocks with two consecutive a’s each, the second one those
containing at least one block. The result of applying IntersNFA() is the NFA of Figure 3.6 in page
47. Observe that the NFA has 15 states, i.e., all pairs of states are reachable.

Observe that in this example the intersection of the languages recognized by the two NFAs
is equal to the language of the first NFA. So there is an NFA with 5 states that recognizes the
intersection, which means that the output of IntersNFA() is far from optimal in this case. Even after
applying the reduction algorithm for NFAs we only obtain the 10-state automaton of Figure 3.7.

Union. The argumentation for intersection still holds if we replace and by or, and so an algorithm
obtained from IntersNFA() by substituting or for and correctly computes a NFA for L(A1)∪ L(A2).
However, there is an algorithm that produces a smaller NFA. Observe first that a NFA-ε for L(A1)∪
L(A2) can be constructed by putting A1 and A2 “side by side”, and adding a new initial state q0,
together with ε-transitions from q0 to q01 and q02. To get an NFA, we then apply the algorithm for
removing ε-transitions.

4.2. IMPLEMENTATION ON NFAS 65

a, b

a a a a

a, ba, b

a a

a, ba, b

Figure 4.4: Two NFAs

The algorithm below directly construct the final result, with the assumption that q0 is a fresh
state, not belonging to Q1 or Q2. Removing the ε-transitions may make the old initial states q01, q02
unreachable from the new initial state q0, and in this case we remove them. Notice that the states
become unreachable if and only if they had no incoming transitions in A1 and A2, respectively. We
denote by δ−1

i (q0i) the set of states q such that (q, a, q0i) for some a ∈ Σ.

UnionNFA(A1, A2)
Input: NFA A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: NFA A1 ∪ A2 with L(A1 ∪ A2) = L(A1) ∪ L(A2)

1 Q← Q1 ∪ Q2 ∪ {q0}

2 δ← δ1 ∪ δ2

3 F ← F1 ∪ F2

4 for all i = 1, 2 do
5 if q0i ∈ Fi then add q0 to F
6 for all (q0i, a, q) ∈ δi do
7 add (q0, a, q) to δ
8 if δ−1

i (q0i) = ∅ then
9 remove q0i from Q

10 for all a ∈ Σ, q ∈ δi(q0i, a) do
11 remove (q0i, a, q) from δi

12 return (Q,Σ, δ, q0, F)

Figure 4.5 is a graphical representation of how the algorithm works (up to removal of the old initial
states). If emptiness of δ−1

i (q0i) can be checked in constant time, then the complexity is O(m1 +m2),
where mi is the number of transitions of Ai starting at q0i.

Set difference. The generalization of the procedure for DFAs fails. Let [q1, q2] be a final state of
[A1, A2] if q1 is a final state of A1 and q2 is not a final state of q2. Then [A1, A2] has an accepting

66 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

a

a

b

b
a a

b

a

b

aa

a

b

a

b

{

Figure 4.5: Union for NFAs

run on w if and only if A1 has an accepting run on w and A2 has a non-accepting run on w. But “A2
has a non-accepting run on w” is no longer equivalent to “A2 has no accepting run on w”: this only
holds in the DFA case. An algorithm producing an NFA A1 \ A2 recognizing L(A1) \ L(A2) can be
obtained from the algorithms for complement and intersection through the equality L(A1)\L(A2) =

L(A1) ∩ L(A2).

4.2.4 Emptiness and Universality.

Emptiness for NFAs is decided using the same algorithm as for DFAs: just check if the NFA has at
least one final state.

Universality requires a new algorithm. Since an NFA may have multiple runs on a word, an
NFA may be universal even if some states are non-final: for every word having a run that leads to a
non-final state there may be another run leading to a final state. An example is the NFA of Figure
4.3, which, as we shall show in this section, is universal.

A language L is universal if and only if L is empty, and so universality of an NFA A can be
checked by applying the emptiness test to A. Since complementation, however, involves a worst-
case exponential blowup in the size of A, the algorithm requires exponential time and space.

We show that the universality problem is PSPACE-complete. That is, the superpolynomial
blowup cannot be avoided unless P = PS PACE,which is unlikely.

Theorem 4.7 The universality problem for NFAs is PSPACE-complete

Proof: We only sketch the proof. To prove that the problem is in PSPACE, we show that it belongs
to NPSPACE and apply Savitch’s theorem. The polynomial-space nondeterministic algorithm for
universality looks as follows. Given an NFA A = (Q,Σ, δ, q0, F), the algorithm guesses a run of
B = NFAtoDFA(A) leading from {q0} to a non-final state, i.e., to a set of states of A containing no

4.2. IMPLEMENTATION ON NFAS 67

final state (if such a run exists). The algorithm only does not store the whole run, only the current
state, and so it only needs linear space in the size of A.

We prove PSPACE-hardness by reduction from the acceptance problem for linearly bounded
automata. A linearly bounded automaton is a deterministic Turing machine that always halts and
only uses the part of the tape containing the input. A configuration of the Turing machine on an
input of length k is coded as a word of length k. The run of the machine on an input can be encoded
as a word c0#c1 . . . #cn, where the ci’s are the encodings of the configurations.

Let Σ be the alphabet used to encode the run of the machine. Given an input x, M accepts if
there exists a word w of Σ∗ satisfying the following properties:

(a) w has the form c0#c1 . . . #cn, where the ci’s are configurations;

(b) c0 is the initial configuration;

(c) cn is an accepting configuration; and

(d) for every 0 ≤ i ≤ n − 1: ci+1 is the successor configuration of ci according to the transition
relation of M.

The reduction shows how to construct in polynomial time, given a linearly bounded automaton
M and an input x, an NFA A(M, x) accepting all the words of Σ∗ that do not satisfy at least one of
the conditions (a)-(d) above. We then have

• If M accepts x, then there is a word w(M, x) encoding the accepting run of M on x, and so
L(A(M, x)) = Σ∗ \ {w(M, x)}.

• If M rejects x, then no word encodes an accepting run of M on x, and so L(A(M, x)) = Σ∗.

So M accepts x if and only if L(A(M, x)) = Σ∗, and we are done.

A Subsumption Test. We show that it is not necessary to completely construct A. First, the
universality check for DFA only examines the states of the DFA, not the transitions. So instead
of NFAtoDFA(A) we can apply a modified version that only stores the states of A, but not its
transitions. Second, it is not necessary to store all states.

Definition 4.8 Let A be a NFA, and let B = NFAtoDFA(A). A state Q′ of B is minimal if no other
state Q′′ satisfies Q′′ ⊂ Q′.

Proposition 4.9 Let A be a NFA, and let B = NFAtoDFA(A). A is universal iff every minimal state
of B is final.

Proof: Since A and B recognize the same language, A is universal iff B is universal. So A is
universal iff every state of B is final. But a state of B is final iff it contains some final state of A,
and so every state of B is final iff every minimal state of B is final.

68 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Example 4.10 Figure 4.6 shows a NFA on the left, and the equivalent DFA obtained through the
application of NFAtoDFA() on the right. Since all states of the DFA are final, the NFA is universal.
Only the states {1}, {2}, and {3, 4} (shaded in the picture), are minimal.

b

a

1

3

4

2, 3, 4, 12, 3, 4

2, 3, 12, 3

a

b

a
a, b

b

a, b

a

a
b

2

b

b

a

b

a

a

b

a
b

b

a

b

b

a

a

a

a

a

1, 3, 4

1

3, 42

Figure 4.6: An NFA, and the result of converting it into a DFA, with the minimal states shaded.

Proposition 4.9 shows that it suffices to construct and store the minimal states of B. Algorithm
UnivNFA(A) below constructs the states of B as in NFAtoDFA(A), but introduces at line 8 a sub-
sumption test: it checks if some state Q′′ ⊆ δ(Q′, a) has already been constructed. In this case either
δ(Q′, a) has already been constructed (case Q′′ = δ(Q′, a)) or is non-minimal (case Q′′ ⊂ δ(Q′, a)).
In both cases, the state is not added to the worklist.

UnivNFA(A)
Input: NFA A = (Q,Σ, δ, q0, F)
Output: true if L(A) = Σ∗, false otherwise

1 Q← ∅;
2 W← { {q0} }

3 while W , ∅ do
4 pick Q′ from W

5 if Q′ ∩ F = ∅ then return false
6 add Q′ to Q

7 for all a ∈ Σ do
8 if W ∪ Q contains no Q′′ ⊆ δ(Q′, a) then add δ(Q′, a) to W

9 return true

4.2. IMPLEMENTATION ON NFAS 69

The next proposition shows that UnivNFA(A) constructs all minimal states of B. If UnivNFA(A)
would first generate all states of A and then would remove all non-minimal states, the proof would
be trivial. But the algorithm removes non-minimal states whenever they appear, and we must show
that this does not prevent the future generation of other minimal states.

Proposition 4.11 Let A = (Q,Σ, δ, q0, F) be a NFA, and let B = NFAtoDFA(A). After termination
of UnivNFA(A), the set Q contains all minimal states of B.

Proof: Let Qt be the value of Q after termination of UnivNFA(A). We show that no path of B leads
from a state of Qt to a minimal state of B not in Qt. Since {q0} ∈ Qt and all states of B are reachable
from {q0}, it follows that every minimal state of B belongs to Qt.

Assume there is a path π = Q1
a1
−−−→Q2 . . .Qn−1

an
−−−→Qn of B such that Q1 ∈ Qt, Qn < Qt, and

Qn is minimal. Assume further that π is as short as possible. This implies Q2 < Qt (otherwise
Q2 . . .Qn−1

an
−−−→Qn is a shorter path satisfying the same properties), and so Q2 is never added to

the worklist. On the other hand, since Q1 ∈ Qt, the state Q1 is eventually added to and picked
from the worklist. When Q1 is processed at line 7 the algorithm considers Q2 = δ(Q1, a1), but
does not add it to the worklist in line 8. So at that moment either the worklist or Q contain a state
Q′2 ⊂ Q2. This state is eventually added to Q (if it is not already there), and so Q′2 ∈ Qt. So B

has a path π′ = Q′2
a2
−−−→Q′3 . . .Q

′
n−1

an
−−−→Q′n for some states Q′3, . . . ,Q

′
n. Since Q′2 ⊂ Q2 we have

Q′2 ⊂ Q2,Q′3 ⊆ Q3, . . . ,Q′n ⊆ Qn (notice that we may have Q′3 = Q3). By the minimality of Qn, we
get Q′n = Qn, and so π′ leads from Q′2, which belongs to Qt, to Qn, which is minimal and not in to
Qt. This contradicts the assumption that π is as short as possible.

Notice that the complexity of the subsumption test may be considerable, because the new set
δ(Q′, a) must be compared with every set in W ∪ Q. Good use of data structures (hash tables or
radix trees) is advisable.

4.2.5 Inclusion and Equality.

Recall Lemma 4.4: given two DFAs A1, A2, the inclusion L(A1) ⊆ L(A2) holds if and only if every
state [q1, q2] of [A1, A2] satisfying q1 ∈ F1 also satisfies q2 ∈ F2. This lemma no longer holds for
NFAs. To see why, let A be any NFA having two runs for some word w, one of them leading to a
final state q1, the other to a non-final state q2. We have L(A) ⊆ L(A), but the pairing [A, A] has a
run on w leading to [q1, q2].

To obtain an algorithm for checking inclusion, we observe that L1 ⊆ L2 holds if and only if
L1 ∩ L2 = ∅. This condition can be checked using the constructions for intersection and for the
emptiness check. However, as in the case of universality, we can apply a subsumption check.

Definition 4.12 Let A1, A2 be NFAs, and let B2 = NFAtoDFA(A2). A state [q1,Q2] of [A1, B2] is
minimal if no other state [q′1,Q

′
2] satisfies q′1 = q1 and Q′2 ⊂ Q′.

70 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Proposition 4.13 Let A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2) be NFAs, and let B2 =

NFAtoDFA(A2). L(A1) ⊆ L(A2) iff every minimal state [q1,Q2] of [A1, B2] satisfying q1 ∈ F1 also
satisfies Q2 ∩ F2 , ∅.

Proof: Since A2 and B2 recognize the same language, L(A1) ⊆ L(A2) iff L(A1) ∩ L(A2) = ∅ iff
L(A1) ∩ L(B2) = ∅ iff [A1, B2] has a state [q1,Q2] such that q1 ∈ F1 and Q2 ∩ F2 = ∅. But [A1, B2]
has some state satisfying this condition iff it has some minimal state satisfying it.

So we get the following algorithm to check inclusion:

InclNFA(A1, A2)
Input: NFAs A1 = (Q1,Σ, δ1, q01, F1),
Output: true if L(A1) ⊆ L(A2), false otherwise

1 Q← ∅;
2 W ← { [q01, {q02}] }
3 while W , ∅ do
4 pick [q1,Q2] from W
5 if (q1 ∈ F1) and (Q2 ∩ F2 = ∅) then return false
6 add [q1,Q2] to Q
7 for all a ∈ Σ, q′1 ∈ δ1(q1, a) do
8 Q′2 ← δ2(Q2, a)
9 if W∪Q contains no [q′′1 ,Q

′′
2] s.t. q′′1 = q′1 and Q′′2 ⊆ Q′2 then

10 add [q′1,Q
′
2] to W

11 return true

Notice that in unfavorable cases the overhead of the subsumption test may not be compensated
by a reduction in the number of states. Without the test, the number of pairs that can be added to
the worklist is at most |Q1|2|Q2 |. For each of them we have to execute the for loop O(|Q1|) times,
each of them taking O(|Q2|

2) time. So the algorithm runs in |Q1|
22O(|Q2 |) time and space.

As was the case for universality, the inclusion problem is PSPACE-complete, and so the expo-
nential cannot be avoided unless P = PS PACE.

Proposition 4.14 The inclusion problem for NFAs is PSPACE-complete

Proof: We first prove membership in PSPACE. Since PSPACE=co-PSPACE=NPSPACE, it suf-
fices to give a polynomial space nondeterministic algorithm that decides non-inclusion. Given
NFAs A1 and A2, the algorithm guesses a word w ∈ L(A1) \ L(A2) letter by letter, maintaining the
sets Q′1, Q′2 of states that A1 and A2 can reached by the word guessed so far. When the guessing
ends, the algorithm checks that Q′1 contains some final state of A1, but Q′2 does not.

Hardness follows from the fact that A is universal iff Σ ⊆ L(A), and so the universality problem,
which is PSPACE-complete, is a subproblem of the inclusion problem.

4.2. IMPLEMENTATION ON NFAS 71

There is however an important case with polynomial complexity, namely when A2 is a DFA.
The number the number of pairs that can be added to the worklist is then at most |Q1||Q2|. The
for loop is still executed O(|Q1|] times, but each of them takes O(1) time. So the algorithm runs in
O(|Q1|

2|Q2|) time and space.

Equality. Equality of two languages is decided by checking that each of them is included in the
other. The equality problem is again PSPACE-complete. The only point worth observing is that,
unlike the inclusion case, we do not get a polynomial algorithm when A2 is a DFA.

Exercises

Exercise 34 Consider the following languages over the alphabet Σ = {a, b}:

• L1 is the set of all words where between any two occurrences of b’s there is at least one a.

• L2 is the set of all words where every non-empty maximal sequence of consecutive a’s has
odd length.

• L3 is the set of all words where a occurs only at even positions.

• L4 is the set of all words where a occurs only at odd positions.

• L5 is the set of all words of odd length.

• L6 is the set of all words with an even number of a’s.

Remark : For this exercise we assume that the first letter of a nonempty word is at position 1, e.g.,
a ∈ L4, a < L3.

Construct an NFA for the language

(L1 \ L2) ∪ (L34L4) ∩ L5 ∩ L6

where L4L′ denotes the symmetric difference of L and L′, while sticking to the following rules:

• Start from NFAs for L1, . . . , L6.

• Any further automaton must be constructed from already existing automata via an algorithm
introduced in the chapter, e.g. Comp, BinOp, UnionNFA, NFAtoDFA, etc.

Try to find an order on the construction steps such that the intermediate automata and the final
result have as few states as possible.

Exercise 35 Prove or disprove: the minimal DFAs recognizing a language and its complement
have the same number of states.

72 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Exercise 36 Let r be the regular expression ((0 + 1)(0 + 1))∗ over Σ = {0, 1}

• Give a regular expression r′ such that L(r′) = L(r).

• Construct a regular expression r′ such that L(r′) = L(r) using the algorithms of this and the
preceding chapters.

Exercise 37 Let A = (Q,Σ, δ, q0, F) be an NFA. Show that with the universal accepting condition
of Exercise 9 the automaton A′ = (Q,Σ, δ, q0,Q \ F) recognizes the complement of the language
recognized by A.

Exercise 38 Recall the alternating automata introduced in Exercise ??.

• Let A = (Q1,Q2,Σ, δ, q0, F) be an alternating automaton, where Q1 and Q2 are the sets of
existential and universal states, respectively, and δ : (Q1 ∪ Q2) × Σ → P(Q1 ∪ Q2). Show
that the alternating automaton A = (Q2,Q1,Σ, δ, q0,Q \ F) recognizes the complement of
the language recognized by A. I.e., show that alternating automata can be complemented by
exchanging existential and universal states, and final and non-final states.

• Give linear time algorithms that take two alternating automata recognizing languages L1, L2
and deliver a third alternating automaton recognizing L1 ∪ L2 and L1 ∩ L2.
Hint: The algorithms are very similar to UnionDFA.

• Show that the emptiness problem for alternating automata is PSPACE-complete.
Hint: Using Exercise 41, prove that the emptiness problem for alternating automata is
PSPACE-complete.

Exercise 39 Find a family {An}
∞
n=1 of NFAs with O(n) states such that every NFA recognizing the

complement of L(An) has at least 2n states.

Hint: See Exercise 10.

Exercise 40 Consider again the regular expressions (1 + 10)∗ and 1∗(101∗)∗ of Exercise 2.

• Construct NFAs for the expressions and use InclNFA to check if their languages are equal.

• Construct DFAs for the expressions and use InclDFA to check if their languages are equal.

• Construct minimal DFAs for the expressions and check whether they are isomorphic.

4.2. IMPLEMENTATION ON NFAS 73

Exercise 41

• Prove that the following problem is PSPACE-complete:

Given: DFAs A1, . . . , An over the same alphabet Σ.
Decide: Is

⋂n
i=1 L(Ai) = ∅?

Hint: Reduction from the acceptance problem for deterministic, linearly bounded automata.

• Prove that if Σ is a 1-letter alphabet then the problem is “only” NP-complete.
Hint: reduction from 3-SAT.

• Prove that if the DFAs are acyclic (but the alphabet arbitrary) then the problem is again
NP-complete.

Exercise 42 Consider the variant of IntersNFA in which line 7

if (q1 ∈ F1) and (q2 ∈ F2) then add [q1, q2] to F

is replaced by

if (q1 ∈ F1) or (q2 ∈ F2) then add [q1, q2] to F

Let A1⊗A2 be the result of applying this variant to two NFAs A1, A2. We call A1⊗A2 the or-product
of A1 and A2.

An NFA A = (Q,Σ, δ, q0, F) is complete if δ(q, a) , ∅ for every q ∈ Q and every a ∈ Σ.

• Prove: If A1 and A2 are complete NFAs, then L(A1 ⊗ A2) = L(A1) ∪ L(L2).

• Give NFAs A1, A2 such that L(A1 ⊗ A2) = L(A1) ∪ L(L2) but neither A1 nor A2 are complete.

Exercise 43 Given a word w = a1a2 . . . an over an alphabet Σ, we define the even part of w as the
word a2a4 . . . abn/2c. Given an NFA for a language L, construct an NFA recognizing the even parts
of the words of L.

Exercise 44 Given regular languages L1, L2 over an alphabet Σ, the left quotient of L1 by L2 is
the language

L2�L1 := {v ∈ Σ∗ | ∃u ∈ L2 : uv ∈ L1}

(Note that L2�L1 is different from the set difference L2 \ L1.)

1. Given NFA A1, A2, construct an NFA A such that L(A) = L(A1)�L(A2).

2. Do the same for the right quotient of L1 by L2, defined as L1�L2 := {u ∈ Σ∗ | ∃v ∈ L2 : uv ∈
L1}.

3. Determine the inclusion relations between the following languages: L1, (L1�L2)L2, and
(L1L2)�L2

74 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Exercise 45 We have shown in Exercise 31 that every upward-closed language is regular. A
language L ⊆ Σ∗ is downward-closed if for every two words w, v ∈ Σ∗, if w ∈ L and v � w, then
v ∈ l.

• Prove that every downward-closed language is regular.

• Give an algorithm that transforms a regular expression for a language into a regular expres-
sion for its downward-closure.

Exercise 46 (Abdulla, Bouajjani, and Jonsson) An atomic expression over an alphabet Σ∗ is an
expression of the form ∅, ε, (a + ε) or (a1 + . . . + an)∗, where a, a1, . . . , an ∈ Σ. A product is a
concatenation e1 e2 . . . en of atomic expressions. A simple regular expression is a sum p1 + . . .+ pn

of products.

• Prove that the language of a simple regular expression is downward-closed.

• Prove that every downward-closed language can be represented by a simple regular expres-
sion.
Hint: since every downward-closed language is regular, it is represented by a regular expres-
sion. Prove that this expression is equivalent to a simple regular expression.

Exercise 47 Let Li = {w ∈ {a}∗ | the length of w is divisible by i }.

1. Construct an NFA for L := L4 ∪ L6 with at most 11 states.

2. Construct the minimal DFA for L.

Exercise 48

• Modify algorithm Empty so that when the DFA or NFA is nonempty it returns a witness, i.e.,
a word accepted by the automaton.

• Same for a shortest witness.

Exercise 49 Check by means of UnivNFA whether the following NFA is universal.

4.2. IMPLEMENTATION ON NFAS 75

q1

q2

q3start

q5

q4

b

a

b

a

a, ba, b

a

a, b

Exercise 50 Let Σ be an alphabet, and define the shuffle operator ‖ : Σ∗ × Σ∗ → 2Σ∗ as follows,
where a, b ∈ Σ and w, v ∈ Σ∗:

w ‖ ε = {w}

ε ‖ w = {w}

aw ‖ bv = {a} (w ‖ bv) ∪ {b} (aw ‖ v) ∪

{bw | w ∈ au||v}

For example we have:

b||d = {bd, db}, ab||d = {abd, adb, dab}, ab||cd = {cabd, acbd, abcd, cadb, acdb, cdab}.

Given DFAs recognizing languages L1, L2 ⊆ Σ∗ construct an NFA recognizing their shuffle

L1 ‖ L2 :=
⋃

u∈L1,v∈L2

u ‖ v .

Exercise 51 Let Σ1,Σ2 be two alphabets. A homomorphism is a map h : Σ∗1 → Σ∗2 such that
h(ε) = ε and h(w1w2) = h(w1)h(w2) f oreveryw1,w2 ∈ Σ∗1. Observe that if Σ1 = {a1, . . . , an} then h
is completely determined by the values h(a1), . . . , h(an).

1. Let h : Σ∗1 → Σ∗2 be a homomorphism and let A be a NFA over Σ1. Describe how to constuct
a NFA for the language

h(L(A)) := {h(w) | w ∈ L(A)}.

2. Let h : Σ∗1 → Σ∗2 be a homomorphism and let A be a NFA over Σ2. Describe how to construct
a NFA for the language

h−1(L(A)) := {w ∈ Σ∗1 | h(w) ∈ L(A)}.

76 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

3. Recall that the language {0n1n | n ∈ IN} is not regular. Use the preceding results to show that
{(01k2)n3n | k, n ∈ IN} is also not regular.

Exercise 52 Given alphabets Σ and ∆, a substitution is a map f : Σ→ 2∆∗ assigning to each letter
a ∈ Σ a language La ⊆ ∆∗.A subsitution f can be canonically extended to a map 2Σ∗ → 2∆∗ by
defining f (ε) = ε, f (wa) = f (w) f (a), and f (L) =

⋃
w∈L f (w). Note that a homomorphism can be

seen as the special case of a substitution in which all La’s are singletons.
Let Σ = {Name, Tel, :, #}, let ∆ = {A, . . . ,Z, 0, 1, . . . , 9, :, #}, and let f be the substitution f

given by

f (Name) = (A + · · · + Z)∗

f (:) = {:}
f (Tel) = 0049(1 + . . . + 9)(0 + 1 + . . . + 9)10 + 00420(1 + . . . + 9)(0 + 1 + . . . + 9)8

f (#) = {#}

1. Draw a DFA recognizing L = Name:Tel(#Telephone)∗.

2. Sketch an NFA-reg recognizing f (L).

3. Give an algorithm that takes as input an NFA A, a substitution f , and for every a ∈ Σ an NFA
recognizing f (a), and returns an NFA recognizing f (L(A)).

Exercise 53 Given two NFAs A1 and A2, let B = NFAtoDFA(IntersNFA(A1, A2)) and C =

IntersDFA(NFAtoDFA(A1),NFAtoDFA(A2)). Show that B and C are isomorphic, and so in par-
ticular have the same number of states.
(A superficial analysis gives that for NFAs with n1 and n2 states B and C have O(2n1·n2) and
O(2n1+n2) states, respectively, wrongly suggesting that C might be more compact.)

Exercise 54 A DFA is synchronizing if there is a word w and a state q such that after reading w
from any state the DFA is always in state q.

1. Show that the following DFA is synchronizing.

4.2. IMPLEMENTATION ON NFAS 77

start

b

a b

a

a

b

a

b

2. Give an algorithm to decide if a given DFA is synchronizing.

3. Give a polynomial time algorithm to decide if a given DFA is synchronizing.

78 CHAPTER 4. OPERATIONS ON SETS: IMPLEMENTATIONS

Chapter 5

Operations on Relations:
Implementations

We show how to implement operations on relations over a (possibly infinite) universe U. Even
though we will encode the elements of U as words, when implementing relations it is convenient
to think of U as an abstract universe, and not as the set Σ∗ of words over some alphabet Σ. The
reason, as we shall see, is that for some operations we encode an element of X not by one word,
but by many, actually by infinitely many. In the case of operations on sets this is not necessary, and
one can safely identify the object and its encoding as word.

We are interested in a number of operations. A first group contains the operations we already
studied for sets, but lifted to relations. For instance,we consider the operation Membership((x, y),R)
that returns true if (x, y) ∈ R, and false otherwise, or Complement(R), that returns R = (X×X)\R.
Their implementations will be very similar to those of the language case. A second group contains
three fundamental operations proper to relations. Given R,R1,R2 ⊆ U × U:

Projection 1(R) : returns the set π1(R) = {x | ∃y (x, y) ∈ R}.
Projection 2(R) : returns the set π2(R) = {y | ∃x (x, y) ∈ R}.
Join(R1, R2) : returns R1 ◦ R2 = {(x, z) | ∃y (x, y) ∈ R1 ∧ (y, z) ∈ R2}

Finally, given X ⊆ U we are interested in two derived operations:

Post(X, R) : returns postR(X) = {y ∈ U | ∃x ∈ X : (x, y) ∈ R}.
Pre(X, R) : returns preR(X) = {y | ∃x ∈ X : (y, x) ∈ R}.

Observe that Post(X, R) = Projection 2(Join(IdX , R)), and Pre(X, R) = Projection 1(Join(R,
Idx)), where IdX = {(x, x) | x ∈ X}.

79

80 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

5.1 Encodings

We encode elements of U as words over an alphabet Σ. It is convenient to assume that Σ contains a
padding letter #, and that an element x is encoded not only by a word sx ∈ Σ∗, but by all the words
sx#n with n ≥ 0. That is, an element x has a shortest encoding sx, and other encodings are obtained
by appending to the shortest encoding an arbitrary number of padding letters. We assume that the
shortest encodings of two distinct elements are also distinct, and that for every x ∈ U the last letter
of sx is different from #. It follows that the sets of encodings of two distinct elements are disjoint.

The advantage is that for any two elements x, y there is a number n (in fact infinitely many)
such that both x and y have encodings of length n. We say that (wx,wy) encodes the pair (x, y)
if wx encodes x, wy encodes y, and wx,wy have the same length. Notice that if (wx,wy) encodes
(x, y), then so does (wx#k,wy#k) for every k ≥ 0. If sx, sy are the shortest encodings of x and y, and
|sx| ≤ |sy|, then the shortest encoding of (x, y) is (sx#|sy |−|sy |, sy).

Example 5.1 We encode the number 6 not only by its small end binary representation 011, but by
any word of L(0110∗). In this case we have Σ = {0, 1}with 0 as padding letter. Notice, however, that
taking 0 as padding letter requires to take the empty word as the shortest encoding of the number 0
(otherwise the last letter of the encoding of 0 is the padding letter).

In the rest of this chapter, we will use this particular encoding of natural numbers without
further notice. We call it the least significant bit first encoding and write lsbf(6) to denote the
language L(0110∗)

If we encode an element of U by more than one word, then we have to define when is an
element accepted or rejected by an automaton. Does it suffice that the automaton accepts(rejects)
some encoding, or does it have to accept (reject) all of them? Several definitions are possible,
leading to different implementations of the operations. We choose the following option:

Definition 5.2 Assume an encoding of the universe U over Σ∗ has been fixed. Let A be an NFA.

• A accepts x ∈ U if it accepts all encodings of x.

• A rejects x ∈ U if it accepts no encoding of x.

• A recognizes a set X ⊆ U if

L(A) = {w ∈ Σ∗ | w encodes some element of X} .

A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.

Notice that if A recognizes X ⊆ U then, as one would expect, A accepts every x ∈ X and rejects
every x < X. Observe further that with this definition a NFA may neither accept nor reject a given
x. An NFA is well-formed if it recognizes some set of objects, and ill-formed otherwise.

5.2. TRANSDUCERS AND REGULAR RELATIONS 81

5.2 Transducers and Regular Relations

We assume that an encoding of the universe U over the alphabet Σ has been fixed.

Definition 5.3 A transducer over Σ is an NFA over the alphabet Σ × Σ.

Transducers are also called Mealy machines. According to this definition a transducer accepts
sequences of pairs of letters, but it is convenient to look at it as a machine accepting pairs of words:

Definition 5.4 Let T be a transducer over Σ. Given words w1 = a1a2 . . . an and w2 = b1b2 . . . bn,
we say that T accepts the pair (w1,w2) if it accepts the word (a1, b1)...(an, bn) ∈ (Σ × Σ)∗.

In other words, we identify the sets⋃
i≥0

(Σi × Σi) and (Σ × Σ)∗ =
⋃
i≥0

(Σ × Σ)i .

We now define when a transducer accepts a pair (x, y) ∈ X × X, which allows us to define the
relation recognized by a transducer. The definition is completely analogous to Definition 5.2

Definition 5.5 Let T be a transducer.

• T accepts a pair (x, y) ∈ X × X if it accepts all encodings of (x, y).

• T rejects a pair (x, y) ∈ X × X if it accepts no encoding of (x, y).

• T recognizes a relation R ⊆ X × X if

L(T) = {(wx,wy) ∈ (Σ × Σ)∗ | (wx,wy) encodes some pair of R} .

A relation is regular if it is recognized by some transducer.

It is important to emphasize that not every transducer recognizes a relation, because it may rec-
ognize only some, but not all, the encodings of a pair (x, y). As for NFAs, we say a transducer if
well-formed if it recognizes some relation, and ill-formed otherwise.

Example 5.6 The Collatz function is the function f : N→ N defined as follows:

f (n) =

{
3n + 1 if n is odd
n/2 if n is even

Figure 5.1 shows a transducer that recognizes the relation {(n, f (n)) | n ∈ N} with lsbf encoding
and with Σ = {0, 1}. The elements of Σ×Σ are drawn as column vectors with two components. The
transducer accepts for instance the pair (7, 22) because it accepts the pairs (111000k, 011010k), that
is, it accepts [

1
0

] [
1
1

] [
1
1

] [
0
0

] [
0
1

] ([
0
0

])k

for every k ≥ 0, and we have lsbf(7) = L(1110∗) and lsbf(22) = L(011010∗).

82 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

1

2 3

4 5 6

[
1
0

] [
0
0

]
[
0
0

] [
0
1

]

[
1
1

][
1
0

]
[
1
1

]

[
0
0

]

[
1
1

][
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

Figure 5.1: A transducer for Collatz’s function.

Determinism A transducer is deterministic if it is a DFA. In particular, a state of a deterministic
transducer over the alphabet Σ×Σ has exactly |Σ|2 outgoing transitions. The transducer of Figure 5.1
is deterministic in this sense, when an appropriate sink state is added.

There is another possibility to define determinism of transducers, in which the letter (a, b)
is interpreted as “the transducer receives the input a and produces the output b”. In this view, a
transducer is called deterministic if for every state q and every letter a there is exactly one transition
of the form (q, (a, b), q′). Observe that these two definitions of determinism are not equivalent.

We do not give separate implementations of the operations for deterministic and nondetermin-
istic transducers. The new operations (projection and join) can only be reasonably implemented
on nondeterministic transducers, and so the deterministic case does not add anything new to the
discussion of Chapter 4.

5.3 Implementing Operations on Relations

In Chapter 4 we made two assumptions on the encoding of objects from the universe U as words:

• every word is the encoding of some object, and

• every object is encoded by exactly one word.

We have relaxed the second assumption, and allowed for multiple encodings (in fact, infinitely
many), of an object. Fortunately, as long as the first assumption still holds, the implementations
of the boolean operations remain correct, in the following sense: If the input automata are well
formed then the output automaton is also well-formed. Consider for instance the complementation
operation on DFAs. Since every word encodes some object, the set of all words can be partitioned in

5.3. IMPLEMENTING OPERATIONS ON RELATIONS 83

equivalence classes, each of them containing all the encodings of an object. If the input automaton
A is well-formed, then for every object x from the universe, A either accepts all the words in an
equivalence class, or none of them. The complement automaton then satisfies the same property,
but accepting a class iff the original automaton does not accept it.

Notice further that membership of an object x in a set represented by a well-formed automaton
can be checked by taking any encoding wx of x, and checking if the automaton accepts wx.

5.3.1 Projection

Given a transducer T recognizing a relation R ⊆ X × X, we construct an automaton over Σ recog-
nizing the set π1(R). The initial idea is very simple: loosely speaking, we go through all transitions,
and replace their labels (a, b) by a. This transformation yields a NFA, and this NFA has an accept-
ing run on a word a1 . . . an iff the transducer has an accepting run on some pair (w,w′). Formally,
this step is carried out in lines 1-4 of the following algorithm (line 5 is explained below):

Proj 1(T)
Input: transducer T = (Q,Σ × Σ, δ, q0, F)
Output: NFA A = (Q′,Σ, δ′, q′0, F

′) with L(A) = π1(L(T))

1 Q′ ← Q; q′0 ← q0; F′′ ← F
2 δ′ ← ∅;
3 for all (q, (a, b), q′) ∈ δ do
4 add (q, a, q′) to δ′

5 F′ ← PadClosure((Q′,Σ, δ′, q′0, F
′′), #)

However, this initial idea is not fully correct. Consider the relation R = {(1, 4)} over N. A
transducer T recognizing R recognizes the language

{(10n+2, 0010n) | n ≥ 0}

and so the NFA constructed after lines 1-4 recognizes {10n+2 | n ≥ 0}. However, it does not
recognize the number 1, because it does not accept all its encodings: the encodings 1 and 10 are
rejected.

This problem can be easily repaired. We introduce an auxiliary construction that “completes”
a given NFA: the padding closure of an NFA is another NFA A′ that accepts a word w if and only
if the first NFA accepts w#n for some n ≥ 0 and a padding symbol #. Formally, the padding closure
augments the set of final states and return a new such set. Here is the algorithm constructing the
padding closure:

84 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

PadClosure(A, #)
Input: NFA A = (Σ × Σ,Q, δ, q0, F)
Output: new set F′ of final states

1 W ← F; F′ ← ∅;
2 while W , ∅ do
3 pick q from W
4 add q to F′

5 for all (q′, #, q) ∈ δ do
6 if q′ < F′ then add q′ to W
7 return F′

Projection onto the second component is implemented analogously. The complexity of Proj i()
is clearly O(|δ| + |Q|), since every transition is examined at most twice, once in line 3, and possibly
a second time at line 5 of PadClosure().

Observe that projection does not preserve determinism, because two transitions leaving a state
and labeled by two different (pairs of) letters (a, b) and (a, c), become after projection two tran-
sitions labeled with the same letter a: In practice the projection of a transducer is hardly ever
deterministic. Since, typically, a sequence of operations manipulating transitions contains at least
one projection, deterministic transducers are relatively uninteresting.

Example 5.7 Figure 5.2 shows the NFA obtained by projecting the transducer for the Collatz func-
tion onto the first and second components. States 4 and 5 of the NFA at the top (first component)
are made final by PadClosure(), because they can both reach the final state 6 through a chain of 0s
(recall that 0 is the padding symbol in this case). The same happens to state 3 for the NFA at the
bottom (second component), which can reach the final state 2 with 0.
Recall that the transducer recognizes the relation R = {(n, f (n)) | n ∈ N}, where f denotes the
Collatz function. So we have π1(R) = {n | n ∈ N} = N and π2(R) = { f (n) | n ∈ N}, and a moment
of thought shows that π2(R) = N as well. So both NFAs should be universal, and the reader
can easily check that this is indeed the case. Observe that both projections are nondeterministic,
although the transducer is deterministic.

5.3.2 Join, Post, and Pre

We give an implementation of the Join operation, and then show how to modify it to obtain imple-
mentations of Pre and Post.

Given transducers T1,T2 recognizing relations R1 and R2, we construct a transducer T1 ◦ T2
recognizing R1◦R2. We first construct a transducer T with the following property: T accepts (w,w′)
iff there is a word w′′ such that T1 accepts (w,w′′) and T2 accepts (w′′,w′). The intuitive idea is to
slightly modify the product construction. Recall that the pairing [A1, A2] of two NFA A1, A2 has a
transition [q, r]

a
−−→[q′, r′] if and only if A1 has a transition q

a
−−→ r and A2 has a transition q′

a
−−→ r′.

Similarly, T1◦T2 has a transition [q, r]
(a,b)
−−−−→[q′, r′] if there is a letter c such that T1 has a transition

5.3. IMPLEMENTING OPERATIONS ON RELATIONS 85

1

2 3

4 5 6

0 1

0

1
0

1 0 0

1

1

1

0

0

1

2 3

4 5 6

0 1

1

0
0

0 0 1

0

1

1

0

1

Figure 5.2: Projections of the transducer for the Collatz function onto the first and second compo-
nents.

q
(a,c)
−−−−→ r and A2 has a transition q′

(c,b)
−−−−→ r′. Intuitively, T can output b on input a if there is a letter

c such that T1 can output c on input a, and T2 can output b on input c. The transducer T has a run

[
q01
q02

] a1
b1


−−−−→

[
q11
q12

] a2
b2


−−−−→

[
q21
q22

]
. . .

[
q(n−1)1
q(n−1)2

] an

bn


−−−−→

[
qn1
qn2

]

86 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

iff T1 and T2 have runs

q01

a1
c1


−−−−→ q11

a2
c2


−−−−→ q21 . . . q(n−1)1

an

cn


−−−−→ qn1

q02

c1
b1


−−−−→ q12

c2
b2


−−−−→ q22 . . . q(n−1)2

cn

bn


−−−−→ qn2

Formally, if T1 = (Q1,Σ × Σ, δ1, q01, F1) and T2 = (Q2,Σ × Σ, δ2, q02, F2), then T = (Q,Σ ×
Σ, δ, q0, F′) is the transducer generated by lines 1–9 of the algorithm below:

Join(T1,T2)
Input: transducers T1 = (Q1,Σ × Σ, δ1, q01, F1), T2 = (Q2,Σ ×

Σ, δ2, q02, F2)
Output: transducer T1 ◦ T2 = (Q,Σ × Σ, δ, q0, F)

1 Q, δ, F′ ← ∅; q0 ← [q01, q02]
2 W ← {[q01, q02]}
3 while W , ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if q1 ∈ F1 and q2 ∈ F2 then add [q1, q2] to F′

7 for all (q1, (a, c), q′1) ∈ δ1, (q2, (c, b), q′2) ∈ δ2 do
8 add ([q1, q2], (a, b), [q′1, q

′
2]) to δ

9 if [q′1, q
′
2] < Q then add [q′1, q

′
2] to W

10 F ← PadClosure((Q,Σ × Σδ, q0, F′), (#, #))

However, T is not yet the transducer we are looking for. The problem is similar to the one of
the projection operation. Consider the relations on numbers R1 = {(2, 4)} and R2 = {(4, 2)}. Then
T1 and T2 recognize the languages {(010n+1, 0010n) | n ≥ 0} and {(0010n, 010n+1) | n ≥ 0} of word
pairs. So T recognizes {(010n+1, 010n+1) | n ≥ 0}. But then, according to our definition, T does not
accept the pair (2, 2) ∈ N ×N, because it does not accept all its encodings: the encoding (01, 01)
is missing. So we add a padding closure again at line 10, this time using [#, #] as padding symbol.

The number of states of Join(T1,T2) is O(|Q1| · |Q2|), as for the standard product construction.

Example 5.8 Recall that the transducer of Figure 5.1, shown again at the top of Figure 5.3, rec-
ognizes the relation {(n, f (n)) | n ∈ N}, where f is the Collatz function. Let T be this transducer.
The bottom part of Figure 5.3 shows the transducer T ◦ T as computed by Join(T ,T). For example,
the transition leading from [2, 3] to [3, 2], labeled by (0, 0), is the result of “pairing” the transition
from 2 to 3 labeled by (0, 1), and the one from 3 to 2 labeled by (1, 0). Observe that T ◦ T is
not deterministic, because for instance [1, 1] is the source of two transitions labeled by (0, 0), even

5.3. IMPLEMENTING OPERATIONS ON RELATIONS 87

1

2 3

4 5 6

[
1
0

] [
0
0

]
[
0
0

] [
0
1

]

[
1
1

][
1
0

]
[
1
1

]

[
0
0

]

[
1
1

][
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

1, 1

2, 5 2, 6

[
0
1

] [
0
0

]

6, 2
[
0
0

][
0
0

]

[
1
0

]

[
0
1

][
1
1

] [
0
1

]

6, 3

4, 2 5, 3

[
0
1

]

[
1
1

]

[
1
0

]

4, 3 5, 2

[
1
0

]3, 4 3, 5

[
1
1

]

2, 3 3, 3[
0
0

]
[
0
1

]

[
1
0

]

[
0
1

] [
1
1

]

2, 2 3, 2

[
1
1

]
[
1
0

]
[
0
1

]

[
1
1

]
[
1
0

]

[
0
0

] [
0
0

]

[
0
0

]

[
0
0

]

[
0
1

][
1
1

][
1
0

] [
0
0

]

[
1
0

]

[
1
1

]
Figure 5.3: A transducer for f (f (n)).

88 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

though T is deterministic. This transducer recognizes the relation {(n, f (f (n))) | n ∈ N}. A little
calculation gives

f (f ((n)) =


n/4 if n ≡ 0 mod 4
3n/2 + 1 if n ≡ 2 mod 4
3n/2 + 1/2 if n ≡ 1 mod 4 or n ≡ 3 mod 4

The three components of the transducer reachable from the state [1, 1] correspond to these three
cases.

Post(X,R) and Pre(X, R) Given an NFA A1 = (Q1,Σ, δ1, q01, F1) recognizing a regular set X ⊆ U
and a transducer T2 = (Q2,Σ×Σ, δ2, q02, F2) recognizing a regular relation R ⊆ U×U, we construct
an NFA B recognizing the set postR(U). It suffices to slightly modify the join operation. The
algorithm Post(A1,T2) is the result of replacing lines 7-8 of Join() by

7 for all (q1, c, q′1) ∈ δ1, (q2, (c, b), q′2) ∈ δ2 do
8 add ([q1, q2], b, [q′1, q

′
2]) to δ

As for the join operation, the resulting NFA has to be postprocessed, closing it with respect to the
padding symbol.

In order to construct an NFA recognizing preR(X), we replace lines 7-8 by

7 for all (q1, (a, c), q′1) ∈ δ1, (q2, c, q′2) ∈ δ2 do
8 add δ to ([q1, q2], a, [q′1, q

′
2])

Notice that both post and pre are computed with the same complexity as the pairing construction,
namely, the product of the number of states of transducer and NFA.

Example 5.9 We construct an NFA recognizing the image under the Collatz function of all multi-
ples of 3, i.e., the set { f (3n) | n ∈ N}. For this, we first need an automaton recognizing the set Y of
all lsbf encodings of the multiples of 3. The following DFA does the job:

0 1

1 0

1 0

1 2 3

For instance, this DFA recognizes 0011 (encoding of 12) and 01001 (encoding of 18), but not 0101
(encoding of 10). We now compute postR(Y), where, as usual, R = {(n, f (n)) | n ∈ N}. The result

is the NFA shown in Figure 5.4. For instance, the transition [1, 1]
1
−−→[1, 3] is generated by the

transitions 1
0
−−→ 1 of the DFA and 1

(0,1)
−−−−→ 3 of the transducer for the Collatz function. State [2, 3]

becomes final due to the closure with respect to the padding symbol 0.

5.3. IMPLEMENTING OPERATIONS ON RELATIONS 89

0 1

1 0

1 0

1 2 3
1

2 3

4 5 6

[
1
0

] [
0
0

]
[
0
0

] [
0
1

]

[
1
1

][
1
0

]
[
1
1

]

[
0
0

]

[
1
1

][
0
0

]

[
1
0

]

[
0
1

]

[
0
1

]

1, 1

1, 2

2, 2

0

0

0

1 13, 3

3, 2

1, 3

2, 3

0

1

1

0

0

0

1, 52, 4

1, 62, 5

2, 63, 63, 5

3, 4

1, 4

0

0

0

0

1

1

1 0

1

1

1

1

0

1

0

1

1

01

0

0

1

Figure 5.4: Computing f (n) for all multiples of 3.

90 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

The NFA of Figure 5.4 is not difficult to interpret. The multiples of 3 are the union of the sets
{6k | k ≥ 0}, all whose elements are even, and the set {6k + 3 | k ≥ 0}, all whose elements are odd.
Applying f to them yields the sets {3k | k ≥ 0} and {18k + 10 | k ≥ 0}. The first of them is again
the set of all multiples of 3, and it is recognized by the upper part of the NFA. (In fact, this upper
part is a DFA, and if we minimize it we obtain exactly the DFA given above.) The lower part of the
NFA recognizes the second set. The lower part is minimal; it is easy to find for each state a word
recognized by it, but not by the others.

It is interesting to observe that an explicit computation of the set { f (3k) | k ≥ 0}) in which we
apply f to each multiple of 3 does not terminate, because the set is infinite. In a sense, our solution
“speeds up” the computation by an infinite factor!

5.4 Relations of Higher Arity

The implementations described in the previous sections can be easily extended to relations of higher
arity over the universe U. We briefly describe the generalization.

Fix an encoding of the universe U over the alphabet Σ with padding symbol #. A tuple
(w1, . . . ,wk) of words over Σ encodes the tuple (x1, . . . , xk) ∈ Uk if wi encodes xi for every
1 ≤ i ≤ k, and w1, . . . ,wk have the same length. A k-transducer over Σ is an NFA over the al-
phabet Σk. Acceptance of a k-transducer is defined as for normal transducers.

Boolean operations are defined as for NFAs. The projection operation can be generalized to
projection over an arbitrary subset of components. For this, given an index set I = {i1, . . . , in} ⊆
{1, . . . , k}, let ~xI denote the projection of a tuple ~x = (x1, . . . , xk) ∈ Uk over I, defined as the tuple
(xi1 , . . . , xin) ∈ Un. Given a relation R ⊆ U, we define

Projection I(R): returns the set πI(R) = {~xI | ~x ∈ R}.

The operation is implemented analogously to the case of a binary relation. Given a k-transducer T
recognizing R, the n-transducer recognizing Projection P(R) is computed as follows:

• Replace every transition (q, (a1, . . . , ak), q′) of T by the transition (q, (ai1 , . . . , ain), q′).

• Compute the PAD-closure of the result: for every transition (q, (#, . . . , #), q′), if q′ is a final
state, then add q to the set of final states.

The join operation can also be generalized. Given two tuples ~x = (x1, . . . , xn) and ~y =

(y1, . . . , ym) of arities n and m, respectively, we denote the tuple (x1, . . . , xn, y1, . . . , ym) of dimen-
sion n + m by ~x · ~y. Given relations R1 ⊆ Uk1 and R2 ⊆ Uk2 of arities k1 and k2, respectively, and
index sets I1 ⊆ {1, . . . , k1}, I2 ⊆ {1, . . . , k2} of the same cardinality, we define

Join I(R1, R2): returns R1 ◦I1,I2 R2 = {~xK1\I1 ~xK2\I2 | ∃~x ∈ R1, ~y ∈ R2 : ~xI1 = ~yI2}

5.4. RELATIONS OF HIGHER ARITY 91

The arity of Join I(R1, R2) is k1 + k2 − |I1|. The operation is implemented analogously to the case
of binary relations. We proceed in two steps. The first step constructs a transducer according to the
following rule:

If the transducer recognizing R1 has a transition (q, ~a, q′), the transducer recognizing
R2 has a transition (r, ~b, r′), and ~aI1 = ~bI2, then add to the transducer for Join I(R1,
R2) a transition ([q, r], ~aK1\I1 ·

~bK2\I2 , [q
′, r′]).

In the second step, we compute the PAD-closure of the result. The generalization of the Pre and
Post operations is analogous.

Exercises

Exercise 55 As we have seen, the application of the Post, Pre operations to transducers requires
to compute the padding closure in order to guarantee that the resulting automaton accepts either all
or none of the encodings of a object. The padding closure has been defined for encodings where
padding occurs on the right, i.e., if w encodes an object, then so does w #k for every k ≥ 0. However,
in some natural encodings, like the most-significant-bit-first encoding of natural numbers, padding
occurs on the left. Give an algorithm for calculating the padding closure of a transducer when
padding occurs on the left.

Exercise 56 Let A be an NFA over the alphabet Σ.

• Show how to construct a transducer T over the alphabet Σ × Σ such that (w, v) ∈ L(T) iff
wv ∈ L(A) and |w| = |v|.

• Give an algorithm that accepts an NFA A as input and returns an NFA A/2 such that L(A/2) =

{w ∈ Σ∗ | ∃v ∈ Σ∗ : wv ∈ L(A) ∧ |w| = |v|}.

Exercise 57 In phone dials letters are mapped into digits as follows:

ABC 7→ 2 DEF 7→ 3 GHI 7→ 4 JKL 7→ 5
MNO 7→ 6 PQRS 7→ 7 TUV 7→ 8 WXYZ 7→ 9

This map can be used to assign a telephone number to a given word. For instance, the number for
AUTOMATON is 288662866.

Consider the problem of, given a telephone number, finding the set of English words that are
mapped into it. For instance, the set of words mapping to 233 contains at least ADD, BED, and
BEE. Assume a DFA N over the alphabet {A, . . . ,Z} recognizing the set of all English words is
given. Show how to construct a nondeterministic transducer over Σ × Σ for Σ = {A, . . . ,Z, 0, . . . , 9}
recognizing the set of pairs (n,w) such that n ∈ {0, . . . , 9}∗ and w ∈ {A, ldots,Z}∗ and w is mapped
to n.

92 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

Exercise 58 We have defined transducers as NFAs whose transitions are labeled by pairs of sym-
bols (a, b) ∈ Σ×Σ. With this definition transducers can only accept pairs of words (a0a1 . . . al, b0b1 . . . bl)
of the same length.

A ε-transducer is a NFA whose transitions are labeled by elements of (Σ ∪ {ε}) × (Σ ∪ {ε}). An
ε-transducer accepts a pair (w,w′) of words if it has a run

q0
(a0,b0)
−−−−−→ q1

(a1,b1)
−−−−−→ . . .

(an,bn)
−−−−−→ qn with ai, bi ∈ Σ ∪ {ε}

such that w = a0a1 . . . an and w′ = b0b1 . . . bn. Note that |w| ≤ n and |w′| ≤ n. The relation accepted
by the ε-transducer T is denoted by L(T).

1. Construct ε-transducers T1,T2 recognizing the relations R1 = {(anbm, c2n) | n,m ≥ 0}, and
R2 = {(anbm, c2m) | n,m ≥ 0}.

2. Apply IntersNFA to T1 and T2. Which is the language recognized by the resulting ε-transducer?

3. Show that no ε-transducer recognizes R1 ∩ R2.

Exercise 59 Transducers can be used to capture the behaviour of simple programs. Let P be the
following program:

1 x←?
2 write x
3 while true do
4 do
5 read y
6 until x = y
7 if eo f then
8 write y
9 end

10 do
11 x← x − 1

or
12 y← y + 1
13 until x , y

P communicates with the environment through the boolean variables x and y, both with 0 as initial
value. Let [i, x, y] denote the state of P in which the next instruction to be executed is the one
at line i, and the values of x and y are x and y, respectively. The initial state of P is [1, 0, 0].
By executing the first instruction P moves nondeterministically to one of the states [2, 0, 0] and
[2, 1, 0]; no input symbol is read and no output symbol is written, and so the transition relation

5.4. RELATIONS OF HIGHER ARITY 93

δ for P contains the transitions ([1, 0, 0], (ε, ε), [2, 0, 0]) and ([1, 0, 0], (ε, ε), [2, 1, 0]). Similarly,
by executing its second instruction, the program P moves from [2, 1, 0] to [3, 1, 0] while reading
nothing and writing 1. Hence, δ also contains the transition rule ([2, 1, 0], (ε, 1), [3, 1, 0]).

1. Draw an ε-transducer modelling the behaviour of P.

2. Can an overflow error occur?

3. What are the possible values of x and y upon termination, i.e. upon reaching end?

4. Is there an execution during which P reads 101 and writes 01?

5. Let I and O be regular sets of inputs and outputs, respectively. Think of O as a set of
dangerous outputs that we want to avoid. We wish to prove that the inputs from I are safe,
i.e. that none of the dangerous outputs can occur. Describe an algorithm that decides, given
I and O, whether there are i ∈ I and o ∈ O such that (i, o) is accepted.

Exercise 60 (Inspired by a paper by Galwani al POPL’11.) Consider transducers whose transi-
tions are labeled by elements of (Σ∪{ε})×(Σ∗∪{ε}). Intuitively, at each transition these transducers
read one letter or no letter, an write a string of arbitrary length. These transducers can be used to
perform operations on strings like, for instance, capitalizing all the words in the string: if the trans-
ducer reads, say, ”singing in the rain”, it writes ”Singing In The Rain”. Give transducers for the
following operations, each of which is informally defined by means of two examples. In each
example, if the transducer reads the string on the left then it writes the string on the right.

Company\Code\index.html Company\Code

Company\Docs\Spec\specs.doc Company\Docs\Spec\

International Business Machines IBM

Principles Of Programming Languages POPL

Oege De Moor Oege De Moor

Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

Eran Yahav Yahav, E.

Bill Gates Gates, B.

004989273452 +49 89 273452

(00)4989273452 +49 89 273452

273452 +49 89 273452

94 CHAPTER 5. OPERATIONS ON RELATIONS: IMPLEMENTATIONS

Chapter 6

Finite Universes

In Chapter 3 we proved that every regular language has a unique minimal DFA. A natural ques-
tion is whether the operations on languages and relations described in Chapters 4 and 5 can be
implemented using minimal DFAs and minimal deterministic transducers as data structure.

The implementations of (the first part of) Chapter 4 accept and return DFAs, but do not pre-
serve minimality: even if the arguments are minimal DFAs, the result may be non-minimal (the
only exception was complementation). So, in order to return the minimal DFA for the result an
extra minimization operation must be applied. The situation is worse for the projection and join
operations of Chapter 5, because they do not even preserve determinacy: the result of projecting
a deterministic transducer or joining two of them may be nondeterministic. In order to return a
minimal DFA it is necessary to first determinize, at exponential cost in the worst case, and then
minimize.

In this chapter we present implementations that directly yield the minimal DFA, with no need
for an extra minimization step, for the case in which the universe U of objects is finite. When the
universe is finite, all objects can be encoded by words of the same length, and this common length
is known a priori. Every subset of objects can then be encoded by a fixed-length language.

Definition 6.1 A language L ⊆ Σ∗ has length n ≥ 0 if it is empty and n = 0, or if it is nonempty and
all words of L have length n. If L has length n for some n ≥ 0, then we say that L is a fixed-length
language, or that L has fixed-length.

Notice that every fixed-length language contains only finitely many words, and so it is automati-
cally regular. Observe also that there are exactly two languages of length 0: the empty language ∅,
and the language {ε} containing only the empty word.

6.1 The Master Automaton

The master automaton over an alphabet Σ is a deterministic automaton with an infinite number of
states, but no initial state. As in the case of canonical DAs, the states are languages.

95

96 CHAPTER 6. FINITE UNIVERSES

{aa, ab, ba, bb}

{a} {a, b} {b}

{ε}

{aa, ab, ba} {ab, bb} {aa, ab, bb}

a, b

∅

b

a
b

a, b

a, b
a

b
a

b
a a, b a, b

{aab, abb, baa, bab, bbb}

baa

{aaa, aab, aba, baa, bab, bba, bbb}

b

Figure 6.1: A fragment of the master automaton for the alphabet {a, b}

For the definition, recall the notion of residual with respect to a letter: given a language L ⊆ Σ∗

and a ∈ Σ, its residual with respect to a is the language La = {w ∈ Σ∗ | aw ∈ L}. Recall that, in
particular, we have ∅a = {ε}a = ∅. A simple but important observation is that if L has fixed-length,
then so does La.

Definition 6.2 The master automaton over the alphabet Σ is the tuple M = (QM,Σ, δM, FM), where

• QM is is the set of all fixed-length languages over Σ;

• δ : QM × Σ→ QM is given by δ(L, a) = La for every q ∈ QM and a ∈ Σ;

• FM is the singleton set containing the language {ε} as only element.

Example 6.3 Figure 6.1 shows a small fragment of the master automaton for the alphabet Σ =

{a, b}. Notice that M is almost acyclic. More precisely, the only cycles of M are the self-loops
corresponding to δM(∅, a) = ∅ for every a ∈ Σ.

The following proposition was already proved in Chapter 3, but with slightly different termi-
nology.

Proposition 6.4 Let L be a fixed-length language. The language recognized from the state L of the
master automaton is L.

6.2. A DATA STRUCTURE FOR FIXED-LENGTH LANGUAGES 97

Proof: By induction on the length n of L. If n = 0, then L = {ε} or L = ∅, and the result is
proved by direct inspection of the master automaton. For n > 0 we observe that the successors of
the initial state L are the languages La for every a ∈ Σ. Since, by induction hypothesis, the state La

recognizes the language La, the state L recognizes the language L.

By this proposition, we can look at the master automaton as a structure containing DFAs rec-
ognizing all the fixed-length languages. To make this precise, each fixed-length language L deter-
mines a DFA AL = (QL,Σ, δL, q0L, FL) as follows: QL is the set of states of the master automaton
reachable from the state L; q0L is the state L; δL is the projection of δM onto QL; and FL = FM. It
is easy to show that AL is the minimal DFAs recognizing L:

Proposition 6.5 For every fixed-language L, the automaton AL is the minimal DFA recognizing L.

Proof: By definition, distinct states of the master automaton are distint languages. By Proposition
6.4, distinct states of AL recognize distinct languages. By Corollary 3.8 (a DFA is minimal if and
only if distinct states recognized different languages) AL is minimal.

6.2 A Data Structure for Fixed-length Languages

Proposition 6.5 allows to define a data structure for representing finite sets of fixed-length lan-
guages, all of them of the same length. Loosely speaking, the structure representing the lan-
guages L = {L1, . . . , Lm} is the fragment of the master automaton containing the states recognizing
L1, . . . , Ln and their descendants. It is a DFA with multiple initial states, and for this reason we call
it the multi-DFA for L. Formally:

Definition 6.6 Let L = {L1, . . . , Ln} be a set of languages of the same length over the same alpha-
bet Σ. The multi-DFA AL is the tuple AL = (QL,Σ, δL,Q0L, FL), where QL is the set of states of
the master automaton reachable from at least one of the states L1, . . . , Ln; Q0L = {L1, . . . , Ln}; δL

is the projection of δM onto QL; and FL = FM.

Example 6.7 Figure 6.2 shows (a DFA isomorphic to) the multi-DFA for the set {L1, L2, L3}, where
L1 = {aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}. In order to simplify the picture the state for the
empty language has been omitted, as well as the transitions leading to it.

In order to manipulate multi-DFAs we represent them as a table of nodes. Assume Σ =

{a1, . . . , am}. A node is a pair 〈q, s〉, where q is a state identifier and s = (q1, . . . , qm) is the succes-
sor tuple of the node. Along the chapter we denote the state identifiers of the state for the languages
∅ and {ε} by q∅ and qε , respectively.

The multi-DFA is represented by a table containing a node for each state, with the exception of
the nodes q∅ and qε . The table for the multi-DFA of Figure 6.2, where state identifiers are numbers,
is

98 CHAPTER 6. FINITE UNIVERSES

4

7

1

3

6

2

5

L3L2L1

a, b a

a, b
a b

a, bb

Figure 6.2: The multi-DFA for {L1, L2, L3} with L1 = {aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}.

Ident. a-succ b-succ
2 1 0
3 1 1
4 0 1
5 2 2
6 2 3
7 4 4

The procedure make[T](s). The algorithms on multi-DFAs use a procedure make[T](s) that
returns the state of T having s as successor tuple, if such a state exists; otherwise, it adds a new
node 〈q, s〉 to T , where q is a fresh state identifier (different from all other state identifiers in T) and
returns q. If s is the tuple all whose components are q∅, then make[T](s) returns q∅. The procedure
assumes that all the states of the tuple s (with the exception of q∅ and qε) appear in T .1 For instance,
if T is the table above, then make[T](2, 2) returns 5, but make[T](3, 2) adds a new row, say 8, 3, 2,
and returns 8.

6.3 Operations on fixed-length languages

All operations assume that the input fixed-length language(s) is (are) given as multi-DFAs repre-
sented as a table of nodes. Nodes are pairs of state identifier and successor tuple.

The key to all implementations is the fact that if L is a language of length n ≥ 1, then La is
a language of length n − 1 or of length 0. This allows to design recursive algorithms that directly

1Notice that the procedure makes use of the fact that no two states of the table have the same successor tuple.

6.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 99

4

7

1

3

6

2

5 8

L3L1

a, b a

a, b
a b

a, bb b

L2 ∩ L3L2L1 ∪ L2

Figure 6.3: The multi-DFA for {L1, L2, L3, L1 ∪ L2, L2 ∩ L3}

compute the result when the inputs are languages of length 0, and reduce the problem of computing
the result for languages of length n to the same problem for languages of smaller length.

Fixed-length membership. The operation is implemented as for DFAs. The complexity is linear
in the size of the input.

Fixed-length binary boolean operations. Implementing a boolean operation on multi-DFAs
corresponds to possibly extending the multi-DFA, and returning the state corresponding to the
result of the operation. This is best explained by means of an example. Consider again the multi-
DFA of Figure 6.2. An operation like Union(L1, L2) gets the initial states 5 and 6 as input, and
returns the state recognizing L1 ∪ L2; since L1 ∪ L2 = L2, the operation returns state 6. However, if
we take Intersection(L2, L3), then the multi-DFA does not contain any state recognizing it. In this
case the operation extends the multi-DFA for {L1, L2, L3} to the multi-DFA for {L1, L2, L3, L2∪L3},
shown in Figure 6.3, and returns state 8. So Intersection(L2, L3) not only returns a state, but also
has a side effect on the multi-DFA underlying the operations.

Given two fixed-length languages L1, L2 of the same length and a boolean operation �, there
is a generic algorithm that returns the state of the master automaton recognizing L1 �̂ L2. Let us
consider the case of intersection, the other cases being similar. The properties

(1) if L1 = ∅ or L2 = ∅, then L1 ∩ L2 = ∅;

(2) if L1 = {ε} and L2 = {ε}, then L1 ∩ L2 = {ε};

(3) if L1, L2 < {∅, {ε}}, then (L1 ∩ L2)a = La
1 ∩ La

2 for every a ∈ Σ;

lead to the recursive algorithm inter[T](q1, q2) shown in Table 6.1. Assume the states q1, q2 recog-
nize the languages L1, L2. The algorithm returns the state identifier qL1∪L2 . If q1 = q∅, then L1 = ∅,

100 CHAPTER 6. FINITE UNIVERSES

which implies L1∩L2 = ∅. So the algorithm returns the state identifier q∅. If q2 = q∅, the algorithm
also returns q∅. If q1 = qε = q2, the algorithm returns qε . This deals with all the cases in which
q1, q2 ∈ {q∅, qε} (and some more, which does no harm). If q1, q2 < {q∅, qε}, then the algorithm
computes the state identifiers r1, . . . , rm recognizing the languages (L1∩ L2)a1 , . . . , (L1∩ L2)am , and
returns make[T](r1, . . . , rn) (creating a new node if no node of T has (r1, . . . , rn) as successor tuple).
But how does the algorithm compute the state identifier of (L1 ∩ L2)ai? By equation (3) above, we
have (L1 ∩ L2)ai = Lai

1 ∩ Lai
2 , and so the algorithm computes the state identifier of Lai

1 ∩ Lai
2 by a

recursive call inter[T](qai
1 , q

ai
2).

The only remaining point is the rôle of the table G. The algorithm uses memoization to avoid
recomputing the same object. The table G is initially empty. When inter[T](q1, q2) is computed
for the first time, the result is memoized in G(q1, q2). In any subsequent call the result is not
recomputed, but just read from G. For the complexity, let n1, n2 be the number of states of T
reachable from the state q1, q2. It is easy to see that every call to inter receives as arguments states
reachable from q1 and q2, respectively. So inter is called with at most n1 · n2 possible arguments,
and the complexity is O(n1 · n2).

inter[T](q1, q2)
Input: table T , states q1, q2 of T recognizing languages of the same length
Output: state recognizing L(q1) ∩ L(q2)

1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 else if q1 = qε and q2 = qε then return qε
4 else / ∗ q1, q2 < {q∅, qε} ∗ /
5 for all i = 1, . . . ,m do ri ← inter[T](qai

1 , q
ai
2)

6 G(q1, q2)← make[T](r1, . . . , rm)
7 return G(q1, q2)

Table 6.1: inter[T](q1, q2)

Algorithm inter is generic: in order to obtain an algorithm for another binary operator it suffices
to change lines 2 and 3. If we are only interested in intersection, then we can easily gain a more
efficient version. For instance, we know that inter[T](q1, q2) and inter[T](q2, q1) return the same
state, and so we can improve line 1 by checking not only if G(q1, q2) is nonempty, but also if
G(q2, q1) is. Also, inter[T](q, q) always returns q, we do not need to compute anything either.

Example 6.8 Consider the multi-DFA at the top of Figure 6.4, but without the blue states. State 0,
accepting the empty language, is again not shown. Let T be the table for this multi-DFA. The tree
at the bottom of the figure graphically describes the run of inter[T](12, 13) (that is, we compute the
node for the intersection of the languages recognized from states 12 and 13). A node q, q′ 7→ q′′

of the tree corresponds to a recursive call of inter() with arguments q and q′, and q′′ is the state
returned by the call. For instance, the node 2,4 7→ 2 indicates that inter() is called with arguments

6.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 101

2 and 4 and the call returns state 2. Let us see why. The call inter(2, 4) produces two recursive
calls, first inter(1, 1) (the a-successors of 2 and 4), and then inter(0, 1). The first call returns 1, and
the second 0. Therefore the call inter(2, 4) returns a state with state 1 as a-successor and state 0 as
b-successor. This state already exists, it is state 2. So inter(2, 4) returns state 2. On the other hand,
inter(9,10) creates and returns a new state. The two “children calls” return states 5 and 6, and so a
new state with state 5 and 6 as a- and b-successors must be created.

The pink nodes correspond to calls that have already been computed, and for which inter just
looks up the result in G. The green nodes correspond to calls that are computed by inter, but not
by the more efficient version. For instance, the result of the call inter(4,4) at the bottom right can
be returned immediately.

Fixed-length complement. The complement Σ∗ \ L of a fixed-length language L is not a fixed-
length language, and so the complement operation is not well defined. We consider its fixed-length
version, which returns the state recognizing the language Σn\L, called the fixed-length complement.
We abuse language and denote the fixed-length complement of L by L. (In this chapter L always
has this meaning.) Notice that Σ0 = {ε}. However, the fixed-length complement of ∅ is only well
defined if we know the length of the languages we are dealing with: if this length is 2, then the
complement is Σ2, if 3 then Σ3, etc. We have:

• if L = ∅, then L = Σn, where n is the length of the languages we are working with;

• if L = {ε}, then L = ∅; and

• if ∅ , L , {ε}, then
(
L
)a

= La.

(Observe that w ∈
(
L
)a

iff aw < L iff w < La iff w ∈ La.)

Proceeding as for the binary boolean operations, we get the algorithm of Table 6.2. The algorithm
receives the length of the language as a parameter in order to deal appropriately with the empty
language.

If the master automaton has n states reachable from q, then the operation has complexity O(n).

Example 6.9 Consider again the multi-DFA at the top of Figure 6.5 without the blue states. Let T
be the table for this multi-DFA. The tree of recursive calls at the bottom of the figure graphically de-
scribes the run of comp[T,4](12) (that is, we compute the node for the complement of the language
recognized from state 12, which has length 4). For instance, the call comp[1](2) produces two
recursive calls, first comp[0](1) (the a-successor of 2), and then comp[0](1). The first call returns
0, and the second 1. Therefore comp[1](2) returns state 3. Observe how the call comp[2](0) returns
7, the state accepting {a, b}2. The pink nodes correspond again to calls that have already been com-
puted, and for which inter just looks up the result in G. The green nodes correspond to calls whose
result is directly computed by a more efficient version of comp that applies the following rule: if
comp[i](j) returns k, then comp[i](k) returns j.

102 CHAPTER 6. FINITE UNIVERSES

1

4

765

98

15

32

1110

a b a, b

abba

a bb a, ba

b
a, ba

1312

b a

8, 11 7→ 8 9, 10 7→ 14

7, 6 7→ 60, 7 7→ 05, 7 7→ 5

2, 4 7→ 2 3, 4 7→ 3 4, 2 7→ 2 4, 4 7→ 4

1, 1 7→ 11, 1 7→ 11, 0 7→ 01, 1 7→ 11, 1 7→ 10, 1 7→ 00, 1 7→ 0

5, 7 7→ 5

12, 13 7→ 15

a
a

b14

ab

1, 1 7→ 1

Figure 6.4: An execution of inter.

6.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 103

1

4

765

98

14

15

32

1110

aa

bb a, b

b
a, ba

12

3: 8 7→ 15

13

2: 5 7→ 14

1: 2 7→ 3 1: 3 7→ 2

0: 1 7→ 0 0; 0 7→ 1

2: 7 7→ 02: 5 7→ 14

3: 9 7→ 16

2: 0 7→ 7

1: 0 7→ 4

0; 0 7→ 1 0; 0 7→ 1

b a

a

a

a

a
a bb a, ba

16

a

17

4: 12 7→ 17

1: 0 7→ 4

b a b

b

Figure 6.5: An execution of comp.

104 CHAPTER 6. FINITE UNIVERSES

comp[T, n](q)
Input: table T , length n, state q of T of length n or q = q∅
Output: state recognizing the fixed-length complement of L(q)
of length n

1 if n = 0 and q = q∅ then return qε
2 else if n = 0 and q = qε then return q∅
3 else / ∗ n ≥ 1 ∗ /
4 if G(q) is not empty then return G(q)
5 for all i = 1, . . . ,m do ri ← comp[T, n − 1](qai)
6 G(q)← make[T](r1, . . . , rm)
7 return G(q)

Table 6.2: comp[T](q)

Fixed-length emptiness. A fixed-language language is empty if and only if the node representing
it has q∅ as state identifier, and so we get the algorithm of Table 6.3.

empty[T](q)
Input: table T , state q of T
Output: true if L(q) = ∅, false otherwise

1 return q = q∅

Table 6.3: empty[T](q)

Fixed-length universality. Like in the case of complement, a fixed-length language cannot be
universal by definition. However, we may ask whether it is fixed-length universal. A language L of
length n is fixed-length universal if L = Σn. The universality of a language of length n recognized
by a state q can be checked in time O(n). It suffices to check for all states reachable from q, with
the exception of q∅, that no transition leaving them leads to q∅. More systematically, the equations

• if L = ∅, then L is not universal;

• if L = {ε}, then L is universal;

• if ∅ , L , {ε}, then L is universal iff La is universal for every a ∈ Σ.

lead to the algorithm of Table 6.4.

Fixed-length inclusion. Given two languages L1, L2 ⊆ Σn, in order to check L1 ⊆ L2 we compute
L1 ∩ L2 and check whether it is equal to L1 using the equality check shown next. The complexity
is dominated by the complexity of computing the intersection.

6.3. OPERATIONS ON FIXED-LENGTH LANGUAGES 105

univ[T](q)
Input: table T , state q of T
Output: true if L(q) is fixed-length universal,

false otherwise
1 if G(q) is not empty then return G(q)
2 if q = q∅ then return false
3 else if q = qε then return true
4 else / ∗ q , q∅ and q , qε ∗ /
5 G(q)← and(univ[T](qa1), . . . , univ[T](qam))
6 return G(q)

Table 6.4: The algorithm univ[T](q)

Fixed-length equality. Since the minimal DFA recognizing a language is unique, two languages
are equal if and only if the nodes representing them have the same state identifier, leading to the
constant time algorithm at the top of Figure 6.5. This algorithm, however, assumes that the two
input nodes come from the same table T . If they come from two different tables T1,T2, then, since
state identifiers can be assigned in both tables in different ways, it is necessary to check if the DFA
rooted at the states q1 and q2 are isomorphic. This is done by the implementation eq[T1,T2](q1, q2)
at the bottom of the figure, which assumes that qi belongs to the table Ti, and that both tables assign
state identifiers q∅1 and q∅2 to the empty language.

eq[T](q1, q2)
Input: table T , states q1, q2 of T
Output: true if L(q1) = L(q2), false otherwise

1 return q1 = q2

eq[T1,T2](q1, q2)
Input: tables T1, T2, states q1 of T1, q2 of T2
Output: true if L(q1) = L(q2), false otherwise

1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅1 and q2 = q∅2 then G(q1, q2)← true
3 else if q1 = q∅1 and q2 , q∅2 then G(q1, q2)← false
4 else if q1 , q∅1 and q2 = q∅2 then G(q1, q2)← false
5 else / ∗ q1 , q∅1 and q2 , q∅2 ∗ /
6 G(q1, q2)← and(eq(qa1

1 , q
a1
2), . . . , eq(qam

1 , qam
2))

7 return G(q1, q2)

Table 6.5: The algorithms eq[T](q1, q2) and eq[T1,T2](q1, q2)

106 CHAPTER 6. FINITE UNIVERSES

6.4 Determinization and Minimization

Let L be a fixed-length language, and let A = (Q,Σ, δ, q0, F) be a NFA recognizing L. The algorithm
det&min(A) shown in Table 6.6 returns the state qL of the master automaton. In other words,
det&min(A) simultaneously determinizes and minimizes A.

The algorithm actually solves a more general problem. Given a set S of states of A, all recog-
nizing languages of the same length, the language L(S) =

⋃
q∈S L(q) has also this common length.

The heart of the algorithm is a procedure state(S) that returns the state qL(S). Since L = L({q0}),
det&Min(A) just calls state({q0}).

We make the assumption that for every state q of A there is a path leading from q to some final
state. This assumption can be enforced by suitable preprocessing, but usually it is not necessary;
in applications, NFAs for fixed-length languages usually satisfy the property by construction. With
this assumption, L(S) satisfies:

• if S = ∅ then L(S) = ∅;

• if S ∩ F , ∅ then L(S) = {ε}

(since the states of S recognize fixed-length languages, the states of F necessarily recognize
{ε}; since all the states of S recognize languages of the same length and S ∩ F , ∅, we have
L(S) = {ε});

• if S , ∅ and S ∩ F = ∅, then L(S) =

n⋃
i=1

ai · L(S i), where S i = δ(S , ai).

These properties lead to the recursive algorithm of Table 6.6. The procedure state[A](S) uses a
table G of results, initially empty. When state[A](S) is computed for the first time, the result is
memoized in G(S), and any subsequent call directly reads the result from G.

The algorithm has exponential complexity, because, in the worst case, it may call state[A](S)
for every set S ⊆ Q.

Example 6.10 Figure 6.6 shows a NFA (upper left) and the result of applying det&min to it. The
run of det&min is shown at the bottom of the figure, where, for the sake of readability, sets of
states are written without the usual parenthesis (e.g. β, γ instead of {β, γ}. Observe, for instance,
that the algorithm assigns to {γ} the same node as to {β, γ}, because both have the states 2 and 3 as
a-successor and b-successor, respectively.

6.5 Operations on Fixed-length Relations

Fixed-length relations can be manipulated very similarly to fixed-length languages. Boolean op-
erations are as for fixed-length languages. The join, pre, and post operations can be however
implemented more efficiently as in Chapter 5.

6.5. OPERATIONS ON FIXED-LENGTH RELATIONS 107

θη

α 7→ 5

β, γ 7→ 4

5

a, b

4

a b

2 3

b a, b

1

εδ ζ

b

bb

α

b

b
b

β γ

a a, b

a a, b

a

ε 7→ 2 δ, ε, ζ 7→ 3

γ 7→ 4

ε, ζ 7→ 3

η, θ 7→ 1

ε 7→ 2

η, θ 7→ 1η 7→ 1 η 7→ 1 η 7→ 1∅ 7→ 0

Figure 6.6: Run of det&min() on an NFA for a fixed-length language

108 CHAPTER 6. FINITE UNIVERSES

state[A](S)
Input: NFA A = (Q,Σ, δ, q0, F),

set S ⊆ Q recognizing languages of the same length
Output: master state recognizing L(S)

1 if G(S) is not empty then return G(S)
2 else if S = ∅ then return q∅
3 else if S ∩ F , ∅ then return qε
4 else / ∗ S , ∅ and S ∩ F = ∅ ∗ /

5 for all i = 1, . . . ,m do S i ← δ(S , ai)
6 G(S)← make(state[A](S 1), . . . , state[A](S m));
7 return G(S)

det&min(A)
Input: NFA A = (Q,Σ, δ, q0, F)
Output: master state recognizing L(A)

1 return state[A]({q0})

Table 6.6: The algorithm det&min(A).

We start with an observation on encodings. In Chapter 5 we assumed that if an element of X
is encoded by w ∈ Σ∗, then it is also encoded by w#, where # is the padding letter. This ensures
that every pair (x, y) ∈ X × X has an encoding (wx,wy) such that wx and wy have the same length.
Since in the fixed-length case all shortest encodings have the same length, the padding symbol is
no longer necessary. So in this section we assume that each word or pair has exactly one encoding.

Definition 6.11 A word relation R ⊆ Σ∗ × Σ∗ has length n ≥ 0 if it is empty and n = 0, or if it is
nonempty and for all pairs (w1,w2) of R the words w1 and w2 have length n. If R has length n for
some n ≥ 0, then we say that R is a fixed-length word relation, or that R has fixed-length.

Recall that a transducer T accepts a pair (w1,w2) ∈ Σ∗ × Σ∗ if w1 = a1 . . . an, w2 = b1 . . . bn,
and T accepts the word (a1, b1) . . . (an, bn) ∈ Σ∗ × Σ∗.

Definition 6.12 A fixed-length transducer accepts a relation R ⊆ X × X if it recognizes the word
relation {(wx,wy) | (x, y) ∈ R}.

We define the master transducer over the alphabet Σ × Σ. Given a language R ⊆ Σ∗ × Σ∗ and
a, b ∈ Σ, we define R[a,b] = {(w1,w2) ∈ Σ∗ × Σ∗ | (aw1, bw2) ∈ R}. Notice that in particular,
∅[a,b] = ∅, and that if R has fixed-length, then so does R[a,b].

Definition 6.13 The master transducer over the alphabet Σ is the tuple MT = (QM,Σ×Σ, δM, FM),
where

6.5. OPERATIONS ON FIXED-LENGTH RELATIONS 109

• QM is is the set of all fixed-length relations;

• δM : QM × (Σ × Σ)→ QM is given by δM(R, [a, b]) = R[a,b] for every q ∈ QM and a, b ∈ Σ;

• FM = {(ε, ε)}.

As in the language case, each fixed-length word relation R determines a deterministic trans-
ducer TR = (QR,Σ × Σ, δR, q0R, FR) as follows: QR is the set of states of the master transducer
reachable from the state R; q0R is the state R; δR is the projection of δM onto QR; and FR = FM. TR

is the minimal deterministic transducer recognizing R:

Proposition 6.14 For every fixed-length word relation R, the transducer TR is the minimal deter-
ministic transducer recognizing R.

Like minimal DFA, minimal deterministic transducers are represented as tables of nodes. However,
a remark is in order: since a state of a deterministic transducer has |Σ|2 successors, one for each
letter of Σ × Σ, a row of the table has |Σ|2 entries, too large when the table is only sparsely filled.
Sparse transducers over Σ × Σ are better encoded as NFAs over Σ by introducing auxiliary states: a

transition q
[a,b]
−−−−→ q′ of the transducer is “simulated” by two transitions q

a
−−→ r

b
−−→ q′, where r is an

auxiliary state with exactly one input and one output transition.

Fixed-length join. We give a recursive definition of R1◦R2. Let (a, b)·R denote the set {(aw1, bw2) |
(w1,w2) ∈ R}. We have the following identities:

• ∅ ◦ R = R ◦ ∅ = ∅;

• { [ε, ε] } ◦ { [ε, ε] } = { [ε, ε] };

• R1 ◦ R2 =
⋃

a,b,c∈Σ

[a, b] ·
(
R[a,c]

1 ◦ R[c,b]
2

)
.

Exploiting the identities we arrive at the algorithm of Figure 6.7, where union is defined similarly
to inter.

The complexity is O(n1 · n2) for transducers of size n1, n2, since that is the maximal possible
number of calls to join.

Fixed-length pre. Recall that in the fixed-length case we do not need any padding symbol. Then,
given a fixed-length language L, pre(L) admits an inductive definition that we now derive.

Proposition 6.15 The sets preS (L) have the following properties:

(1) if S = ∅ or L = ∅, then preS (L) = ∅;

(2) if S = { [ε, ε] } and L = {ε}, then preS (L) = {ε};

110 CHAPTER 6. FINITE UNIVERSES

Input: transducer table T , states q1, q2 of T
Output: state recognizing L(q1) ◦ L(q2)

1 join[T](q1, q2)
2 if G(q1, q2) is not empty then return G(q1, q2)
3 if q1 = q∅ or q2 = q∅ then return q∅
4 else if q1 = qε and q2 = qε then return qε
5 else / ∗ q∅ , q1 , qε , q∅ , q2 , qε ∗ /
6 for all (ai, a j) ∈ Σ × Σ do
7 qai,a j ← union[T]

(
join

(
q[ai,a1]

1 , q[a1,a j]
2

)
, . . . , join

(
q[ai,am]

1 , q[am,a j]
2

))
8 G(q1, q2) = make(qa1,a1 , . . . , qa1,am , . . . , qam,am)
9 return G(q1, q2)

Figure 6.7: Algorithm join[T](q1, q2)

(3) if ∅ , S , {[ε, ε]} and ∅ , L , {ε}, then preS (L) =
⋃

a,b∈Σ

a · pre
S [a, b](Lb),

where S [a,b] = {w ∈ (Σ × Σ)∗ | [a, b]w ∈ S }.

Proof: (1) and (2) are obvious. For (3), observe that all pairs of S have length at least one, and
so every word of preS (L) also has length at least one. Now, given an arbitrary word aw1 ∈ ΣΣ∗, we
have

aw1 ∈ preS (L)
⇔ ∃bw2 ∈ L : [aw1, bw2] ∈ S
⇔ ∃b ∈ Σ ∃w2 ∈ Lb : [w1,w2] ∈ S [a,b]

⇔ ∃b ∈ Σ : w1 ∈ pre
S [a, b](Lb)

⇔ aw1 ∈
⋃
b∈Σ

a · pre
S [a, b](Lb)

and so preS (L) =
⋃

a,b∈Σ

a · pre
S [a, b](Lb)

Proposition 6.15 leads to the recursive algorithm of Figure 6.5, which accepts as inputs a state of
the transducer table recognizing a relation S , a state of the automaton table recognizing a language
L, and returns the state of the automaton table recognizing preS (L). The transducer table is not
changed by the algorithm.

6.6 Decision Diagrams

Binary Decision Diagrams, BDDs for short, are a very popular data structure for the representation
and manipulation of boolean functions. In this section we show that they can be seen as minimal

6.6. DECISION DIAGRAMS 111

Input: transducer table TT , table T , state r of TT , state q of T
Output: state of T recognizing preL(r)(L(q))

1 pre[TT,T](r, q)
2 if G(r, q) is not empty then return G(r, q)
3 if r = r∅ or q = q∅ then return q∅
4 else if r = rε and q = qε then return qε
5 else
6 for all ai ∈ Σ do
7 qai ← union

(
pre[TT,T]

(
q[ai, a1], ra1

)
, . . . , pre[TT,T]

(
q[ai, am], ram

))
8 G(r, q)← make(qa1 , . . . , qam);
9 return G(r, q)

Table 6.7: The algorithm pre[TT,T](r, q).

automata of a certain kind.
Given a boolean function f (x1, det &minldots, xn) : {0, 1}n → {0, 1}, let L f denote the set of

strings b1b2 . . . bn ∈ {0, 1}n such that f (b1, . . . bn) = 1. The minimal DFA recognizing L f is very
similar to the BDD representing f , but not completely equal. We modify the constructions of the
last section to obtain an exact match.

Consider the following minimal DFA for a language of length four:

q0

q1

q2

q3

q4

q5

q6

q7

a

a

b

a

b
a

b

b

a

b

a

b

b

Its language can be described as follows: after reading an a, accept any word of length three;
after reading ba, accept any word of length 2; after reading bb, accept any two-letter word whose
last letter is a b.

Following this description, the language can also be more compactly described by an automaton
with regular expressions as transitions:

r0

r1 r2

r3

b

a · Σ3

a · Σ2

b · Σ

b

112 CHAPTER 6. FINITE UNIVERSES

Sections 6.6.1 and 6.6.2 show that this z-automaton (as we call it, see the definition below) is
unique, and can be obtained by repeatedly applying to the minimal DFA the following reduction
rule:

q

q1

qn

r

l1

l2

a1

am

• • • • • • {

q1

qn

r

l1 · Σ

l2 · Σ

• • •

The converse direction also works: the minimal DFA can be recovered from the z-automaton by
“reversing” the rule. This already allows to use z-automata as a data structure for fixed-length lan-
guages, but only through conversion to minimal DFAs: to compute an operation using z-automata,
expand them to minimal DFAs, conduct the operation, and convert the result back. Sections 6.6.3
and 6.6.4show how to do better by directly defining the operations on z-automata, bypassing the
minimal DFAs.

6.6.1 Z-automata and Kernels

A zip over an alphabet Σ is a regular expression of the form aΣn = a ΣΣΣ . . .ΣΣ︸ ︷︷ ︸
n

(which looks a bit

like a zip). The set of all zips over Σ is denoted by Z(Σ). We introduce z-automata as automata
whose transitions are labeled by zips.

Definition 6.16 A z-automaton is a tuple A = (Q,Σ, δ, q0, F), where Q, Σ, q0, and F are as for
NFAs, and δ : Q × Z(Σ)→ Q. The accepting runs of a z-automaton are defined as for NFAs-regs.

A z-automaton is finite if Q is finite, and deterministic if for every a ∈ Σ there is a unique k ∈ N
such that δ(q, aΣk) , ∅.

We abbreviate deterministic finite z-automaton to zDFA. We use zDFAs to recognize kernels
of fixed-length languages:

Definition 6.17 Let L ⊆ Σn be a nonempty, fixed-length language, and let k be the largest number
such that L = Σk · K for some K ⊆ Σ(n−k). The language K is the kernel of L, denoted K = ker(L).
If ker L = L, then L is a kernel.

For convenience we also declare ∅ to be a kernel with ker(∅) = ∅ and k = 0. A fixed-length language
is completely determined by its length and its kernel. Since applications manipulate fixed-length
languages of a given length known a priori, a z-automaton recognizing the kernel of a language
can be used to represent the language itself.

The language recognized by the minimal DFA at the beginning of the chapter is an example of
a kernel.

6.6. DECISION DIAGRAMS 113

6.6.2 The Master Z-automaton

We define a master z-automaton “containing” the minimal zDFAs for all kernels.

Definition 6.18 The master z-automaton over Σ is the tuple MZ = (QM,Σ, δM, FM), where

• QM is the set of all kernels;

• (K, aΣk,K′) ∈ δ iff K′ = ker(Ka) and Ka = Σk · K′; and

• FM is the singleton set containing the language {ε} as only element.

Example 6.19 Figure 6.8 shows the fragment of the master z-automaton. corresponding to the
fragment of the master automaton in Figure 6.1. The languages {a, b}, {aa, ab, ba, bb}, and {ab, bb},
which appeared in Figure 6.1, are not kernels, and so no longer appear here.

{ε}

{b}{a}

{aa, ab, bb}{aa, ab, ba}

{aab, abb, baa, bab, bbb}

a, b

∅
a, b

a b
aΣbΣ2

b

a b a

b

b
aΣ aΣ

{aaa, aab, aba, baa, bab, bba, bbb}

Figure 6.8: A fragment of the master z-automaton

Given a kernel K we define the zDFA AK = (QK ,Σ, δK , q0K , FK) as follows: QK is the set of
states of the master z-automaton reachable from the state K; q0K = K; δK is the projection of δM

onto QK ; and FK = FM. Using arguments similar to those for the master automaton, it is easy to
see that AK recognizes K.

A zDFA for a language is minimal if no other zDFA for the same language has fewer states. The
following proposition shows that minimal zDFAs have very similar properties to minimal DFAs:

114 CHAPTER 6. FINITE UNIVERSES

Proposition 6.20 (1) A zDFA A is minimal if and only if (a) every state of A recognizes a kernel,
and (b) distinct states of A recognize distinct kernels.

(2) AK is the unique minimal zDFA recognizing a kernel K.

(3) The result of exhaustively applying the reduction rule to the minimal DFA recognizing a
language L is the minimal zDFA recognizing ker(L).

Proof: (1⇒): For (a), assume that the language Lq recognized from a state q of A is not a kernel.
Then A has a transition (q, a · Σka , qa) for every a ∈ Σ, and moreover (L(q))a = (L(q))b for every
a, b ∈ Σ. Since (L(q))a = Σka · L(qa) for every a ∈ Σ, we have Σka · L(qa) = Σkb · L(qb) for every
a, b ∈ Σ. Let m be a letter of Σ such that km is minimal. Then, there is a number k such that
L(qa) = Σk · L(qm) for every a ∈ Σ, and so L(q) = Σk+1 · L(qm). Consider now the zDFA A′ obtained
from A by applying the transformation rule at the beginning of the section. A and A′ recognize the
same language, and so A is not minimal.

For (b), observe that the quotienting operation can be defined as for DFAs; if two distinct states
recognize the same kernel then the quotient with respect to the language partition has fewer states
than A, and so A is not minimal.

(1⇐): Let K be the language recognized by A. We prove that any zDFA A′ recognizing K and
satisfying (a) and (b) is isomorphic to A. Wdet&mine proceed by induction on the length n of the
words of K. The case n = 0 is easy. Assume n > 0, and let q0, q′0 be the initial states of A and
A′. Assume that A has a transition (q0, a · Σk, q). By (a), L(q) is a kernel, and so k = ind(Ka) and
L(q) = ker(Ka) (no other kernel can be reached by a transition with a label of the form a · Σk). By
symmetry, A′ also has a transition (q′0, a · Σ

k, q′), and L(q) = ker(Ka). By induction hypothesis, the
automata Aq and Aq′ obtained from A and A′ by removing all states not reachable from q and q′ are
isomorphic, and we are done.

(2) AK recognizes K and it satisfies conditions (a) and (b) of part (1) by definition, and so it is
a minimal zDFA. Uniqueness follows immediately from the proof of (1⇐).

(3) Let A be the minimal DFA recognizing K. Then distinct states of A recognize distinct
languages. We show that after exhaustively applying the reduction rule, every state of the resulting
zDFA recognizes a kernel, which is then the minimal zDFA by (1).

Assume that after exhaustively applying the reduction rule some state q does not recognize a
kernel. Without loss of generality, we can assume that L(q) is a language of minimal length. It
follows that the target state of all the outgoing transitions of q is the same state q′ recognizing
the kernel of L(q). But then the reduction rule can be applied to eliminate q, contradicting the
hypothesis.

6.6.3 A Data Structure

We use multi-zDFAs to represent sets of fixed-length languages of the same length. Multi-zDFAs
are zDFAs with multiple initial states. The first idea would be to represent a set L = {L1, . . . , Lm}

6.6. DECISION DIAGRAMS 115

1

L3

6

2

L2

a b

L1

4bΣ

a

Figure 6.9: The multi-zDFA for {L1, L2, L3} with L1 = {aa}, L2 = {aa, bb}, and L3 = {aa, ab}.

of languages by the multi-zDFA whose initial states are the states of the master z-automaton recog-
nizing the kernels K = {ker(L1), . . . , ker(Lm)}. However, this is incorrect: since for every language
L and every number n ≥ 0 we have ker(L) = ker(ΣnL), all the sets {ΣnL1, . . . ,Σ

nLm} are mapped
to K. This problem is solved by representing L by the multi-zDFA and the common length of
L1, . . . , Lm, which together completely determine L.

Example 6.21 Figure 6.9 shows the multi-zDFA for the set {L1, L2, L3} of Example 6.7. Recall
that L1 = {aa, ba}, L2 = {aa, ba, bb}, and L3 = {ab, bb}. This multi-zDFA is the result of applying
the reduction rule to the multi-DFA of Figure 6.2. We represent the set by this multi-zDFA and the
number 2, the length of L1, L2, L3.

Observe that, while L1, L2 and L3 have the same length, their kernels have not. Notice also how
the state for L1 is a descendant of the state for L2.

Multi-zDFAs are represented as a table of kernodes. A kernode is a triple 〈q, l, s〉, where q is
a state identifier, l is a length, and s = (q1, . . . , qm) is the successor tuple of the kernode. Each
kernode of the multi-zDFA corresponds to a state of the master z-automaton. The table for the
multi-DFA of Figure 6.9 is:

Ident. Length a-succ b-succ
1 0 0 0
2 1 1 0
4 1 0 1
6 2 2 1

This example explains the role of the new length field. If we only now that the a- and b-successors
of, say, state 6, are the states 2 and 1, respectively, we still do not know which are the labels of the

116 CHAPTER 6. FINITE UNIVERSES

transitions leading from 6 to 2 and from 6 to 1: they could be a and bΣ, or aΣ and bΣ2, or aΣn and
bΣn+1 for any n ≥ 0. However, once we know that state 6 accepts a language of length 2, we can
deduce the correct labels: since states 2 and 1 accept languages of length 1 and 0, respectively, the
labels must be a and bΣ.

The procedure kmake[T](l, s). The algorithms use a procedure kmake[T](l, s) with the fol-
lowing specification: kmake[T](l, s) returns the state recognizing ker

(⋃m
i=1 aiΣ

li · Ki
)
, where

K1, . . . ,Km are the kernels recognized by the states of the tuple s, and, for every 1 ≤ i ≤ m, li
is the number such that aiΣ

li · Ki has length l.
If at least two of K1, . . . ,Km are different, then kmake[T](l, s) can behave like make[T](s):

if the table T already contains a kernode 〈q, l, s〉, then kmake[T](l, s) returns its state identifier q;
if no such kernode exists, then kmake[T](l, s) creates a new kernode 〈q, l, s〉with a fresh identifier
q, and returns q. It is easy to see that the result is the state

If K1 = · · · = Km , ∅, then kmake[T](l, s) does not behave like make[T](s). In this case we
have

ker

 m⋃
i=1

aiΣ
li · Ki

 = ker(Σ · K1) = K1

and so kmake[T](l, t) returns the state recognizing K1. For instance, if T is the table above, then
kmake[T](3, (2, 2)) returns 3, while make[T](2, 2) creates a new node, say 7, having 2 as a-
successor and b-successor. This is the feature that allows to obtain a more compact representation:
in this situation, kmake[T](l, t) “saves” a state.

6.6.4 Operations on Kernels

The algorithms for operations of kernels are simple modifications of the algorithms of the previous
section. We show how to modify the intersection algorithm, and the algorithm for simultaneous
determinization and minimization.

Intersection.

Let L1, L2 be languages of length n, and let q1, q2 be the states of the master z-automaton recogniz-
ing the kernels ker(L1) and ker(L2). We derive an algorithm kinter[T](q1, q2) of Table 6.8 returns
the state recognizing ker(L1 ∩ L2).

We need an auxiliary operation. Given two kernels K1,K2 of lengths l1 and l2, we define

K1 u K2 =

{
ker(Σl1−l2K1 ∩ K2) if l1 ≥ l2
ker(K1 ∩ Σl2−l1K2) if l1 < l2

Intuitively, the operation first creates two languages of length max l1, l2, intersects them, and returns
the kernel of the intersection. The interest of the operation lies in this lemma:

Lemma 6.22 For any two languages L1, L2 of the same length ker(L1 ∩ L2) = ker(L1) u ker(L2).

6.6. DECISION DIAGRAMS 117

Proof: Let L1 = Σn1 K1 and L2 = Σn2 K2. Assume w.l.o.g. n1 ≥ n2. Then we have L1 ∩ L2 =

Σn1−n2(Σn2 K1 ∩ K2). So ker(L1 ∩ L2) = ker(Σn1−n2(Σn2 K1 ∩ K2)) = ker(Σn2 K1 ∩ K2) = K1 u K2.

By the lemma, computing the state recognizing ker(L1 ∩ L2) amounts to computing the state
recognizing ker(L1) u ker(L2). Let K1 = ker(L1) and K2 = ker(L2). If K1 or K2 are empty, then the
task is easy:

(1) if K1 = ∅, then K1 u K2 = ∅;

(2) if K2 = ∅, then K1 u K2 = ∅.

If K1 , ∅ , K2, then we compute the state for K1 u K2 recursively, by computing the successor
states for each letter a ∈ Σ, and then applying kmake. Recall that in the master automaton, the
a-successor of the state for L is the state for La. In the master z-automaton, the a-successor of the
state for a kernel K is not the state for Ka, which may not even be a kernel, but the state for ker(Ka).
So for every letter a ∈ Σ, we need to compute the state for ker((K1 u K2)a). For this, we prove the
following equation, where l1, l2 are the lengths of K1,K2:

(3) if K1 , ∅ , K2, then

ker((K1 u K2)a) =


K1 u ker(Ka

2) if l1 > l2
ker(Ka

1) u K2 if l1 < l2
ker(Ka

1) u ker(Ka
2) if l1 = l2

To show that (3) holds, assume first l1 > l2. We have

ker((K1 u K2)a) = ker((Σl1−l2K1 ∩ K2)a) (def. of u)
= ker(Σl1−l2−1K1 ∩ Ka

2) ((L ∩ M)a = La ∩ Ma)
= ker(Σl1−l2−1K1) u ker(Ka

2)) (Lemma 6.22)
= K1 u ker(Ka

2) (K1 is a kernel)

The case l1 > l2 is symmetric. If l1 = l2, let Let Ka
1 = Σl′1 ker(Ka

1), Ka
2 = Σl′2 ker(Ka

2), and let
l′ = min{l′1, l

′
2}

ker((K1 u K2)a) = ker((K1 ∩ K2)a) (def. of u)
= ker(Ka

1 ∩ Ka
2)

= ker(Ka
1) u ker(Ka

2) (Lemma 6.22)

Equations (1)-(3) lead to the algorithm kinter[T](q1, q2) shown in Table 6.8.

Example 6.23 Example 6.8 showed a run of inter() on the two languages represented by the multi-
DFA at the top of Figure 6.4. The multi-zDFA for the same languages is shown at the top of
Figure 6.10, and the rest of the figure describes the run of kinter() on it. Recall that pink nodes
correspond to calls whose result has already been memoized, and need not be executed. The
meaning of the green nodes is explained below.

118 CHAPTER 6. FINITE UNIVERSES

1

65

98

15

32

10

a b

a

ab

a

1312

8, 1 7→ 8 9, 10 7→ 14

1, 6 7→ 60, 1 7→ 05, 1 7→ 5

2, 1 7→ 2 3, 1 7→ 3 1, 2 7→ 2 1, 1 7→ 1

0, 1 7→ 01, 1 7→ 11, 1 7→ 10, 1 7→ 0

5, 1 7→ 5

12, 13 7→ 15

a

14

b

bΣ2

aΣ3

aΣ2

bΣ

0, 1 7→ 0

0, 0 7→ 0 0, 0 7→ 0

1, 1 7→ 1

a

a

b

b b

a

b

Figure 6.10: An execution of kinter().

6.6. DECISION DIAGRAMS 119

kinter[T](q1, q2)
Input: table T , states q1, q2 of T for languages L1, L2
Output: state recognizing ker(L1 ∩ L1)

1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1 = q∅ or q2 = q∅ then return q∅
3 if q1 , q∅ and q2 , q∅ then
4 if l1 < l2 then
5 for all i = 1, . . . ,m do ri ← inter[T](q1, q

ai
2)

6 G(q1, q2)← kmake[T](l2, r1, . . . , rm)
7 else if l1 l2 then
8 for all i = 1, . . . ,m do ri ← inter[T](qai

1 , q2)
9 G(q1, q2)← kmake[T](l1, r1, . . . , rm)

10 else /* l1 = l2 */

11 for all i = 1, . . . ,m do ri ← inter[T](qai
1 , q

ai
2)

12 G(q1, q2)← kmake[T](l1, r1, . . . , rm)
13 return G(q1, q2)

Table 6.8: kinter[T](q1, q2)

The efficiency of the algorithm can be improved by observing that two further equations hold:

(6’) if ker(L1) = {ε} then (ker(L1 ∩ L2))a = (ker(L2))a;

(7’) if ker(L2) = {ε} then (ker(L1 ∩ L2))a = (ker(L1))a;

These equations show that kinter[T](qε, q) = q = kinter[T](q, qε) for every state q. So we can im-
prove kinter() by explicitly checking if one of the arguments is qε. The green nodes in Figure 6.10
correspond to calls whose result is immediately returned with the help of this check. Observe how
this improvement has a substantial effect, reducing the number of calls from 19 to only 5.

Determinization and Minimization.

The algorithm kdet&min() that converts an NFA recognizing a fixed-language L into the minimal
zDFA recognizing ker(L) differs from det&min() essentially in one letter: it uses kmake() instead
of make(). It is shown in Table 6.9.

Example 6.24 Figure 6.11 shows again the NFA of Figure 6.6, and the minimal zDFA for the
kernel of its language. The run of kdet&min(A) is shown at the bottom of the figure. For the differ-
ence with det&min(A), consider the call kstate({δ, ε, ζ}). Since the two recursive calls kstate({η})
and kstate({η, θ}) return both state 1 with length 1, kmake(1, 1) does not create a new state, as
make(1, 1) would do it returns state 1. The same occurs at the top call kstate({α}).

120 CHAPTER 6. FINITE UNIVERSES

θη

3

a

2

b

1

εδ ζ

b

bb

α

b

b
b

β γ

a a, b

a a, b

a

ε 7→ 2 δ, ε, ζ 7→ 1

γ 7→ 3

ε, ζ 7→ 1

η, θ 7→ 1

ε 7→ 2

η, θ 7→ 1η 7→ 1 η 7→ 1 η 7→ 1∅ 7→ 0

β, γ 7→ 3

α 7→ 3

bΣ

Figure 6.11:

6.6. DECISION DIAGRAMS 121

kstate[A](S , l)
Input: NFA A = (Q,Σ, δ, q0, F), set S ⊆ Q of length l
Output: state of the multi-zDFA recognizing L(R)

1 if G(S) is not empty then return G(S)
2 else if S = ∅ then return q∅
3 else if S ∩ F , ∅ then return qε
4 else / ∗ S , ∅ and S ∩ F = ∅ ∗ /

5 for all i = 1, . . . ,m do S i ← δ(S , ai)
6 G(S)← kmake(l, state[A](S 1), . . . , state[A](S m));
7 return G(S)

kdet&min(A)
Input: NFA A = (Q,Σ, δ, q0, F)
Output: state of a multi-DFA recognizing L(A)

1 return state[A]({q0})

Table 6.9: The algorithm kdet&min(A).

Exercises

Exercise 61 Prove that the minimal DFAs for the languages of length 3 have at most 8 states.

Exercise 62 Give an efficient algorithm that receives as input the minimal DFA of a fixed-length
language and returns the number of words it contains.

Exercise 63 Let Σ = {0, 1}. Given a, b ∈ Σ, let a · b be the usual multiplication (an analog of
boolean and) and let a ⊕ b be 0 if a = b = 0 and 1 otherwise (an analog of boolean or).

Consider the boolean function f : Σ6 → Σ defined by

f (x1, x2, x3, x4, x5, x6) = (x1 · x2) ⊕ (x3 · x4) ⊕ (x5 · x6)

1. Construct the minimal DFA recognizing {x1x2x3x4x5x6 | f (x1, x2, x3, x4, x5, x6) = 1}.
(For instance, the DFA accepts 111000 because f (1, 1, 1, 0, 0, 0) = 1, but not 101010, be-
cause f (1, 0, 1, 0, 1, 0) = 0.)

2. Construct the minimal DFA recognizing {x1x3x5x2x4x6 | f (x1, x2, x3, x4, x5, x6) = 1}.
(Notice the different order! Now the DFA accepts neither 111000, because f (1, 0, 1, 0, 1, 0) =

0, nor 101010, because f (1, 0, 0, 1, 1, 0) = 0.)

3. More generally, consider the function

f (x1, . . . , x2n) =
⊕
1≤k≤n

(x2k−1 · x2k)

122 CHAPTER 6. FINITE UNIVERSES

and the languages {x1x2 . . . x2n−1x2n | f (x1, . . . , x2n) = 1} and {x1x3 . . . x2n−1x2x4 . . . x2n |

f (x1, . . . , x2n) = 1}.
Show that the size of the minimal DFA grows linearly in n for the first language, and expo-
nentially in n for the second language.

Exercise 64 Given a language L of length n and a permutation π of {1, . . . , n}, we define π(L) =

{aπ(1) . . . aπ(n) | a1a2 . . . an ∈ L}. Prove that the following problem is NP-complete:

Given: A minimal DFA A recognizing a fixed-length language, a number k ≥ 1.
Decide: Is there a permutation π of {1, . . . , n}, where n is the length of L(A), such that
the minimal DFA for L(π(A)) has at most k states?

Exercise 65 Given X ⊂ {0, 1, . . . , 2k − 1}, let AX be the minimal DFA recognizing the lsbf encod-
ings of length k of the elements of X.

• Define X +1 by X +1 = {x+1 mod 2k | x ∈ X}. Give an algorithm that on input AX produces
AX+1 as output.

• Let AX = (Q, {0, 1}, δ, q0, F). Which is the set of numbers recognized by the automaton
(Q, {0, 1}, δ′, q0, F), where δ′(q, b) = δ(q, 1 − b)?

Exercise 66 Recall the definition of DFAs with negative transitions (DFA-nt’s) introduced in
Exercise 26, and consider the alphabet {0, 1}. Show that if only transitions labelled by 1 can be
negative, then every regular language over {0, 1} has a unique minimal DFA-nt.

Exercise 67 Define

emb(L) = {[v1, v2] ∈ (Σ × Σ)n | v2 ∈ L}

and define preS (L), where S ∈ (Σ × Σ)∗ and L ∈ Σ∗, as follows:

preS (L) = {w1 ∈ Σn | ∃[v1, v2] ∈ S : v1 = w1 and v2 ∈ L}

Show that
(
preS (L)

)a
=

⋃
b∈Σ

pre
S [a, b](Lb).

6.6. DECISION DIAGRAMS 123

Solution: We have:(
preS (L)

)a
=

(
proj1(S ∩ emb(L))

)a

=

 proj1

⋃
b∈Σ

[a, b] · (S ∩ emb(L))[a, b]

a

=

⋃
b∈Σ

proj1
(
[a, b] · (S ∩ emb(L))[a, b]

)a

=

⋃
b∈Σ

a · proj1
(
(S ∩ emb(L))[a, b]

)a

=
⋃
b∈Σ

proj1
(
(S ∩ emb(L))[a, b]

)
=

⋃
b∈Σ

proj1
(
S [a, b] ∩ emb

(
Lb

))
=

⋃
b∈Σ

pre
S [a, b](Lb)

The second step in this chain is the crucial one. It holds because # does not appear in the words of
S , and so the word of S encoding a pair of the form [aw1,w2] ∈ Σn × Σn necessarily starts with a
letter of the form [a, b] for some b ∈ Σ.

124 CHAPTER 6. FINITE UNIVERSES

Chapter 7

Applications I: Pattern matching

As a first example of a practical application of automata, we consider the pattern matching problem.
Given w,w′ ∈ Σ∗, we say that w′ is a factor of w if there are words w1,w2 ∈ Σ∗ such that w =

w1w′w2. If w1 and w1w′ have lengths k and k′, respectively, we say that w′ is the [k, k′]-factor of
w. The pattern matching problem is defined as follows: Given a word t ∈ Σ+ (called the text), and
a regular expression p over Σ (called the pattern), determine the smallest k ≥ 0 such that some
[k′, k]-factor of t belongs to L(p). We call k the first occurrence of p in t.

Example 7.1 Let p = a(ab∗a)b. Since ab, aabab ∈ L(p), the [1, 3]-, [3, 5]-, and [0, 5]-factors of
aabab belong to L(p). So the first occurrence of p in aabab is 3.

Usually one is interested not only in finding the ending position k of the [k′, k]-factor, but also
in the starting position k′. Adapting the algorithms to also provide this information is left as an
exercise.

7.1 The general case

We present two different solutions to the pattern matching problem, using nondeterministic and
deterministic automata, respectively.

Solution 1. Clearly, some word of L(p) occurs in t if and only if some prefix of t belongs to
L(Σ∗p). So we construct an NFA A for the regular expression Σ∗p using the rules of Figure 2.4
(i.e., the algorithm RegtoNFA), and then simulate A on t as in MemNFA[A](q0,t) on page 56. Recall
that the simulation algorithm reads the text letter by letter, maintaining the set of states reachable
from the initial state by the prefix read so far. So the simulation reaches a set of states S containing
a final state if and only if the prefix read so far belongs to L(Σ∗p). Here is the pseudocode for this
algorithm:

125

126 CHAPTER 7. APPLICATIONS I: PATTERN MATCHING

PatternMatchingNFA(t, p)
Input: text t = a1 . . . an ∈ Σ+, pattern p ∈ Σ∗

Output: the first occurrence k of p in t, or ⊥ if no such occurrence exists.

1 A← RegtoNFA(Σ∗p)
2 S ← {q0}

3 for all k = 0 to n − 1 do
4 if S ∩ F , ∅ then return k
5 S ← δ(S , ai)
6 return ⊥

If we assume that the alphabet Σ has fixed size, then the complexity of PatternMatchingNFA for a
word of length n and a pattern of length m can be estimated as follows. RegtoNFA(Σ∗p) takes O(m)
time1. The loop is executed at most n times, and, for an automaton with k states, each line of the
loop’s body takes at most O(k2) time. Since RegtoNFA(p) takes O(m) time, we have k ∈ O(m), and
so the loop runs in O(nm2) time. The overall runtime is thus O(m + nm2) = O(nm2).

Solution 2. We proceed as in the previous case, but instead of constructing a NFA for the regular
expression Σ∗p, we construct a DFA instead:

PatternMatchingDFA(t, p)
Input: text t = a1 . . . an ∈ Σ+, pattern p
Output: the first occurrence k of p in t, or ⊥ if no such occurrence exists.

1 A← NFAtoDFA(RegtoNFA(Σ∗p))
2 q← q0

3 for all i = 0 to n − 1 do
4 if q ∈ F then return k
5 q← δ(q, ai)
6 return ⊥

Notice that there is trade-off: while the conversion to a DFA can take (much) longer than the
conversion to a NFA, the membership check for a DFA is faster. The complexity of PatternMatch-
ingDFA for a word of length n and a pattern of length m can be easily estimated: RegtoNFA(p)
takes O(m) time, and so the call to NFAtoDFA (see Table 2.3.1) takes 2O(m) time and space. Since
the loop is executed at most n times, and each line of the body takes constant time, the overall
runtime is O(n) + 2O(m).

1If Σ does not have fixed size, then constructing the NFA for Σ∗p takes O(m + |Σ|) time.

7.2. THE WORD CASE 127

7.2 The word case

We study the special but very common special case of the pattern-matching problem in which we
wish to know if a given word appears in a text. In this case the pattern p is the word itself. For
the rest of the section we consider an arbitrary but fixed text t = a1 . . . an and an arbitrary but fixed
word pattern p = b1 . . . bm.

It is easy to find a faster algorithm for this special case, without any use of automata theory:
just move a “window” of length m over the text t, one letter at a time, and check after each move
whether the content of the window is p. The number of moves is n − m + 1, and a check requires
O(m) letter comparisons, giving a runtime of O(nm). In the rest of the section we present an even
faster algorithm with time complexity O(m + n). Notice that in some applications both n and m can
be very large, and the difference between O(nm) and O(m + n) very significant.

We start by examining Solution 2, and in particular the time required to construct the minimal
DFA for Σ∗p. It is easy to see that the number of states of the minimal DFA must be at least as
large as the number of prefixes of p. (For a proof, let p1, p2 be two arbitrary but distinct prefixes
of p, and let p1s1 = p = p2s2. Then p1s1 is accepted by the DFA, but p2s1 is not. So the residuals
of Σ∗p with respect to p1 and p2 differ. Since the number of states of the minimal DFA is equal
to the number of distinct residuals, we are done.) We now construct a DFA in which the states
are the prefixes of the pattern p. Since this DFA has a minimal number of states, and the minimal
DFA is unique, it follows that this DFA is the minimal DFA. Before giving the formal definition of
the construction, we consider an example. Figure 7.1 shows the minimal DFA for p = nano, with
states ε, n, na, nan, and nano. Intuitively, the DFA keeps track of how close it is to finding nano.
For instance:

• if the automaton is in state n and it reads an a, it moves to state na;

• if the automaton is in state na and it reads an a, it moves to state ε;

• if the automaton is in state nan and it reads an a, it moves to state na. This is the crucial case:
since the next letter is a instead of o, the DFA has not found nano yet. However, it does not
move to state ε. That would be a mistake, because if the next two letters are n and o, then the
DFA should accept! So the DFA moves to na.

The general rule is:

If the DFA is in state v ∈ Σ∗ and it reads a letter α, it moves to the largest suffix of vα
that is also a prefix of p.

For a reason that will become clear later, we call this automaton the eager DFA for p. Let us define
it formally.

Definition 7.2 We denote by ol(w) (the overlap of w and p) the longest suffix of w that is a prefix
of p. In other words, ol(w) is the unique longest word of the set

{u ∈ Σ∗ | ∃v, v′ ∈ Σ∗.w = vu ∧ p = uv′}

128 CHAPTER 7. APPLICATIONS I: PATTERN MATCHING

nε na nan nano

nother

n a o

other
other

other n

a

n

(c)

Figure 7.1: DFA for p = nano: eagerDFA(nano)

For example, if p = nano, then overl(nana) = na and overl(nann) = n.

Definition 7.3 The eager DFA of the pattern p is the tuple eagerDFA(p) = (Qe,Σ, δe, q0e, Fe),
where :

• Qe is the set of prefixes of p (including ε);

• for every u ∈ Qe, for every α ∈ Σ: δe(u, α) = ol(uα);

• q0e = ε; and

• Fe = {p}

We can now obtain an algorithm for the pattern-matching problem in the word case by replacing
line 1 in Pattern-Matching-DFA(t, p) with

A← eagerDFA(p)

The algorithm stops in state p if and only if the pattern p has been read.
In order to estimate the runtime of this algorithm, observe that eagerDFA(p) has m + 1 states

and m|Σ| transitions, where Σ is the size of the alphabet. At this point it makes sense to consider
two different scenarios:

• The alphabet Σ is fixed and known in advance. Then we can consider |Σ| as a constant, and
“hide” it in the O-symbol. We then get a DFA of size O(m).

• The alphabet Σ is not known in advance, it is implicitely defined as the set of letters that
appear in the text and the pattern. If we assume that the text is at least as long as the pattern,
then the alphabet has size O(n), and we get a DFA of size O(nm).

In the second scenario, since constructing a DFA of size O(nm) requires Ω(m2) time, no al-
gorithm based on the explicit, direct construction of the eager DFA for p can lead to a O(n + m)
algorithm. Moreover, constructing eagerDFA(p) requires to examine the text in order to determine
the letters that appear in it.

7.2. THE WORD CASE 129

A first idea to reduce the memory requirements is to store the DFA more compactly. Observe
that for every state u and for every letter α ∈ Σ, if α does not appear in p, then δe(u, α) = ε. So
the transitions for letters appearing in the text but not in the pattern can be “summarized” into one
single transition. After this optimization each state has at most m + 1 outgoing transitions, and
eagerDFA(p) has size O(m2). However, this still leads to a O(n + m2) algorithm, and it does not
solve the problem of having to inspect the text to construct eagerDFA(p).

These problems can be solved by introducing a new data structure for the language L(Σ∗p):
the lazy DFA for p. We show that the lazy DFA has size O(m) and can be constructed in O(m)
time, even when Σ is not known in advance. The result will be the well-known Knuth-Morris-Pratt
algorithm, presented from an automata-theoretic point of view.

7.2.1 Lazy DFAs

A DFA can be seen as the control unit of a machine that reads the input from a tape divided into
cells by means of a reading head. Each cell contains a letter of the input and the tape extends
infinitely long to the right of the input with all cells empty. Initially, the content of the tape is w,
where w ∈ Σ∗ is the word to be processed by the automaton, and the head is reading the first cell
of the tape. This cell contains the first letter of w if w , ε and it is empty otherwise. At each step,
the machine reads the content of the current cell, moves the head one cell to the right, and updates
the current control state according to the transition function of the DFA. It accepts an input if the
control state is a final state at the moment the head reaches an empty cell for the first time.

...b a n a n a n o n a

Figure 7.2: Tape with reading head.

Notice that the direction in which the head moves is always the same. We now consider ma-
chines in which the direction is also determined by the control unit. For our purposes we only need
a very modest extension: the head may either move to the right or stay put. We call this model a
lazy DFA. Formally, a lazy DFA only differs from an eager DFA in the transition function, which
has the form δ : Q × Σ→ Q × {R,N}, where R stands for move Right and N stands for No move. A
transition of a lazy DFA is therefore a fourtuple (q, a, q′, d), where d ∈ {R,N} is a direction. Like
an eager DFA, a lazy DFA accepts an input if if the control state is a final state at the moment the
head reaches an empty cell for the first time. (Notice that a lazy DFA may stay put on the same
cell forever, and in this case the machine does not accept the input. However, this will never be the
case for our lazy DFAs.)

The lazy DFA for p again has the prefixes of p as states – with the same intuitive meaning of
how close one is to p. However, it has fewer transitions. A lazy DFA at state u only distinguishes
whether the current letter is a hit (the letter following u in the pattern) or a miss (any other letter).
Figure 7.3 shows the lazy DFA for the pattern nano: for instance, at state nan the automaton only

130 CHAPTER 7. APPLICATIONS I: PATTERN MATCHING

0 2

miss, N

miss, N
3

miss, R

n, R a, R n, R o, R

miss, N
miss, N

1 4

Figure 7.3: Lazy DFA for p = nano: lazyDFA(nano)

distinguishes between o and “other”. In the case of a hit the lazy DFA “moves forward”, just like
the eager DFA. In the case of a miss, if the current state is ε, then the head moves right and control
stays on ε2. But if the current state is not ε, then the head does not move, and the eager DFA
moves to a new state which depends only on the current state, not on the current letter. So we
can summarize all miss-transitions into one (all have the same destination), and the summarized
description of the lazy DFA only has two transitions per state.

If the lazy DFA is at state u , ε, and it reads a miss, what should be the new state? The state is
chosen to guarantee that the lazy DFA “simulates” the eager DFA: a step u

α
−−→ v of the eager DFA

is simulated by a sequence of moves

u
(α,N)
−−−−−→ u1

(α,N)
−−−−−→ v2 · · · uk

α,R
−−−→ v

of the lazy DFA. For instance, in our example the move nan
n
−−→ n of the eager DFA is simulated in

the lazy DFA by the sequence

nan
(n,N)
−−−−−→ n

(n,N)
−−−−−→ ε

(n,R)
−−−−−→ n .

But how should we choose the new state to guarantee the simulation property? In the rest of the
chapter we show that after a miss from state u , ε we should move to the largest proper suffix of u
which is a prefix of p (the longest “proper overlap” of u with p). We start by formally defining the
lazy DFA for the language Σ∗p.

Definition 7.4 Let w be a proper prefix of p.

• We denote by hw the unique letter such that w hw is a prefix of p. We call hw a hit (from state
w). Notice that hε = a1.

• For w , ε we define pol(w) (short for proper overlap) as the longest proper suffix of w that
is a prefix of p, that is, pol(w) is the unique longest word of the set

{u ∈ Σ∗ | there exists v ∈ Σ+, v′ ∈ Σ∗ such that w = vu and p = uv′}
2Actually, this is still the same behavior as the eager DFA.

7.2. THE WORD CASE 131

Notice the difference in the definitions of ol and pol: ol(w) is a longest suffix of w, while pol(w) is a
longest proper suffix, and so in particular always strictly shorter than w. For example, for p = nano
we have overl(nano) = nano, while overl(nano) = ε.

Definition 7.5 The lazy DFA for p is the tuple lazyDFA(p) = (Ql,Σ, δl, q0l, Fl), where:

• Ql is the set of prefixes of p;

• for every u ∈ Ql, α ∈ Σ:

δl(u, α) =


(uα,R) if α = hu (hit)
(ε,R) if α , hu and u = ε (miss from ε)
(pol(u),N) if α , hu and u , ε (miss from other states)

• q0l = ε; and

• Fl = {p}

In order to prove the simulation property we introduce some notation:

Definition 7.6 Let lazyDFA(p) = (Ql,Σ, δl, q0l, Fl), let u ∈ Ql, and let α ∈ Σ. We denote by δ̂l(u, α)
the unique state v such that

u = u0
(α,N)
−−−−−→ u1

(α,N)
−−−−−→ u2 · · · uk

(α,R)
−−−−−→ v

for some u1, . . . , uk ∈ Ql, k ≥ 0.

Notice that v always exists. For a proof, observe that, by definition of lazyDFA(p), if ui
(α,N)
−−−−−→ ui+1

then ui+1 is a proper prefix of ui, and so the lazy DFA cannot perform an arbitrarily large of steps
in which the head does not move.

Proposition 7.7 Let lazyDFA(p) = (Ql,Σ, δl, q0l, Fl) and eagerDFA(p) = (Qe,Σ, δe, q0e, Fe). Then
δ̂l(v, α) = δe(v, α) for every prefix v of p and every α ∈ Σ.

Proof: If α is a hit, i.e., if α = hv, then we have δe(v, α) = vα = δ̂(v, α). If α is a miss, we
proceed by induction on |v|. If |v| = 0, then v = ε and by the definitions of δe and δl we have
δe(v, α) = δl(v, α) = δ̂l(v, α). If |v| > 0, then by the definition of δl we have δl(v, α) = (pol(v),N),
and so:

δ̂l(v, α)
= δ̂l(pol(v), α) (δl(v, α) = (pol(v),N) and definition of δ̂l)
= δe(pol(v), α) (|pol(v)| < |v| and induction hypothesis)

To complete the proof we show δe(pol(v), α) = δe(v, α). By the definition of δe we have δe(pol(v), α) =

ol(pol(v)α) and δe(v, α) = ol(vα). So we have to prove ol(pol(v)α) = ol(vα) when α is a miss, i.e.,
when α , hv.

132 CHAPTER 7. APPLICATIONS I: PATTERN MATCHING

Since pol(v) is a suffix of v, every suffix of pol(v)α is a suffix of vα. So, by the maximality of
ol(vα), ol(pol(v)α) is a suffix of ol(vα). We now prove that ol(vα) is a suffix of ol(pol(v)α). Since
α is a miss, we have ol(vα) , vα, which implies ol(vα) = pol(vα). So we show that pol(vα) is
a suffix of ol(pol(v)α). By the maximality of ol, it suffices to prove that every proper suffix of vα
that is a prefix of p is also a suffix of pol(v)α). This certainly holds for the empty suffix. For a
nonempty proper suffix wα we have:

wα is a prefix of p and a proper suffix of vα
⇒ w is a prefix of p and a proper suffix of v
⇒ w is a suffix of pol(v) (maximality of pol)
⇒ wα is a suffix of pol(v)α

7.2.2 Constructing the lazy DFA in O(m) time

The lazy DFA has size O(m), but in order to construct it we must compute the function pol(v) for
every proper prefix v of p. This can be easily done in O(m2) time, but we show that it can even be
done in O(m) time.

Recall that pol(w) is the longest proper suffix of w that is a prefix of p (Definition 7.4). The
following equation holds for every proper prefix v of p:

pol(v hv) =


ε if v = ε

pol(v) hv if v , ε and hpol(v) = hv

pol(pol(v) hv) if v , ε and hpol(v) , hv

(7.1)

Only the third equation needs an argument. Since both pol(v hv) and pol(pol(v) hv) are prefixes of
p, it suffices to show that they have the same length. Clearly, every proper suffix of pol(v) hv is
a proper suffix of v hv, which, by maximality of pol, implies |pol(pol(v) hv)| ≤ |pol(v hv)|. Now
we prove |pol(pol(v) hv)| ≥ |pol(v hv)|. If |pol(v hv)| = 0, we are done. If |pol(v hv)| > 0, then
pol(v hv) = w hv, where w is a proper suffix of v and a prefix of p. By maximality of pol, we get that
w is also a suffix of pol(v), and so that w hv is a suffix of pol(v) hv and a prefix of p. But pol(v) hv

is not a prefix of p, because hpol(v) , hv, and so w hv is a proper suffix of pol(v) hv, which implies
pol(v) hv , w hv. So w hv is a proper suffix of pol(v) hv and a prefix of p, which, by the maximality
of pol, implies |pol(pol(v) hv)| ≥ |w hv| = |pol(v hv)|.

Equation 7.1 yields the recursive algorithm on the left of Table 7.1. If we let p = p[1] . . . p[m]
and identify the prefix of p of length k with the number k, we can rewrite the algorithm as shown
on the right side of the table.

Note that in particular, POL(p[1] · · · p[v − 1], p[v]) = pol(p[1] · · · p[v − 1]p[v]) and similarly
POLnum(v−1, v) is the length of pol(p[1] · · · p[v−1]p[v]). If we want to compute pol of all prefixes
of p, this call would appear again and again. Therefore, we memoize the results of the function
calls of the recursive procedures in an array pol[]. In other words, pol[v] = |pol(p[1] . . . p[v])| =

7.2. THE WORD CASE 133

POL(v, α)
Input: a prefix v of p, a letter α ∈ Σ.
Output: pol(vα).

1 if |v| = 0 then return ε
2 else if v = wβ then
3 u← POL(w, β)
4 if α = hu then return uα
5 else return POL(u, α)

POLnum(v, k)
Input: numbers 0 ≤ v, k ≤ m.
Output: the length of pol(p[1] . . . p[v]p[k]).

1 if v = 0 then return 0
2 else
3 u← POLnum(v − 1, v)
4 if p[k] = p[u + 1] then return u + 1
5 else return POLnum(u, k)

Table 7.1: Two recursive algorithms for computing pol

POLnum(v − 1, v). Table 7.2 shows an iterative algorithm for computing pol of all p’s prefixes
obtained by applying dynamic programming to the recursive algorithm on the right of Table 7.1.
Moreover, a careful analysis shows that due to memoizing the results, the procedure POLnum is
called at most 2m times.

POLiterative(m)
Input: a number 1 ≤ m.
Output: the array pol[1..m] with

pol[i] = length of pol(p[1] . . . p[i]) for every 1 ≤ i ≤ m.
1 for all v = 1 to m do
2 pol[v]← POLnum(v − 1, v)

Table 7.2: An iterative algorithm for computing pol

Exercises

Exercise 68 Design an algorithm that solves the following problem for an alphabet Σ. Discuss
the complexity of your solution.

• Given: w ∈ Σ∗ and a regular expression r over Σ.

• Find: A shortest prefix w1 ∈ Σ∗ of w such that there exists a prefix w1w2 of w and w2 ∈ L(r).

Exercise 69 Construct the eager and lazy DFAs for the patterns mammamia and abracadabra.

Exercise 70 We have shown that lazy DFAs are more concise than eager DFAs for languages of
the form Σ∗p. However, this improvement does not entirely come for free. There is a space vs.

134 CHAPTER 7. APPLICATIONS I: PATTERN MATCHING

running-time trade-off, because, due to the steps in which the head does not move, a lazy DFA may
need more than n steps to read a word of length n. Find a word w and a pattern p such that the run
of eagerDFA(p) on w takes at most n steps and the run of lazyDFA(p) takes at least 2n − 1 steps.
Hint: a simple pattern of the form ak for some k ≥ 0 is sufficient.

Exercise 71 Two-way finite automata are an extension of lazy automata in which the reading
head may not only move right or stay put, but also move left. The tape extends infinitely long to
both the left and to the right of the input with all cells empty. A word is accepted if the control
state is a final state at the moment the head reaches an empty cell to the right of the input for the
first time.

• Give a two-way DFA with O(n) states for the language (0 + 1)∗1(0 + 1)n.

• Give algorithms for membership and emptiness of two-way automata.

• (Difficult!) Prove that the languages recognized by two-way DFA are regular.

Chapter 8

Applications II: Verification

One of the main applications of automata theory is the automatic verification or falsification of
correctness properties of hardware or software systems. Given a system (like a hardware circuit,
a program, or a communication protocol), and a property (like“after termination the values of the
variables x and y are equal” or “every sent message is eventually received”), we wish to automati-
cally determine whether the system satisfies the property or not.

8.1 The Automata-Theoretic Approach to Verification

We consider discrete systems for which a notion of configuration can be defined1. The system is
always at a certain configuration, with instantaneous moves from one configuration to the next de-
termined by the system dynamics. If the semantics allows a move from a configuration c to another
one c′, then we say that c′ is a legal successor of c. A configuration may have several successors,
in which case the system is nondeterministic. There is a distinguished set of initial configurations.
An execution is a sequence of configurations (finite or infinite) starting at some initial configura-
tion, and in which every other configuration is a legal successor of its predecessor in the sequence.
A full execution is either an infinite execution, or an execution whose last configuration has no
successors.

In this chapter we are only interested in finite executions. The set of executions can then be
seen as a language E ⊆ C∗, where the alphabet C is the set of possible configurations of the system.
We call C∗ the potential executions of the system.

Example 8.1 As an example of a system, consider the following program with two boolean vari-
ables x, y:

1We speak of the configurations of a system, and not of its states, in order to avoid confusion with the states of
automata.

135

136 CHAPTER 8. APPLICATIONS II: VERIFICATION

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

A configuration of the program is a triple [`, nx, ny], where ` ∈ {1, 2, 3, 4, 5} is the current
value of the program counter, and nx, ny ∈ {0, 1} are the current values of x and y. So the set
C of configurations contains in this case 5 × 2 × 2 = 20 elements. The initial configurations are
[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], i.e., all configurations in which control is at line 1. The sequence

[1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]

is a full execution, while
[1, 1, 0] [2, 1, 0] [4, 1, 0] [1, 1, 0]

is also an execution, but not a full one. In fact, all the words of

([1, 1, 0] [2, 1, 0] [4, 1, 0])∗

are executions, and so the language E of all executions is infinite.

Assume we wish to determine whether the system has an execution satisfying some property of
interest. If both the language E ⊆ C∗ of executions and the language P ⊆ C∗ of potential executions
that satisfy the property are regular, and we can construct automata recognizing them, then we can
solve the problem by checking whether the language E ∩ P is empty, which can be decided using
the algorithms of Chapter 4. This is the main insight behind the automata-theoretic approach to
verification.

The requirement that the language E of executions is regular is satisfied by all systems with
finitely many reachable configurations (i.e., finitely many configurations c such that some execution
leads from some initial configuration to c). A system NFA recognizing the executions of the system
can be easily obtained from the configuration graph: the graph having the reachable configurations
as nodes, and arcs from each configuration to its successors. The construction is very simple: The
states of the system NFA are the reachable configurations of the program plus a new state, which

is also the initial state. For every transition c → c′ of the graph there is a transition c
c′
−−→ c′ in the

NFA. All states are final.

Example 8.2 Figure 8.1 shows the configuration graph of the program of Example 8.1, and below
it its system NFA. Notice that the labels of the transitions of the NFA carry no information, because
they are just the name of the target state.

We wish to automatically determine if the system has a full execution such that initially y = 1,
finally y = 0, and y never increases. Let [`, x, 0], [`, x, 1] stand for the sets of configurations where
y = 0 and y = 1, respectively, but the values of ` and x are arbitrary. Similarly, let [5, x, 0] stand

8.1. THE AUTOMATA-THEORETIC APPROACH TO VERIFICATION 137

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]

[5, 0, 1]

[3, 1, 1][2, 1, 1]

[1, 1, 0]
[1, 0, 1]

[1, 1, 1]

[1, 0, 0]

i

4, 0, 1

4, 0, 1

[1, 0, 1]

[4, 0, 1]

Figure 8.1: Configuration graph and system NFA of the program of Example 8.1

for the set of configurations with ` = 5 and y = 0, but x arbitrary. The set of potential executions
satisfying the property is given by the regular expression

[`, x, 1] [`, x, 1]∗ [`, x, 0]∗ [5, x, 0]

which is recognized by the property NFA at the top of Figure 8.2. Its intersection with the system
NFA of Figure 8.1 is shown at the bottom of Figure 8.2. A light pink state of the pairing labeled by
[`, x, y] is the result of pairing the light pink state of the property NFA and the state [`, x, y] of the
system NFA. Since labels of the transitions of the pairing are always equal to the target state, they
are omitted for the sake of readability.

Since no state of the intersection has a dark pink color, the intersection is empty, and so the
program has no execution satisfying the property.

Example 8.3 We wish now to automatically determine whether the assignment y ← 1 − x in
line 4 of the program of Example 8.1 is redundant and can be safely removed. This is the case if

138 CHAPTER 8. APPLICATIONS II: VERIFICATION

2, 1, 1 4, 0, 13, 1, 11, 1, 1

i

[`, x, 1]

[`, x, 1] [`, x, 0]

[5, x, 0]

1, 0, 1 5, 0, 1

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

Figure 8.2: Property NFA and product NFA

the assignment never changes the value of y. The potential executions of the program in which the
assignment changes the value of y at some point correspond to the regular expression

[`, x, y]∗ ([4, x, 0] [1, x, 1] + [4, x, 1] [1, x, 0]) [`, x, y]∗ .

A property NFA for this expression can be easily constructed, and its intersection with the system
NFA is again empty. So the property holds, and the assignment is indeed redundant.

8.2 Networks of Automata.

Concurrent systems are particularly difficult to design correctly, which makes them a suitable target
for automatic verification techniques. These systems usually consist of a number of communicating
sequential components. In this section we exploit this structure to define configuration graphs in
a more systematic way. We assign an NFA to each sequential component, yielding a network of
automata and then define the graph by means of an automata theoretic construction.

A network of automata is a tuple A = 〈A1, . . . , An〉 of NFAs with pairwise disjoint sets of states.
Each NFA has its own alphabet Σi (the alphabets Σ1, . . . ,Σn are not necessarily pairwise disjoint).
Alphabet letters are called actions. Given an action a, we say that the i-th NFA participates in a if
a ∈ Σi.

A configuration of a network is a tuple 〈q1, . . . , qn〉 of states, where qi ∈ Qi for every i ∈
{1, . . . , n}. The initial configuration is the configuration 〈q01, . . . , q0n〉, where q0i is the initial state
of Ai. An action a is enabled at a configuration 〈q1, . . . , qn〉 if for every i ∈ {1, . . . , n} such that
Ai participates in a there is a transition (qi, a, q′i) ∈ δi. If a is enabled, then it can occur, and
its occurrence makes all participating NFAs Ai move to the state q′i , while the non-participating

8.2. NETWORKS OF AUTOMATA. 139

NFAs do not change their state. The configuration reached by the occurrence of a is a successor
of 〈q1, . . . , qn〉.

Example 8.4 The upper part of Figure 8.3 shows a network of three NFAs modeling a 3-bit
counter.

We call the NFAs A0, A1, A2 instead of A1, A2, A3 to better reflect their meaning: Ai stands for
the i-th bit. Each NFA but the last one has three states, two of which are marked with 0 and 1. The
alphabets are

Σ0 = {inc, inc1, 0, . . . , 7} Σ1 = {inc1, inc2, 0, . . . , 7} Σ2 = {inc2, 0, . . . , 7}

Intuitively, the system interacts with its environment by means of the actions inc, 0, 1, . . . , 7. More
precisely, inc models a request of the environment to increase the counter by 1, and i ∈ {0, 1, . . . , 7}
models a query of the environment asking if i is the current value of the counter. A configuration
of the form [b2, b1, b0], where b2, b1, b0 ∈ {0, 1}, indicates that the current value of the counter is
4b2 + 2b1 + b0 (configurations are represented as triples of states of A2, A1, A0, in that order).

Given a network of automata we define its asynchronous product as the output of algorithm
Async in Table 8.1. Starting at the initial configuration, the algorithm repeatedly picks a configura-
tion from the worklist and constructs its successors; adding nw successors to the worklist.

Example 8.5 The bottom part of Figure 8.3 shows the asynchronous product of the network mod-
eling the 3-bit counter, shown at the top of the figure. (Actually, all states are final, but have
been drawn as simple instead of double ellipses for simplicity.) Observe that at the configurations
[1, aux, 0] and [0, aux, 0] the actions inc and inc2 are concurrent: they are both enabled, and the
sets of automata participating in them are disjoint. This means that they can occur independently
of each other.

This proposition, whose proof is an easy consequence of the definitions, characterizes the exe-
cutions of the network in terms of the asynchronous product:

Proposition 8.6 A sequence c0 c1 . . . cn of configurations is an execution of the network A1 ⊗ · · · ⊗

An if and only if there is a word a1 . . . an ∈ Σ∗ such that c0
a1
−−−→ c1

a2
−−−→ · · ·

an
−−−→ cn is an accepting

run of A1 ⊗ · · · ⊗ An.

Notice that A1⊗· · ·⊗An can be easily transformed into the system NFA accepting the executions
of the network by means of a transformation similar to the one described in Figure 8.1.

The next example shows how to model a (possibly concurrent) program with finite-domain
variables (like booleans or finite ranges) as a network of automata. The key idea is to have a
network component for each process and for each variable. A process-component has a state for
each control point of the process, and a variable component has one state for each possible value
of the variable. Reading or writing of a variable by a process is modeled as a joint action with the
process-component and the variable-component as participants.

140 CHAPTER 8. APPLICATIONS II: VERIFICATION

00

1 1 1

0

inc2 inc2

4, 5, 6, 7 2, 3, 6, 7 1, 3, 5, 7

0, 2, 4, 60, 1, 4, 50, 1, 2, 3

inc1

inc2

inc

inc1

incinc1

A2 A1 A0

1, 0, 1

0, 1, 0

0, 1, 1

1, 0, 0

1, 1, 0

1, 1, 1

3

4

5

2

inc

inc1

0, 0, aux

0, 1, aux

0, aux, 0

0, aux, 1

inc1

inc

inc2

inc2

0, aux, aux

6

7

inc

1, 0, aux

1, 1, aux

inc1

inc

0, 0, 0

1

1, aux, 0

1, aux, 1
inc2

inc2

0, 0, 1

0

1, aux, aux

inc2

inc1

inc

inc

inc inc

inc

incinc

inc

inc2

Figure 8.3: A network modeling a 3-bit counter and its asynchronous product.

8.2. NETWORKS OF AUTOMATA. 141

AsyncProduct(A1, . . . , An)
Input: a network of automata A = A1, . . . An, where
A1 = (Q1,Σ1, δ1, q01,Q1), . . . , An = (Qn,Σn, δn, q0n,Qn)
Output: the asynchronous product A1⊗· · ·⊗An = (Q,Σ, δ, q0, F)

1 Q, δ, F ← ∅
2 q0 ← [q01, . . . , q0n]
3 W ← {[q01, . . . , q0n]}
4 while W , ∅ do
5 pick [q1, . . . , qn] from W
6 add [q1, . . . , qn] to Q
7 add [q1, . . . , qn] to F
8 for all a ∈ Σ1 ∪ . . . ∪ Σn do
9 for all i ∈ [1..n] do

10 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}

11 for all [q′1, . . . , q
′
n] ∈ Q′1 × . . . × Q′n do

12 if [q′1, . . . , q
′
n] < Q then add [q′1, . . . , q

′
n] to W

13 add ([q1, . . . , qn], a, [q′1, . . . , q
′
n]) to δ

14 return (Q,Σ, δ, q0, F)

Table 8.1: Asynchronous product of a tuple of automata.

Example 8.7 The network of Figure 8.4 models a version of Lamport and Burns’ 1-bit mutual
exclusion algorithm for two processes2. In the algorithm, process 0 and process 1 communicate
through two shared boolean variables, b0 and b1, which initially have the value 0. Process i reads
and writes variable bi and reads variable b(1−i). The algorithm should guarantee that the processes
0 and 1 never are simultaneously in their critical sections. Other properties the algorithm should
satisfy are discussed later.

The NFAs for the processes are shown in Figure 8.4. Initially, process 0 is in its non-critical
section (local state nc0); it can also be trying to enter its critical section (t0), or be already in its
critical section (c0). It can move from nc0 to t0 at any time by setting b0 to 1; it can move from t0
to c0 if the current value of b1 is 0; finally, it can move from c0 to nc0 at any time by setting b0 to 0.

Process 1 is a bit more complicated. While nc1, t1, and c1 play the same rôle as in process 0,
the local states q1 and q′1 model a “polite” behavior: Intuitively, if process 1 sees that process 0 is
either trying to enter or in the critical section, it moves to an “after you” local state q1, and then
sets b1 to 0 to signal that it is no longer trying to enter its critical section (local state q′1). It can then
return to the non-critical section if the value of b0 is 0.

In principle, in the non-critical sections the processes can also do some unspecified work, which

2L. Lamport: The mutual exclusion problem: part II-statements and solutions. JACM 1986

142 CHAPTER 8. APPLICATIONS II: VERIFICATION

bi ← 1

bi ← 0

0 1

b0 ← 1

b0 ← 0

0 1

b1 ← 1,
b1 = 1

b0 ← 1,
b0 = 1

b0 ← 0,
b0 = 0

b1 ← 0,
b1 = 0

nc0 t0 c0

b1 = 1

b0 ← 0

b0 ← 1 b1 = 0

nc1 t1 c1

q′1 q1

b0 = 0 b0 = 1

b1 ← 0

b1 ← 1 b0 = 0

b0 = 1

b1 ← 0

Figure 8.4: A network of four automata modeling a mutex algorithm.

should be represented by transition from nc0andnc1 to themselves. Since for the purposes of this
chapter these transition are not important, we have omitted them.

A configuration of this network is a four tuple. Transitions of the asynchronous product corre-
spond to the execution of a read or a write statement by one of the processes. The asynchronous
product is shown in Figure 8.5, where 〈v0, v1, s0, s1〉 represents the configuration in which the NFA
modelling processes 0 and 1 are in states s0, s1, and in which b0 = v0 and b1 = v1.

8.2.1 Checking Properties

We use Lamport’s algorithm to present some more examples of properties and how to check them
automatically.

The mutual exclusion property can be easily formalized: it holds if the asynchronous product
does not contain any configuration of the form [v0, v1, c0, c1], where v0, v1 ∈ {0, 1}. The property

8.2. NETWORKS OF AUTOMATA. 143

0, 0, nc0, nc1

1, 0, t0, nc1

0, 1, nc0, t1

1, 1, t0, t1

1, 1, c0, q1

0, 0, nc0, q′1

1, 0, c0, q′1

0, 1, nc0, q1

1, 1, t0, q1 1, 0, t0, q′1

b0 ← 1

b1 ← 1

b0 = 1
b1 = 1

1, 1, c0, t1

b0 ← 0

b1 ← 1 b0 ← 0

b1 ← 1

b1 ← 0

b1 = 1

b1 ← 0

b0 ← 0
b1 ← 0

b1 = 1

b1 = 1

b1 = 0

b0 ← 1

b0 ← 0

b1 = 0

b0 = 0

b0 = 1
b1 = 1

b1 = 1

b1 ← 0

b1 = 0
b1 ← 0

b1 = 0

b0 ← 1

b0 ← 0

b0 = 1

1, 0, c0, nc1

1, 1, t0, c1

0, 1, nc0, c1

Figure 8.5: Asynchronous product of the network of Figure 8.4.

can be easily checked on-the-fly while constructing the asynchronous product, and a quick inspec-
tion of Figure 8.5 shows that it holds. Notice that in this case we do not need to construct the NFA
for the executions of the program. This is always the case if we only wish to check the reachability
of a configuration or set of configurations. Other properties of interest for the algorithm are:

• Deadlock freedom. The algorithm is deadlock-free if every configuration of the asynchronous
product has at least one successor. Again, the property can be checked on the fly, and it holds
for Lamport’s algorithm.

• Bounded overtaking. After process 0 signals its interest in accessing the critical section (by
moving to state t0), process 1 can enter the critical section at most once before process 0
enters the critical section.
This property can be checked using the NFA E recognizing the executions of the network,
obtained as explained above by renaming the labels of the transitions of the asynchronous
product. Let NCi,Ti,Ci be the sets of configurations in which process i is in its non-critical

144 CHAPTER 8. APPLICATIONS II: VERIFICATION

section, is trying to access its critical section, or is in its critical section, respectively. Let Σ

stand for the set of all configurations. The regular expression

r = Σ∗ T0 (Σ \C0)∗ C1 (Σ \C0)∗ NC1 (Σ \C0)∗ C1 Σ∗

represents all the possible executions that violate the property. Now, if E is the NFA recog-
nizing the language of executions, the property holds if and only if L(E) ∩ L(r) = ∅, which
can be checked using the algorithms of Chapter 4.

The straightforward method to check if L(E) ∩ L(r) = ∅ has four steps: (1) construct the
NFA E for the network A1, . . . , An using AsyncProduct(); (2) transform r into an NFA V (V for
“violations”) using the algorithm of Section 2.4.1; (3) construct the NFA E ∩ V using intersNFA();
(4) check emptiness of E ∩ V using empty().

The key problem of this approach is that the number of states of E can be as high as the
product of the number of states of the the components A1, . . . , An, which can easily exceed the
available memory. This is called the state-explosion problem, and the literature contains a wealth
of proposals to deal with it. We conclude the section with a first easy step towards palliating this
problem. A more in depth discussion can be found in the next section.

Observe that the NFA E may have more states than E ∩ V: if a state of E is not reachable by
any word on which V has a run, then it does not appear in E ∩ V . Since the transitions of V are
often labeled with only a small fraction of the letters in the alphabet of E, the difference in size
between E and E ∩ V can be considerable, and so it is better to directly construct E ∩ V , bypassing
the construction of E. This is easily achieved by observing that the intersection A1 ∩ A2 of two
NFAs A1, A2 corresponds to the particular case of the asynchronous product in which Σ1 ⊆ Σ2 (or
vice versa): if Σ1 ⊆ Σ2, then A2 participates in every action, and the NFAs A1 ⊗ A2 and A1 ∩ A2
coincide. More generally, if Σ1∪· · ·∪Σn ⊆ Σn+1, then A1⊗· · ·⊗An⊗An+1 = (A1⊗· · ·⊗An)∩An+1.
Since the alphabet of V is the union of the alphabets of A1, . . . , An, we can then check emptiness of
A1 ⊗ · · · ⊗ An ⊗ V by means of the algorithm of Table 8.2.

8.3 The State-Explosion Problem

The automata-theoretic approach constructs an NFA V recognizing the potential executions of the
system that violate the property one is interested in, and checks whether the automaton E ∩ V is
empty, where E is an NFA recognizing the executions of the system. This is done by constructing
the set of states of E ∩ V , while simultaneously checking if any of them is final.

The number of states of E can be very high. If we model E as a network of automata, the
number can be as high as the product of the number of states of all the components of the network.
So the approach has exponential worst-case complexity. The following result shows that this cannot
be avoided unless P=PSPACE.

Theorem 8.8 The following problem is PSPACE-complete.
Given: A network of automata A1, . . . , An over alphabets Σ1, . . . ,Σn, a NFA V over Σ1 ∪ . . . ∪ Σn.
Decide: if L(A1 ⊗ · · · ⊗ An ⊗ V) , ∅.

8.3. THE STATE-EXPLOSION PROBLEM 145

CheckViol(A1, . . . , An,V)
Input: a network 〈A1, . . . An〉, where Ai = (Qi,Σi, δi, q0i,Qi);

an NFA V = (QV ,Σ1 ∪ . . . ∪ Σn, δV , q0v, Fv).
Output: true if A1 ⊗ · · · ⊗ An ⊗ V is nonempty, false otherwise.

1 Q← ∅; q0 ← [q01, . . . , q0n, q0v]
2 W ← {q0}

3 while W , ∅ do
4 pick [q1, . . . , qn, q] from W
5 add [q1, . . . , qn, q] to Q
6 for all a ∈ Σ1 ∪ . . . ∪ Σn do
7 for all i ∈ [1..n] do
8 if a ∈ Σi then Q′i ← δi(qi, a) else Q′i = {qi}

9 Q′ ← δV (q, a)
10 for all [q′1, . . . , q

′
n, q
′] ∈ Q′1 × . . . × Q′n × Q′ do

11 if
∧n

i=1 q′i ∈ Fi and q ∈ Fv then return true
12 if [q′1, . . . , q

′
n, q
′] < Q then add [q′1, . . . , q

′
n, q
′] to

W
13 return false

Table 8.2: Algorithm to check violation of a property.

Proof: We only give a high-level sketch of the proof. To prove that the problem is in PSPACE,
we show that it belongs to NPSPACE and apply Savitch’s theorem. The polynomial-space nonde-
terministic algorithm just guesses an execution of the product, one configuration at a time, leading
to a final configuration. Notice that storing a configuration requires linear space.

PSPACE-hardness is proven by reduction from the acceptance problem for linearly bounded
automata. A linearly bounded automaton (LBA) is a deterministic Turing machine that always
halts and only uses the part of the tape containing the input. Given an LBA A, we construct in
linear time a network of automata that “simulates” A. The network has one component modeling
the control of A (notice that the control is essentially a DFA), and one component for each tape cell
used by the input. The states of the control component are pairs (q, k), where q is a control state
of A, and k is a head position. The states of a cell-component are the possible tape symbols. The
transitions correspond to the possible moves of A according to its transition table. Acceptance of A
corresponds to reachability of certain configurations in the network, which can be easily encoded
as an emptiness problem.

8.3.1 Symbolic State-space Exploration

Figure 8.6 shows again the program of Example 8.1, and its flowgraph. An edge of the flowgraph

146 CHAPTER 8. APPLICATIONS II: VERIFICATION

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

1

2

3 4

5

x , 1x = 1

y = 1

x← 0

y , 1 y← 1 − x

Figure 8.6: Flowgraph of the program of Example 8.1

leading from node ` to node `′ can be associated a step relation S `,`′ containing all pairs of config-
urations ([`, x0, y0], [`′, x′0, y

′
0]) such that if at control point ` the current values of the variables are

x0, y0, then the program can take a step after which the new control point is `′, and the new values
are x′0, y

′
0. For instance, for the edge leading from node 4 to node 1 we have

S 4,1 =
{ (

[4, x0, y0], [1, x′0, y
′
0]

)
| x′0 = x0, y′0 = 1 − x0

}
and for the edge leading from 1 to 2

S 1,2 =
{ (

[1, x0, y0], [2, x′0, y
′
0]

)
| x0 = 1 = x′0, y

′
0 = y0

}
It will be convenient to assign a relation to every pair of nodes of the control graph, even to those
not connected by any edge. If no edge leads from a to b, then we define Ra,b = ∅. The complete
program is then described by the global step relation

S =
⋃

a,b∈C

S a,b

where C is the set of control points.
Given a set I of initial configurations, the set of configurations reachable from I can be com-

puted by the following algorithm, which repeatedly applies the Post operation:

Reach(I,R)
Input: set I of initial configurations; relation R
Output: set of configurations reachable form I

1 OldP← ∅; P← I
2 while P , OldP do
3 OldP← P
4 P← Union(P,Post(P, S))
5 return P

8.3. THE STATE-EXPLOSION PROBLEM 147

The algorithm can be implemented using different data structures. The verification community
distinguishes between explicit and symbolic data structures. Explicit data structures store separately
each of the configurations of P, and the pairs of configurations of S ; typical examples are lists and
hash tables. Their distinctive feature is that the memory needed to store a set is proportional to the
number of its elements. Symbolic data structures, on the contrary, do not store a set by storing each
of its elements; they store a representation of the set itself. A prominent example of a symbolic data
structure are finite automata and transducers: given an encoding of configurations as words over
some alphabet Σ, the set P and the step relation S are represented by an automaton and a transducer,
respectively, recognizing the encodings of its elements. Their sizes can be much smaller than the
sizes of P or S . For instance, if P is the set of all possible configurations then its encoding is usually
Σ∗, which is encoded by a very small automaton.

Symbolic data structures are only useful if all the operations required by the algorithm can be
implemented without having to switch to an explicit data structure. This is the case of automata and
transducers: Union, Post, and the equality check in the condition of the while loop operation are
implemented by the algorithms of Chapters 4 and 5, or, if they are fixed-length, by the algorithms
of Chapter 6.

Symbolic data structures are interesting when the set of reachable configurations can be very
large, or even infinite. When the set is small, the overhead of symbolic data structures usually
offsets the advantage of a compact representation. Despite this, and in order to illustrate the method,
we apply it to the five-line program of Figure 8.6. The fixed-length transducer for the step relation
S is shown in Figure 8.7; a configuration [`, x0, y0] is encoded by the word `x0y0 of length 3.

Consider for instance the transition labeled by
[
4
1

]
. Using it the transducer can recognize four pairs,

which describe the action of the instruction y← 1 − x , namely[
400
101

] [
401
101

] [
410
110

] [
411
110

]
.

Figure 8.8 shows minimal DFAs for the set I and for the sets obtained after each iteration of the
while loop.

Variable orders.

We have defined a configuration of the program of Example 8.1 as a triple [`, nx, ny], and we have
encoded it as the word ` nx ny. We could have also encoded it as the word nx ` ny, ny ` nx, or as any
other permutation, since in all cases the information content is the same. Of course, when encoding
a set of configurations all the configurations must be encoded using the same variable order.

While the information content is independent of the variable order, the size of the automaton
encoding a set is not. An extreme case is given by the following example.

Example 8.9 Consider the set of tuples X = {[x1, x2, . . . , x2k] | x1, . . . , x2k ∈ {0, 1}}, and the subset
Y ⊆ X of tuples satisfying x1 = xk, x2 = xk+1, . . . , xk = x2k. Consider two possible encodings of a

148 CHAPTER 8. APPLICATIONS II: VERIFICATION

[
1
5

]
[
1
2

]

[
2
4

]

[
3
4

]

[
1
1

]
[
0
0

]
[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
0

]
[
2
3

]
[
4
1

]

[
1
1

]
[
0
0

]
[
0
0

]
,

[
1
0

] [
0
0

]
,

[
1
1

]
[
0
1

]
,

[
1
1

][
0
0

]

[
1
1

]

[
0
0

]
,

[
1
1

]

Figure 8.7: Transducer for the program of Figure 8.6

tuple [x1, x2, . . . , x2k]: by the word x1x2 . . . x2k, and by the word x1xk+1x2xk+2 . . . xkx2k. In the first
case, the encoding of Y for k = 3 is the language

L1 = {000000, 001001, 010010, 011011, 100100, 101101, 110110, 111111}

and in the second the language

L2 = {000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111}

Figure 8.9 shows the minimal DFAs for the languages L1 and L2. It is easy to see that the minimal
DFA for L1 has at least 2k states: since for every word w ∈ {0, 1}k the residual Lw

1 is equal to {w},
the language L1 has a different residual for each word of length k, and so the minimal DFA has
at least 2k states (the exact number is 2k+1 + 2k − 2). On the other hand, it is easy to see that the
minimal DFA for L2 has only 3k + 1 states. So a good variable order can lead to a exponentially
more compact representation.

We can also appreciate the effect of the variable order in Lamport’s algorithm. The set of
reachable configurations, sorted according to the state of the first process and then to the state of

8.4. SAFETY AND LIVENESS PROPERTIES 149

the second process, is

〈nc0, nc1, 0, 0〉 〈t0, nc1, 1, 0〉 〈c0, nc1, 1, 0〉
〈nc0, t1, 0, 1〉 〈t0, t1, 1, 1〉 〈c0, t1, 1, 1〉
〈nc0, c1, 0, 1〉 〈t0, c1, 1, 1〉
〈nc0, q1, 0, 1〉 〈t0, q1, 1, 1〉 〈c0, q1, 1, 1〉
〈nc0, q′1, 0, 0〉 〈t0, q′1, 1, 0〉 〈c0, q′1, 1, 0〉

If we encode a tuple 〈s0, s1, v0, v1〉 by the word v0s0s1v1, the set of reachable configurations is
recognized by the minimal DFA on the left of Figure 8.10. However, if we encode by the word
v1s1s0v0 we get the minimal DFA on the right. The same example can be used to visualize how by
adding configurations to a set the size of its minimal DFA can decrease. If we add the “missing”
configuration 〈c0, c1, 1, 1〉 to the set of reachable configurations (filling the “hole” in the list above),
two states of the DFAs of Figure 8.10 can be merged, yielding the minimal DFAs of Figure 8.11.
Observe also that the set of all configurations, reachable or not, contains 120 elements, but is
recognized by a five-state DFA.

8.4 Safety and Liveness Properties

Apart from the state-explosion problem, the automata-theoretic approach to automatic verification
described in this chapter has a second limitation: it assumes that the violations of the property can
be described by a set of finite executions. In other words, and loosely speaking, it assumes that if
the property is violated, then it is already violated after a finite amount of time, independently of
the rest of the execution. Not all properties are of this form. A typical example is the property “if
a process requests access to the critical section, it eventually enters the critical section” (without
specifying how long it may take). After finite time we can only tell that the process has not entered
the critical section yet, but it might enter it in the future. A violation of the property can only be
witnessed by an infinite execution, in which we observe that the process requests access, but the
access is never granted.

Properties which are violated by finite executions are called safety properties. Intuitively, they
correspond to properties of the form “nothing bad ever happens”. Typical examples are “the system
never deadlocks”, or, more generally, “the system never enters a set of bad states”. Clearly, every
interesting system must also satisfy properties of the form “something good eventually happens”,
because otherwise the system that does nothing would already satisfy all properties. Properties of
this kind are called liveness properties, and can only be witnessed by infinite executions. Fortu-
nately, the automata-theoretic approach can be extended to liveness properties. This requires to
develop a theory of automata on infinite words, which is the subject of the second part of this book.
The application of this theory to the verification of liveness properties is presented in Chapter 14.

Exercises

150 CHAPTER 8. APPLICATIONS II: VERIFICATION

Exercise 72 Let Σ = {request, answer,working, idle}.

1. Build an automaton recognizing all words with the property P1: for every occurrence of
request there is a later occurrence of answer.

2. P1 does not imply that every occurrence of request has “its own” answer: for instance,
the sequence request request answer satisfies P1, but both requests must necessarily be
mapped to the same answer. But, if words were infinite and there were infinitely many
requests, would P1 guarantee that every request has its own answer?
More precisely, let w = w1w2 · · · satisfying P1 and containing infinitely many occurrences
of request, and define f : N → N such that w f (i) is the ith request in w. Is there always an
injective function g : N→ N satisfying wg(i) = answer and f (i) < g(i) for all i ∈ {1, . . . , k}?

3. Build an automaton recognizing all words with the property P2: there is an occurrence of
answer, and before that only working and request occur.

4. Using the intersection construction, prove that all accepting runs of the automaton below
satisfy P1. Find all accepting runs violating P2.

start

Σ

answer

Exercise 73 This exercise focuses on modelling and verification of mutual exclusion (mutex) al-
gorithms. Consider two processes running the following mutex algorithm, where id is an identifier,
a local variable having value 0 for one of the processes and value 1 for the other.

while true do
loop-arbitrarily-many-times

non-critical-command
enter(id)

critical-command
leave(id)

The procedures enter() and leave() are specified below. They use a global variable turn, initially
set to 0.

proc enter(i)
while turn = 1 − i do skip

proc leave(i)
turn← 1 − i

8.4. SAFETY AND LIVENESS PROPERTIES 151

Design an asynchronous network of automata capturing this algorithm. Furthermore, build an
automaton recognizing all runs reaching a configuration with both agents in the critical section.
Using the intersection algorithm, prove that there are no such runs of this system, i.e. it is a mutex
algorithm. Do all infinite runs satisfy that if a process wants to enter the critical section then it
eventually enters it?

Consider now a different definition of enter and leave. Now the processes use two booelan
variables flag[0] and flag[1] initially set to false.

proc enter(i)
flag[i]← true
while flag[1 − i] do skip

proc leave(i)
flag[i]← false

Design an asynchronous network of automata capturing this behaviour. Can a deadlock occur?
Finally, Peterson’s algorithm combines both approache. The processes use variables turn, ini-

tially set to 0, and flag[0], flag[1], initially set to false. The procedures enter and leave are defined
as follows:

proc enter(i)
turn← 1 − i
flag[i]← true
while flag[1 − i] and turn = 1 − i do skip

proc leave(i)
flag[i]← false

Can a deadlock occur? What kind of starvation can occur?

Exercise 74 Consider a circular railway divided into 8 tracks: 0 → 1 → . . . → 7 → 0. In the
railway circulate three trains, modeled by three automata T1, T2, and T3. Each automaton Ti has
states {qi,0, . . . , qi,7}, alphabet {enter[i, j] | 0 ≤ j ≤ 7} (where enter[i, j] models that train i enters
track j), transition relation {(qi, j, enter[i, j ⊕ 1], qi, j⊕1) | 0 ≤ j ≤ 7}, and initial state qi,2i, where ⊕
denotes addition modulo 8.

Define automata C0, . . . ,C7 (the local controllers) to make sure that two trains can never be
on the same or adjacent tracks (i.e., there must always be at least one empty track between two
trains). Each controler C j can only have knowledge of the state of the tracks j 	 1, j, and j ⊕ 1, .
There must be no deadlocks, and every train must eventually visit every track. More formally, the
asynchronous product R = C0 ⊗ . . . ⊗C7 ⊗ T1 ⊗ T2 ⊗ T3 must satisfy the following specification:

• For j = 0, . . . , 7: C j has alphabet {enter[i, j 	 1], enter[i, j], enter[i, j ⊕ 1], | 1 ≤ i ≤ 3}.
(C j only knows the state of tracks j 	 1, j, and j ⊕ 1.)

• For i = 1, 2, 3: L(R) |Σi= (enter[i, 2i] enter[i, 2i ⊕ 1] . . . enter[i, 2i ⊕ 7])∗.
(No deadlocks, and every train eventually visits every segment.)

152 CHAPTER 8. APPLICATIONS II: VERIFICATION

• For every word w ∈ L(R): if w = w1 enter[i, j] enter[i′, j′] w2 and i′ , i, then | j − j′| <
{0, 1, 7}.
(No two trains on the same or adjacent tracks.)

8.4. SAFETY AND LIVENESS PROPERTIES 153

1 0, 1 0, 1

0

12

5

1 0, 1 0, 1

1 0, 1

0

12

5

4

3

1

1

0

0, 1

1

1

0

2

5

4

3

1

1

0

0, 1

1

0, 1
1

0

Figure 8.8: Minimal DFAs for the reachable configurations of the program of Figure 8.6

154 CHAPTER 8. APPLICATIONS II: VERIFICATION

0 1

0

0 1

1

0 1 0 1

0 1

0 1

0

0

0

1

1

1

1

1

1

0

0

0

0 1
0

0 1

0 1 0 1

0 11 0 1

Figure 8.9: Minimal DFAs for the languages L1 and L2

8.4. SAFETY AND LIVENESS PROPERTIES 155

0

0

nc1, q′1

nc1, q′1
t1, q1

t1, c1, q1

1 0

t1, c1, q1

nc1, q′1

t0

nc0 c0

1

1

0

nc1, q′1 c1

t1, q1

nc0 nc0

t0, c0

0 1

1

t0

Figure 8.10: Minimal DFAs for the reachable configurations of Lamport’s algorithm. On the left a
configuration 〈s0, s1, v0, v1, q〉 is encoded by the word s0s1v0v1q, on the right by v1s1s0v0.

0

0

nc1, q′1 t1, c1, q1

1 0

nc0 t0, c0

1

1

0

0 1

1

t1, c1, q1 nc1, q′1

t0, c0nc0

nc1, q′1 t1, c1, q1

Figure 8.11: Minimal DFAs for the reachable configurations of Lamport’s algorithm plus
〈c0, c1, 1, 1〉.

156 CHAPTER 8. APPLICATIONS II: VERIFICATION

Chapter 9

Automata and Logic

A regular expression can be seen as a set of instructions (a ‘recipe’) for generating the words of a
language. For instance, the expression aa(a + b)∗b can be interpreted as “write two a’s, repeatedly
write a or b an arbitrary number of times, and then write a b”. We say that regular expressions are
an operational description language.

Languages can also be described in declarative style, as the set of words that satisfy a property.
For instance, “the words over {a, b} containing an even number of a’s and an even number of b’s” is
a declarative description. A language may have a simple declarative description and a complicated
operational description as a regular expression. For instance, the regular expression

(aa + bb + (ab + ba)(aa + bb)∗(ba + ab))∗

is a natural operational description of the language above, and it is arguably less intuitive than
the declarative one. This becomes even more clear if we consider the language of the words over
{a, b, c} containing an even number of a’s, of b’s, and of c’s.

In this chapter we present a logical formalism for the declarative description of regular lan-
guages. We use logical formulas to describe properties of words, and logical operators to construct
complex properties out of simpler ones. We then show how to automatically translate a formula
describing a property of words into an automaton recognizing the words satisfying the property.
As a consequence, we obtain an algorithm to convert declarative into operational descriptions, and
vice versa.

9.1 First-Order Logic on Words

In declarative style, a language is defined by its membership predicate, i.e., the property that words
must satisfy in order to belong to it. Predicate logic is the standard language to express membership
predicates. Starting from some natural, “atomic” predicates, more complex ones can be constructed
through boolean combinations and quantification. We introduce atomic predicates Qa(x), where a
is a letter, and x ranges over the positions of the word. The intended meaning is “the letter at

157

158 CHAPTER 9. AUTOMATA AND LOGIC

position x is an a.” For instance, the property “all letters are as” is formalized by the formula
∀x Qa(x).

In order to express relations between positions we add to the syntax the predicate x < y, with
intended meaning “position x is smaller than (i.e., lies to the left of) position y”. For example, the
property “if the letter at a position is an a, then all letters to the right of this position are also as” is
formalized by the formula

∀x∀y ((Qa(x) ∧ x < y)→ Qa(y)) .

Definition 9.1 Let V = {x, y, z, . . .} be an infinite set of variables, and let Σ = {a, b, c, . . .} be a finite
alphabet. The set FO(Σ) of first-order formulas over Σ is the set of expressions generated by the
grammar:

ϕ := Qa(x) | x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃x ϕ .

As usual, variables within the scope of an existential quantifier are bounded, and otherwise free. A
formula without free variables is a sentence. Sentences of FO(Σ) are interpreted on words over Σ.
For instance, ∀x Qa(x) is true for the word aa, but false for word ab. Formulas with free variables
cannot be interpreted on words alone: it does not make sense to ask whether Qa(x) holds for the
word ab or not. A formula with free variables is interpreted over a pair (w, I), where I assigns to
each free variable (and perhaps to others) a position in the word. For instance, Qa(x) is true for the
pair (ab, x 7→ 1), because the letter at position 1 of ab is a, but false for (ab, x 7→ 2).

Definition 9.2 An interpretation of a formula ϕ of FO(Σ) is a pair (w, I) where w ∈ Σ∗ and I is a
mapping that assigns to every free variable x a position I(x) ∈ {1, . . . , |w|} (the mapping may also
assign positions to other variables).

Notice that if ϕ is a sentence then a pair (w,E), where E is the empty mapping that does not assign
any position to any variable, is an interpretation of ϕ. Instead of (w,E) we write simply w.

We now formally define when an interpretation satisfies a formula. Given a word w and a
number k, let w[k] denote the letter of w at position k.

Definition 9.3 The satisfaction relation (w, I) |= ϕ between a formula ϕ of FO(Σ) and an interpre-
tation (w, I) of ϕ is defined by:

(w, I) |= Qa(x) iff w[I(x)] = a
(w, I) |= x < y iff I(x) < I(y)
(w, I) |= ¬ϕ iff (w, I) 6|= ϕ

(w, I) |= ϕ1 ∨ ϕ2 iff (w, I) |= ϕ1 or (w, I) |= ϕ2
(w, I) |= ∃x ϕ iff |w| ≥ 1 and some i ∈ {1, . . . , |w|} satisfies (w, I[i/x]) |= ϕ

where w[i] is the letter of w at position i, and I[i/x] is the mapping that assigns i to x and otherwise
coincides with I. (Notice that I may not assign any value to x.) If (w, I) |= ϕ we say that (w, I) is a
model of ϕ. Two formulas are equivalent if they have the same models.

9.1. FIRST-ORDER LOGIC ON WORDS 159

It follows easily from this definition that if two interpretations (w, I1) and (w, I2) of ϕ differ
only in the positions assigned by I1 and I2 to bounded variables, then either both interpretations
are models of ϕ, or none of them is. In particular, whether an interpretation (w, I) of a sentence is
a model or not depends only on w, not on I.

We use some standard abbreviations:

∀x ϕ := ¬∃ x¬ϕ ϕ1 ∧ ϕ2 := ¬ (¬ϕ1 ∨ ¬ϕ2) ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2

Notice that according to the definition of the satisfaction relation the empty word ε satisfies no
formulas of the form ∃x ϕ, and all formulas of the form ∀x ϕ. While this causes no problems for
our purposes, it is worth noticing that in other contexts it may lead to complications. For instance,
the formulas ∃x Qa(x) and ∀y∃x Qa(x) do not hold for exactly the same words, because the empty
word satisfies the second, but not the first. Further useful abbreviations are:

first(x) := ¬∃y y < x “x is the first position”
last(x) := ¬∃y x < y “x is the last position”

y = x + 1 := x < y ∧ ¬∃ z(x < z ∧ z < y) “y is the successor position of x”
y = x + 2 := ∃ z(z = x + 1 ∧ y = z + 1)

y = x + (k + 1) := ∃ z(z = x + k ∧ y = z + 1)

Example 9.4 Some examples of properties expressible in the logic:

• “The last letter is a b and before it there are only a’s.”

∃x Qb(x) ∧ ∀x (last(x)→ Qb(x) ∧ ¬last(x)→ Qa(x))

• “Every a is immediately followed by a b.”

∀x (Qa(x)→ ∃y (y = x + 1 ∧ Qb(y)))

• “Every a is immediately followed by a b, unless it is the last letter.”

∀x (Qa(x)→ ∀y (y = x + 1→ Qb(y)))

• “Between every a and every later b there is a c.”

∀x∀y (Qa(x) ∧ Qb(y) ∧ x < y→ ∃z (x < z ∧ z < y ∧ Qc(z)))

160 CHAPTER 9. AUTOMATA AND LOGIC

9.1.1 Expressive power of FO(Σ)

Once we have defined which words satisfy a sentence, we can associate to a sentence the set of
words satisfying it.

Definition 9.5 The language L(ϕ) of a sentence ϕ ∈ FO(Σ) is the set L(ϕ) = {w ∈ Σ∗ | w |= φ}. We
also say that ϕ expresses L(ϕ). A language L ⊆ Σ∗ is FO-definable if L = L(ϕ) for some formula ϕ
of FO(Σ).

The languages of the properties in the example are FO-definable by definition. To get an idea
of the expressive power of FO(Σ), we prove a theorem characterizing the FO-definable languages
in the case of a 1-letter alphabet Σ = {a}. In this simple case we only have one predicate Qa(x),
which is always true in every interpretation. So every formula is equivalent to a formula without
any occurrence of Qa(x). For example, the formula ∃y (Qa(y) ∧ y < x) is equivalent to ∃y y < x.

We prove that a language over a one-letter alphabet is FO-definable if and only if it is finite
or co-finite, where a language is co-finite if its complement is finite. So, for instance, even a
simple language like {an | n is even } is not FO-definable. The plan of the proof is as follows.
First, we define the quantifier-free fragment of FO({a}), denoted by QF; then we show that 1-letter
languages are QF-definable iff they are finite or co-finite; finally, we prove that 1-letter languages
are FO-definable iff they are QF-definable.

For the definition of QF we need some more macros whose intended meaning should be easy
to guess:

x + k < y := ∃z (z = x + k ∧ z < y)
x < y + k := ∃z (z = y + k ∧ x < z)

k < last := ∀x (last(x)→ x > k)

In these macros k is a constant, that is, k < last standa for the infinite family of macros 1 < last, 2 <
last, 3 < last Macros like k > x or x + k > y are defined similarly.

Definition 9.6 The logic QF (for quantifier-free) is the fragment of FO({a}) with syntax

f := x ≈ k | x ≈ y + k | k ≈ last | f1 ∨ f2 | f1 ∧ f2

where ≈ ∈ {<, >} and k ∈ N.

Proposition 9.7 A language over a 1-letter alphabet is QF-definable iff it is finite or co-finite.

Proof: (⇒): Let f be a sentence of QF. Since QF does not have quantifiers, f does not contain
any occurrence of a variable, and so it is a positive (i.e., negation-free) boolean combination of
formulas of the form k < last or k > last. We proceed by induction on the structure of f . If
f = k < last, then L(ϕ) is co-finite, and if f = k > last, then L(ϕ) is finite. If f = f1 ∨ f2, then by
induction hypothesis L(f1) and L(f2) are finite or co-finite; if L(f1) and L(f2) are finite, then so is
L(f), and otherwise L(f) is co-finite. The case f = f1 ∧ f2 is similar.

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 161

(⇐): A finite language {ak1 , . . . , akn} is expressed by the formula (last > k1 − 1 ∧ last <

k1 + 1) ∨ . . . ∨ (last > k1 − 1 ∧ last < k1 + 1). To express a co-finite language, it suffices to show
that for every formula f of QF expressing a language L, there is another formula f expressing the
language L. This is easily proved by induction on the structure of the formula.

Theorem 9.8 Every formula ϕ of FO({a}) is equivalent to a formula f of QF.

Proof: Sketch. By induction on the structure of ϕ. If ϕ(x, y) = x < y, then ϕ ≡ y < x + 0. If
ϕ = ¬ψ, the result follows from the induction hypothesis and the fact that negations can be removed
using De Morgan’s rules and equivalences like ¬(x < y + k) ≡ x ≥ y + k. If ϕ = ϕ1 ∨ ϕ2, the result
follows directly from the induction hypothesis. Consider now the case ϕ = ∃x ψ. By induction
hypothesis, ψ is equivalent to a formula f of QF, and we can assume that f is in disjunctive normal
form, say f = D1 ∨ . . . ∨ Dn. Then ϕ ≡ ∃x D1 ∨ ∃x D2 ∨ . . . ∨ ∃x Dn, and so it suffices to find a
formula fi of QF equivalent to ∃x Di.

The formula fi is a conjunction of formulas containing all conjuncts of Di with no occurrence
of x, plus other conjuncts obtained as follows. For every lower bound x < t1 of Di, where t1 = k1
or t1 = x1 + k1, and every upper bound of the form x > t2, where t2 = k1 or t2 = x1 + k1 we add to
fi a conjunct equivalent to t2 + 1 < t1. For instance, y + 7 < x and x < z + 3 we add y + 5 < z. It is
easy to see that fi ≡ ∃x Di.

Corollary 9.9 The language Even = {a2n | n ≥ 0} is not first-order expressible.

These results show that first-order logic cannot express all regular languages, not even over a
1-letter alphabet. For this reason we now introduce monadic second-order logic.

9.2 Monadic Second-Order Logic on Words

Monadic second-order logic extends first-order logic with variables X,Y,Z, . . . ranging over sets
of positions, and with predicates x ∈ X, meaning “position x belongs to the set X. 1 It is allowed
to quantify over both kinds of variables. Before giving a formal definition, let us informally see
how this extension allows to describe the language Even. The formula states that the last position
belongs to the set of even positions. A position belongs to this set iff it is the second position, or
the second successor of another position in the set.

The following formula states that X is the set of even positions:

second(x) := ∃y (first(y) ∧ x = y + 1)
Even(X) := ∀x (x ∈ X ↔ (second(x) ∨ ∃y (x = y + 2 ∧ y ∈ X)))

For the complete formula, we observe that the word has even length if its last position is even:

EvenLength := ∃X (Even(X) ∧ ∀x (last(x)→ x ∈ X))
1More generally, second-order logic allows for variables ranging over relations of arbitrary arity. The monadic

fragment only allows arity 1, which corresponds to sets.

162 CHAPTER 9. AUTOMATA AND LOGIC

We now define the formal syntax and semantics of the logic.

Definition 9.10 Let X1 = {x, y, z, . . .} and X2 = {X,Y,Z, . . .} be two infinite sets of first-order and
second-order variables. Let Σ = {a, b, c, . . .} be a finite alphabet. The set MSO(Σ) of monadic
second-order formulas over Σ is the set of expressions generated by the grammar:

ϕ := Qa(x) | x < y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

An interpretation of a formula ϕ is a pair (w, I) where w ∈ Σ∗, and I is a mapping that assigns every
free first-order variable x a position I(x) ∈ {1, . . . , |w|} and every free second-order variable X a
set of positions I(X) ⊆ {1, . . . , |w|}. (The mapping may also assign positions to other variables.)

The satisfaction relation (w, I) |= ϕ between a formula ϕ of MSO(Σ) and an interpretation (w, I)
of ϕ is defined as for FO(Σ), with the following additions:

(w, I) |= x ∈ X iff I(x) ∈ I(X)
(w, I) |= ∃X ϕ iff |w| > 0 and some S ⊆ {0, . . . , |w| − 1}

satisfies (w, I[S/X]) |= ϕ

where I[S/X] is the interpretation that assigns S to X and otherwise coincides with I — whether
I is defined for X or not. If (w, I) |= ϕ we say that (w, I) is a model of ϕ. Two formulas are
equivalent if they have the same models. The language L(ϕ) of a sentence ϕ ∈ MSO(Σ) is the set
L(ϕ) = {w ∈ Σ∗ | w |= φ}. A language L ⊆ Σ∗ is MSO-definable if L = L(ϕ) for some formula
ϕ ∈ MSO(Σ).

Notice that in this definition the set S may be empty. So, for instance, ay interpretation that assigns
the empty set to X is a model of the formula ∃X ∀x ¬(x ∈ X).

We use the standard abbreviations

∀x ∈ X ϕ := ∀x (x ∈ X → ϕ) ∃x ∈ X ϕ := ∃x (x ∈ X ∧ ϕ)

9.2.1 Expressibility of MSO(Σ)

We show that the languages expressible in monadic second-order logic are exactly the regular
languages. We start with an example.

Example 9.11 Let Σ = {a, b, c, d}. We construct a formula of MSO(Σ) expressing the regular
language c∗(ab)∗d∗. The membership predicate of the language can be informally formulated as
follows:

There is a block of consecutive positions X such that: before X there are only c’s; after
X there are only d’s; in X b’s and a’s alternate; the first letter in X is an a and the last
letter is a b.

The predicate is a conjunction of predicates. We give formulas for each of them.

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 163

• “X is a block of consecutive positions.”

Cons(X) := ∀x ∈ X ∀y ∈ X (x < y→ (∀z (x < z ∧ z < y)→ z ∈ X))

• “x lies before/after X.”

Before(x, X) := ∀y ∈ X x < y After(x, X) := ∀y ∈ X y < x

• “Before X there are only c’s.”

Before only c(X) := ∀x Before(x, X)→ Qc(x)

• “After X there are only d’s.”

After only d(X) := ∀x After(x, X)→ Qd(x)

• “a’s and b’s alternate in X.”

Alternate(X) := ∀x ∈ X (Qa(x)→ ∀y ∈ X (y = x + 1→ Qb(y))
∧

Qb(x)→ ∀y ∈ X (y = x + 1→ Qa(y)))

• ”The first letter in X is an a and the last is a b.”

First a(X) := ∀x ∈ X ∀y (y < x→ ¬y ∈ X)→ Qa(x)

Last b(X) := ∀x ∈ X ∀y (y > x→ ¬y ∈ X)→ Qa(x)

Putting everything together, we get the formula

∃X(Cons(X) ∧ Before only c(X) ∧ After only d(X) ∧
Alternate(X) ∧ First a(X) ∧ Last b(X))

Notice that the empty word is a model of the formula. because the empty set of positions satisfies
all the conjuncts.

Let us now directly prove one direction of the result.

Proposition 9.12 If L ⊆ Σ∗ is regular, then L is expressible in MSO(Σ).

164 CHAPTER 9. AUTOMATA AND LOGIC

Proof: Let A = (Q,Σ, δ, q0, F) be a DFA with Q = {q0, . . . , qn} and L(A) = L. We construct a
formula ϕA such that for every w , ε, w |= ϕA iff w ∈ L(A). If ε ∈ L(A), then we can extend the
formula to ϕA ∨ ϕ

′
A, where ϕ′A is only satisfied by the empty word (e.g. ϕ′A = ∀x x < x).

We start with some notations. Let w = a1 . . . am be a word over Σ, and let

Pq =
{
i ∈ {1, . . . ,m} | δ̂(q0, a0 . . . ai) = q

}
.

In words, i ∈ Pq iff A is in state q immediately after reading the letter ai. Then A accepts w iff
m ∈

⋃
q∈F Pq.

Assume we were able to construct formula Visits(X0, . . . Xn) with free variables X0, . . . Xn such
that I(Xi) = Pqi holds for every model (w, I) and for every 0 ≤ i ≤ n. In words, Visits(X0, . . . Xn) is
only true when Xi takes the value Pqi for every 0 ≤ i ≤ n. Then (w, I) would be a model of

ψA := ∃X0 . . .∃Xn Visits(X0, . . . Xn) ∧ ∃x

last(x) ∧
∨
qi∈F

x ∈ Xi


iff w has a last letter, and w ∈ L. So we could take

ϕA :=
{
ψA if q0 < F
ψA ∨ ∀x x < x if q0 ∈ F

Let us now construct the formula Visits(X0, . . . Xn). The sets Pq are the unique sets satisfying
the following properties:

(a) 1 ∈ Pδ(q0,a1), i.e., after reading the letter at position 1 the DFA is in state δ(q0, a1);

(b) every position i belongs to exactly one Pq, i.e., the Pq’s build a partition of the set positions;
and

(c) if i ∈ Pq and δ(q, ai+1) = q′ then i + 1 ∈ Pq′ , i.e., the Pq’s “respect” the transition function δ.

We express these properties through formulas. For every a ∈ Σ, let qia = δ(q0, a). The formula for
(a) is:

Init(X0, . . . , Xn) = ∃x

first(x) ∧

∨
a∈Σ

(Qa(x) ∧ x ∈ Xia)


(in words: if the letter at position 1 is a, then the position belongs to Xia).
Formula for (b):

Partition(X0, . . . , Xn) = ∀x


n∨

i=0

x ∈ Xi ∧

n∧
i, j = 0
i , j

(x ∈ Xi → x < X j)



9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 165

Formula for (c):

Respect(X0, . . . , Xn) = ∀x∀y


y = x + 1→

∨
a ∈ Σ

i, j ∈ {0, . . . , n}
δ(qi, a) = q j

(x ∈ Xi ∧ Qa(x) ∧ y ∈ X j)


Altogether we get

Visits(X0, . . . Xn) := Init(X0, . . . , Xn) ∧ Partition(X0, . . . , Xn) ∧ Respect(X0, . . . , Xn)

It remains to prove that MSO-definable languages are regular. Given a sentence ϕ ∈ MSO(Σ)
show that L(ϕ) is regular by induction on the structure of ϕ. However, since the subformulas of a
sentence are not necessarily sentences, the language defined by the subformulas of ϕ is not defined.
We correct this. Recall that the interpretations of a formula are pairs (w, I) where I assigns positions
to the free first-order variables and sets of positions to the free second-order variables. For example,
if Σ = {a, b} and if the free first-order and second-order variables of the formula are x, y and X,Y ,
respectively, then two possible interpretations areaab ,

x 7→ 1
y 7→ 3
X 7→ {2, 3}
Y 7→ {1, 2}


ba ,

x 7→ 2
y 7→ 1
X 7→ ∅
Y 7→ {1}


Given an interpretation (w, I), we can encode each assignment x 7→ k or X 7→ {k1, . . . , kl} as a
bitstring of the same length as w: the string for x 7→ k contains exactly a 1 at position k, and 0’s
everywhere else; the string for X 7→ {k1, . . . , kl} contains 1’s at positions k1, . . . , kl, and 0’s every-
where else. After fixing an order on the variables, an interpretation (w, I) can then be encoded as a
tuple (w,w1, . . . ,wn), where n is the number of variables, w ∈ Σ∗, and w1, . . . ,wn ∈ {0, 1}∗. Since all
of w,w1, . . . ,wn have the same length, we can as in the case of transducers look at (w,w1, . . . ,wn)
as a word over the alphabet Σ × {0, 1}n. For the two interpretations above we get the encodings

x
y
X
Y

a
1
0
0
1

a
0
0
1
1

b
0
1
1
0

and
x
y
X
Y

b
0
1
0
1

a
1
0
0
0

corresponding to the words

166 CHAPTER 9. AUTOMATA AND LOGIC


a
1
0
0
1




a
0
0
1
1




b
0
1
1
0


and


b
0
1
0
1




a
1
0
0
0


of Σ × {0, 1}4

Definition 9.13 Let ϕ be a formula with n free variables, and let (w, I) be an interpretation of ϕ.
We denote by enc(w, I) the word over the alphabet Σ × {0, 1}n described above. The language of ϕ
is L(ϕ) = {enc(w, I) | (w, I) |= ϕ}.

Now that we have associated to every formula ϕ a language (whose alphabet depends on the
free variables), we prove by induction on the structure of ϕ that L(ϕ) is regular. We do so by
exhibiting automata (actually, transducers) accepting L(ϕ). For simplicity we assume Σ = {a, b},
and denote by free(ϕ) the set of free variables of ϕ.

• ϕ = Qa(x). Then free(ϕ) = x, and the interpretations of ϕ are encoded as words over Σ×{0, 1}.
The language L(ϕ) is given by

L(ϕ) =


[
a1
b1

]
. . .

. . .

[
ak

bk

] ∣∣∣∣∣∣∣∣∣
k ≥ 0,
ai ∈ Σ and bi ∈ {0, 1} for every i ∈ {1, . . . , k}, and
bi = 1 for exactly one index i ∈ {1, . . . , k} such that ai = a


and is recognized by

[
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]
[
a
1

]

• ϕ = x < y. Then free(ϕ) = {x, y}, and the interpretations of φ are encoded as words over
Σ × {0, 1}2. The language L(ϕ) is given by

L(ϕ) =


a1
b1
c1

 . . .

. . .

ak

bk

ck


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k ≥ 0,
ai ∈ Σ and bi, ci ∈ {0, 1} for every i ∈ {1, . . . , k},
bi = 1 for exactly one index i ∈ {1, . . . , k},
c j = 1 for exactly one index j ∈ {1, . . . , k}, and
i < j


and is recognized by

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 167

a01

b01



a00

b00


a00

 ,
b00


a00


b00

 a10

b10



• ϕ = x ∈ X. Then free(ϕ) = {x, X}, and interpretations are encoded as words over Σ × {0, 1}2.
The language L(ϕ) is given by

L(ϕ) =


a1
b1
c1

 . . .

. . .

ak

bk

ck


∣∣∣∣∣∣∣∣∣∣∣

k ≥ 0,
ai ∈ Σ and bi, ci ∈ {0, 1} for every i ∈ {1, . . . , k},
bi = 1 for exactly one index i ∈ {1, . . . , k}, and
for every i ∈ {1, . . . , k}, if bi = 1 then ci = 1


and is recognized by

a00
 ,

b00
 ,

a01
 ,

b01


a00
 ,

b00
 ,

a01
 ,

b01
 a11

 ,
b11



• ϕ = ¬ψ. Then free(ϕ) = free(ψ), and by induction hypothesis there exists an automaton Aψ
s.t. L(Aψ) = L(ψ).

Observe that L(ϕ) is not in general equal to L(ψ). To see why, consider for example the case
ψ = Qa(x) and ϕ = ¬Qa(x). The word [

a
1

] [
a
1

] [
a
1

]
belongs neither to L(ψ) nor L(ϕ), because it is not the encoding of any interpretation: the
bitstring for x contains more than one 1. What holds is L(ϕ) = L(ψ) ∩ Enc(ψ), where
Enc(ψ) is the language of the encodings of all the interpretations of ψ (whether they are
models of ψ or not). We construct an automaton Aenc

ψ recognizing Enc(ψ), and so we can
take Aϕ = Aψ ∩ Aenc

ψ .

Assume ψ has k first-order variables. Then a word belongs to Enc(ψ) iff each of its projec-
tions onto the 2nd, 3rd, . . . , (k + 1)-th component is a bitstring containing exactly one 1. As
states of Aenc

ψ we take all the strings {0, 1}k. The intended meaning of a state, say state 101
for the case k = 3, is “the automaton has already read the 1’s in the bitstrings of the first and
third variables, but not yet read the 1 in the second.” The initial and final states are 0k and
1k, respectively. The transitions are defined according to the intended meaning of the states.
For instance, the automaton Aenc

x<y is

168 CHAPTER 9. AUTOMATA AND LOGIC

a10
 ,

b10


a01
 ,

b01


a01
 ,

b01


a11
 ,

b11


a00
 ,

b00


a00
 ,

b00


a10
 ,

b10


a00
 ,

b00


a00
 ,

b00


Observe that the number of states of Aenc
ψ grows exponentially in the number of free variables.

This makes the negation operation expensive, even when the automaton Aφ is deterministic.

• ϕ = ϕ1 ∨ ϕ2. Then free(ϕ) = f ree(ϕ1) ∪ free(ϕ2), and by induction hypothesis there are
automata Aϕi , Aϕ2 such that L(Aϕ1) = L(ϕ1) and L(Aϕ2) = L(ϕ2).

If free(ϕ1) = free(ϕ2), then we can take Aϕ = Aϕ1 ∪ Aϕ2 . But this need not be the case. If
free(ϕ1) , free(ϕ2), then L(ϕ1) and L(ϕ2) are languages over different alphabets Σ1,Σ2, or
over the same alphabet, but with different intended meaning, and we cannot just compute
their intersection. For example, if ϕ1 = Qa(x) and ϕ2 = Qb(y), then both L(ϕ1) and L(ϕ2)
are languages over Σ × {0, 1}, but the second component indicates in the first case the value
of x, in the second the value of y.

This problem is solved by extending L(ϕ1) and L(Aϕ2) to languages L1 and L2 over Σ×{0, 1}2.
In our example, the language L1 contains the encodings of all interpretations (w, {x 7→
n1, y 7→ n2}) such that the projection (w, {x 7→ n1}) belongs to L(Qa(x)), while L2 contains
the interpretations such that (w, {y 7→ n2}) belongs to L(Qb(y)). Now, given the automaton
AQa(x) recognizing L(Qa(x))

[
a
0

]
,

[
b
0

]
[
a
1

]
[
a
0

]
,

[
b
0

]

we transform it into an automaton A1 recognizing L1

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 169a00
 ,

a01
 ,

b00
 ,

b01


a00
 ,

a01
 ,

b00
 ,

b01
a10

 ,
a11



After constructing A2 similarly, take Aϕ = A1 ∪ A2.

• ϕ = ∃x ψ. Then free(ϕ) = f ree(ψ) \ {x}, and by induction hypothesis there is an automaton
Aψ s.t. L(Aψ) = L(ψ). Define A∃ xψ as the result of the projection operation, where we
project onto all variables but x. The operation simply corresponds to removing in each letter
of each transition of Aσ the component for variable x. For example, the automaton A∃x Qa(x)
is obtained by removing the second components in the automaton for AQa(x) shown above,
yielding

a, b a, b

a

Observe that the automaton for ∃x ψ can be nondeterministic even if the one for ψ is deter-
ministic, since the projection operation may map different letters into the same one.

• ϕ = ∃X ϕ. We proceed as in the previous case.

Size of Aϕ. The procedure for constructing Aϕ proceeds bottom-up on the syntax tree of ϕ. We
first construct automata for the atomic formulas in the leaves of the tree, and then proceed upwards:
given automata for the children of a node in the tree, we construct an automaton for the node itself.

Whenever a node is labeled by a negation, the automaton for it can be exponentially bigger
than the automaton for its only child. This yields an upper bound for the size of Aϕ equal to a tower
of exponentials, where the height of the tower is equal to the largest number of negations in any
path from the root of the tree to one of its leaves.

It can be shown that this very large upper bound is essentially tight: there are formulas for
which the smallest automaton recognizing the same language as the formula reaches the upper
bound. This means that MSO-logic allows to describe some regular languages in an extremely
succinct form.

Example 9.14 Consider the alphabet Σ = {a, b} and the language a∗b ⊆ Σ∗, recognized by the
NFA

a

b

170 CHAPTER 9. AUTOMATA AND LOGIC

We derive this NFA by giving a formula ϕ such that L(ϕ) = a∗b, and then using the procedure
described above. We shall see that the procedure is quite laborious. The formula states that the last
letter is b, and all other letters are a’s.

ϕ = ∃x (last(x) ∧ Qb(x)) ∧ ∀x (¬last(x)→ Qa(x))

We first bring ϕ into the equivalent form

ψ = ∃x (last(x) ∧ Qb(x)) ∧ ¬∃x (¬last(x) ∧ ¬Qa(x))

We transform ψ into an NFA. First, we compute an automaton for last(x) = ¬∃y x < y. Recall
that the automaton for x < y is

a01

b01



a00

b00


a00

 ,
b00


a00


b00

 a10

b10

 [x < y]

Applying the projection operation, we get following automaton for ∃y x < y

[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[∃y x < y]

Recall that computing the automaton for the negation of a formula requires more than complement-
ing the automaton. First,we need an automaton recognizing Enc(∃y x < y).

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]

Second, we determinize and complement the automaton for ∃y x < y:

[
a
0

]
,

[
b
0

]

Σ × {0, 1}

[
a
1

]
,

[
b
1

] Σ × {0, 1}

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 171

And finally, we compute the intersection of the last two automata, getting

[
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

]
[
a
0

]
,

[
b
0

]

whose last state is useless and can be removed, yielding the following NFA for last(x):

[
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

]
[last(x)]

Next we compute an automaton for ∃x (last(x) ∧ Qb(x)) , the first conjunct of ψ. We start with an
NFA for Qb(x)

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]
[Qb(x)]

The automaton for ∃x (last(x) ∧ Qb(x)) is the result of intersecting this automaton with the NFA
for last(x) and projecting onto the first component. We get

a, b

b
[∃x (last(x) ∧ Qb(x))]

Now we compute an automaton for ¬∃x (¬last(x) ∧ ¬Qa(x)), the second conjunct of ψ. We first
obtain an automaton for ¬Qa(x) by intersecting the complement of the automaton for Qa(x) and
the automaton for Enc(Qa(x). The automaton for Qa(x) is

[
a
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]
[Qa(x)]

172 CHAPTER 9. AUTOMATA AND LOGIC

and after determinization and complementation we get

[
a
1

]

[
b
1

] [
a
1

] [
b
1

]

Σ × {0, 1}

[
a
0

] [
b
0

][
a
0

] [
b
0

]

For the automaton recognizing Enc(Qa(x)), notice that Enc(Qa(x)) = Enc(∃y x < y), because both
formulas have the same free variables, and so the same interpretations. But we have already com-
puted an automaton for Enc(∃y x < y), namely

[
a
1

]
,

[
b
1

]
[
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]

The intersection of the last two automata yields a three-state automaton for ¬Qa(x), but after elim-
inating a useless state we get

[
b
1

]
[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

]
[¬Qa(x)]

Notice that this is the same automaton we obtained for Qb(x), which is fine, because over the
alphabet {a, b} the formulas Qb(x) and ¬Qa(x) are equivalent.

To compute an automaton for ¬last(x) we just observe that ¬last(x) is equivalent to ∃y x < y,
for which we have already compute an NFA, namely

[
a
0

]
,

[
b
0

] [
a
0

]
,

[
b
0

][
a
0

]
,

[
b
0

]
[
a
1

]
,

[
b
1

] [
a
0

]
,

[
b
0

]
[¬last(x)]

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 173

Intersecting the automata for ¬last(x) and ¬Qa(x), and subsequently projecting onto the first com-
ponent, we get an automaton for ∃x (¬last(x) ∧ ¬Qa(x))

a, b

b

a, b a, b

a, b
[∃x (¬last(x) ∧ ¬Qa(x))]

Determinizing, complementing, and removing a useless state yields the following NFA for¬∃x (¬last(x)∧
¬Qa(x)):

a

b
[¬∃x (¬last(x) ∧ ¬Qa(x))]

Summarizing, the automata for the two conjuncts of ψ are

a, b

b
and

a

b

whose intersection yields a 3-state automaton, which after removal of a useless state becomes
a

b
[∃x (last(x) ∧ Qb(x)) ∧ ¬∃x (¬last(x) ∧ ¬Qa(x))]

ending the derivation.

Exercises

Exercise 75 Characterize the languages described by the following formulas and give a corre-
sponding automaton:

1. ∃x first(x)

2. ∀x first(x)

3. ¬∃x∃y (x < y∧Qa(x)∧Qb(y)) ∧ ∀x (Qb(x)→ ∃y x < y∧Qa(y)) ∧ ∃x ¬∃y (x < y∧Qa(x))

174 CHAPTER 9. AUTOMATA AND LOGIC

Exercise 76 Give a defining MSO-formula, an automaton, and a regular expression for the fol-
lowing languages over {a, b}.

• The set of words of even length and containing only a’s or only b’s.

• The set of words, where between each two b’s with no other b in between there is a block of
an odd number of letters a.

• The set of words with odd length and an odd number of occurrences of a.

Exercise 77 For every n ≥ 1, give a FO-formula of polynomial length in n abbreviating y = x+2n.
(Notice that the abbreviation y = x + k of page 9.1 has length O(k), and so it cannot be directly
used.) Use it to give another FO-formula ϕn, also of of polynomial length in n, for the language
Ln = {ww ∈ {a, b}∗ | |w| = 2n}.

Remark: Since the minimal DFA for Ln has 22n
states (Exercise 10), this shows that the number of

states of a minimal automaton equivalent to a given FO-formula may be double exponential in the
length of the formula.

Exercise 78 MSO over a unary alphabet can be used to automatically prove some simple proper-
ties of the natural numbers. Consider for instance the following property: every finite set of natural
numbers has a minimal element2. It is easy to see that this property holds iff the formula

∀Z∃x∀y (y ∈ Z → (x ≤ y ∧ x ∈ Z))

is a tautology, i.e., if it is satisfied by every word. Construct an automaton for the formula, and
check that it is universal.

Exercise 79 Give formulas ϕ1, . . . , ϕ4 for the following abbreviations:

Sing(X) := ϕ1 “X is a singleton, i.e., X contains one element”
X ⊆ Y := ϕ2 “X is a subset of Y”

X ⊆ Qa := ϕ3 “every position of X contains an a”
X < Y := ϕ4 “X and Y are singletons X = {x} and Y = {y} satisfying x < y”

Exercise 80 Express addition in MSO({a}. More precisely, find a formula +(X,Y,Z) of MSO({a})
that is true iff x + y = z, where x, y, z are the numbers encoded by the sets X,Y,Z, respectively, in
lsbf encoding. You may use any abbrevation defined in the chapter.

2Of course, this also holds for every infinite set, but we cannot prove it using MSO over finite words.

9.2. MONADIC SECOND-ORDER LOGIC ON WORDS 175

Exercise 81 The nesting depth d(ϕ) of a formula ϕ of FO({a}) is defined inductively as follows:

• d(Qa(x)) = d(x < y) = 0;

• d(¬ϕ) = d(ϕ), d(ϕ1 ∨ ϕ2) = max{d(ϕ1), d(ϕ2)}; and

• d(∃x ϕ) = 1 + d(ϕ).

Prove that every formula ϕ of FO({a}) of nesting depth n is equivalent to a formula f of QF having
the same free variables as ϕ, and such that every constant k appearing in f satisfies k ≥ 2n.

Hint: The proof is similar to that of Theorem 9.8. The difficult case is the one where ϕ has the
form ∃x ψ and ψ is a conjunction. Define f as the following conjunction. All conjuncts of ψ not
containing x are also conjuncts of f ; for every conjunct of D of the form x ≥ k or x ≥ y + k, f
contains a conjunct last ≥ k; for every two conjuncts of D containing x, f contains a conjunct
obtained by “quantifying x away”: for example, if the conjuncts are x ≥ k1 and y ≥ x + k2, then
f has the conjunct y ≥ k1 + k2. Since the constants in the new conjuncts are the sum of two old
constants, the new constants are bounded by 2 · 2d = 2d+1.

176 CHAPTER 9. AUTOMATA AND LOGIC

Chapter 10

Applications III: Presburger Arithmetic

Presburger arithmetic is a logical language to formulate properties of numbers that are expressible
using addition and comparison. A typical example of such a property is “x + 2y > z and 2x − 3z =

4y”. This property is satisfied by some valuations (nx, ny, nz) of the triple of variables (x, y, z),
like (4, 2, 0), but not by others, like (1, 1, 4). We call the former the solutions of the formula. We
show how to construct for a given formula φ of Presburger arithmetic an NFA Aφ recognizing the
solutions of φ.

10.1 Syntax and Semantics

Formulas of Presburger arithmetic are constructed out of an infinite set of variables V = {x, y, z, . . .}
and the constants 0 and 1. The syntax of formulas is defined in three steps. First, the set of terms is
inductively defined as follows:

• the symbols 0 and 1 are terms;

• every variable is a term;

• if t and u are terms, then t + u is a term.

An atomic formula is an expression t ≤ u, where t and u are terms. The set of Presburger formulas
is inductively defined as follows:

• every atomic formula is a formula;

• if ϕ1, ϕ2 are formulas, then so are ¬ϕ1, ϕ1 ∨ ϕ2, and ∃x ϕ1.

177

178 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

As usual, variables within the scope of an existential quantifier are bounded, and otherwise free.
Besides the usual abbreviations like ∀, ∧,→, we also introduce:

n := 1 + 1 + . . . + 1︸ ︷︷ ︸
n times

nx := x + x + . . . + x︸ ︷︷ ︸
n times

t ≥ t′ := t′ ≤ t
t = t′ := t ≤ t′ ∧ t ≥ t′

t < t′ := t ≤ t′ ∧ ¬(t = t′)
t > t′ := t′ < t

An interpretation is a function I : V → IN. An interpretation I is extended to terms in the
natural way: I(0) = 0, I(1) = 1, and I(t + u) = I(t) + I(u). The satisfaction relation I |= ϕ is
defined as one would expect, where I(n/x) denotes the interpretation that assigns the number n to
the variable x, and the same numbers as I to all other variables:

I |= t ≤ u iff I(t) ≤ I(u)
I |= ¬ϕ1 iff I 6|= ϕ1
I |= ϕ1 ∨ ϕ2 iff I |= ϕ1 or I |= ϕ2
I |= ∃xϕ iff there exists n ≥ 0 such that I[n/x] |= ϕ

Clearly, whether an interpretation satisfies a formula depends only on the values assigned by the
interpretation assigns to the variables of ϕ. It is easy to see that, even further, it only depends on the
values assigned to the free variables of ϕ (that is, if two interpretations assign the the same values
to the free variables, then either both satisfy the formula, or none does). For a formula ϕ with k
free variables, the set of all satisfying interpretations of its free variables constitutes a subset of
INk, or, equivalently, a relation over the universe IN of arity k. (where we assume a fix order on the
free variables of the formula). It is also called the solution space or the set of models of ϕ, and we
denote it by Sol(ϕ).

Example 10.1 The solution space of the formula x − 2 ≥ 0 is the set {2, 3, 4, . . .}. The solution
space of ∃x (2x = y ∧ 2y = z) is the set of pairs {(2n, 4n) | n ≥ 0} (where we assume that the first
and second components of the pairs are the values of y and z, respectively).

Automata encoding natural numbers. Transducers can be used as data structure for computing
and manipulating solution spaces. As in Section 5.1 of Chapter 5, we encode natural numbers
as strings over {0, 1} using the least-significant-bit-first encoding lsbf. If we have free variables
x1, . . . , xk, the elements of the solution space are encoded as a word over {0, 1}k. For instance, the
word

x1
x2
x3

10
0


01
0


10
0


01
0


is an encoding of the solution (3, 10, 0). The language of a formula is then defined to be

L(ϕ) =
⋃

s∈Sol(ϕ)

lsbf(s)

10.2. CONSTRUCTING AN NFA FOR THE SOLUTION SPACE. 179

where lsbf(s) denotes the set of all encodings of s. In other words, L(ϕ) is the encoding of the
relation Sol(ϕ).

10.2 Constructing an NFA for the Solution Space.

Given a Presburger formula ϕ, we construct a transducer A such that L(A) = L(ϕ). For this, use the
implementations of operations on relations defined in Chapter 5.

Recall that ifϕ has k free variables, then Sol(ϕ) is a relation over IN of arity k. The last section
of Chapter 5 discusses how to generalize the implementations of operations for binary relations
to relations of arbitrary arity. These operations can be used to compute the solution space of the
negation of a formula, the disjunction of two formulas, and the existential quantification of two
formulas.

• The solution space of the negation of a formula with k free variables is the complement of its
solution space with respect to the universe Uk. In general, when computing the complement
of a relation we have to worry about ensuring that the NFAs we obtain only accept words
that encode some tuple of elements (i.e., some clean-up maybe necessary to ensure that
the automata do not accept ‘ rubbish”, meaning words encoding nothing). In the case of
Presburger arithmetic this is not necessary, because the lsbf encoding has the property that
every word is the encoding of some tuple of numbers.

• The solution space of a disjunction ϕ1 ∨ ϕ2 where ϕ1 and ϕ2 have the same free variables is
clearly the union of their solution spaces, and can be computed as Union(Sol(ϕ1), Sol(ϕ2)).
If ϕ1 and ϕ2 have different sets V1 and V2 of free variables, then some preprocessing is neces-
sary. Define SolV1∪V2(ϕi) as the set of valuations of V1∪V2 whose projection onto V1 belongs
to Sol(ϕi). Transducers recognizing SolV1∪V2(ϕi) for i = 1, 2 are easy to compute from trans-
ducers recognizing Sol(ϕi). The solution space of ϕ is then given by Union(SolV1∪V2(ϕ1), SolV1∪V2(ϕ2)).

• The solution space of a formula ∃x ϕ, where x is a free variable of ϕ, is given by Projection I(Sol(ϕ)),
where I contains the indices of all variables with the exception of the index of x.

It only remains to show how to construct a DFA recognizing the solution space of atomic formulas.
Consider an expression of the form

ϕ = a1x1 + . . . + anxn ≤ b

where a1, . . . , an, b ∈ Z (not N!). We let a = (a1, . . . , an), x = (x1, . . . , xn), and denote by a · x
the scalar product of a and x. So we have ϕ = a · x ≤ b. Since we allow negative integers
as coefficients, for every atomic formula there is an equivalent expression in this form (i.e., an
expression with the same solution space). For example, x ≥ y + 4 is equivalent to −x + y ≤ −4.

The DFA must accept the encodings of all the the tuples c ∈ INn satisfying a · c ≤ b. An
encoding of a tuple c = (c1, c2, . . . , cn) ∈ INn is a word ζ0 . . . ζm over {0, 1}n. We denote the j-th bit
in the encoding of ci by ζi j:

180 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

ζ0 ζ1 . . . ζm

c1
c2
. . .

cn


ζ10
ζ20
. . .

ζn0



ζ11
ζ21
. . .

ζn1


. . .

. . .

. . .

. . .


ζ1m

ζ2m

. . .

ζnm


For every 1 ≤ j ≤ m + 1, let c j ∈ INn denote the tuple of numbers encoded by the prefix

ζ0 . . . ζ j−1, and let c0 denote the tuple encoded by ε, i.e., c0 = (0, 0, 0, 0). For instance, for the
encoding ζ0ζ1ζ2 of the tuple (0, 4, 7, 3) given by

ζ0 ζ1 ζ2
0
4
7
3


0
0
1
1



0
0
1
1



0
1
1
0

 we get

ζ0 ζ1
0
0
3
3


0
0
1
1



0
0
1
1


and so c2 = (0, 0, 3, 3).

We construct a DFA for the solution space of ϕ. The idea is that after reading a prefix ζ0 . . . ζ j−1
the automaton should be in the state ⌊

1
2 j

(
b − a · c j

)⌋
So, intuitively, the state of the automaton after ζ0 . . . ζ j−1 is the difference between the ‘ceiling’
b that the tuple being read should not exceed in order to satisfy ϕ, and the current value a · c j,
multiplied by a ‘normalization’ factor 1/2 j. The final states are the nonnegative numbers, because
they indicate that the tuple does not exceed the ceiling.

Initially we have c0 = (0, . . . , 0), and so the initial state is the number 1
20 (b− a · c0) = b. For the

transitions, assume that before and after reading the letter ζ j the automaton is in the states q and q′,
respectively. Then we have

q =

⌊
1
2 j

(
b − a · c j

)⌋
and q′ =

⌊
1

2 j+1

(
b − a · c j+1

)⌋
Using the fact that, by definition

c j =

 j−1∑
i=0

2iζ1i , . . . ,

j−1∑
i=0

2iζni


we get

c j+1 = c j + 2 jζ j

Inserting this in the expression for q′, and comparing with q, we obtain

10.2. CONSTRUCTING AN NFA FOR THE SOLUTION SPACE. 181

q′ =

⌊
1
2

(q − a · ζ j)
⌋

and so for every state q and every letter ζ ∈ {0, 1}n we define

δ(q, ζ) =
1
2

(q − a · ζ) .

This leads to the algorithm PAtoDFA(ϕ) of Table 10.1, where for clarity the state corresponding to
an integer k ∈ Z is denoted by sk.

PAtoDFA(ϕ)
Input: PA formula ϕ = a · x ≤ b
Output: DFA A = (Q,Σ, δ, q0, F) such that L(A) = L(ϕ)

1 q0 ← sb

2 W ← {sb}

3 while W , ∅ do
4 pick sk from W
5 add sk to Q
6 if k ≥ 0 then add sk to F
7 for all ζ ∈ {0, 1}n do

8 j←
⌊
1
2

(k − a · ζ)
⌋

9 if s j < Q then add s j to W
10 add (sk, ζ, s j) to δ

Table 10.1: Converting an inequality into a DFA accepting the least-significant bit encoding of the
solution space.

Example 10.2 Consider the formula 2x − y ≤ 2. The DFA obtained by applying PAtoDFA() to
it is shown in Figure 10.1. The initial state is 2. Taking the (0, 0) transition leads to the state
b(2 − (2 · 0 − 0))/2c = 1. Taking the (1, 1) transition leads to b(2 − (2 · 1 − 1))/2c = 0. States 2, 1 ,
and 0 are final. The DFA accepts, for example, the word[

0
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
which corresponds to x = 12 and y = 50 and, indeed 24 − 50 ≤ 2. If we remove the last letter then
the word corresponds to x = 12 and y = 18, is not accepted, and indeed 24 − 18 � 2.

Consider now the formula x + y ≥ 4. We rewrite it as −x − y ≤ −4, and apply the algorithm.
The resulting DFA is shown in Figure 10.2. The initial state is −4. Taking the transition (1, 1) leads

182 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

[
1
0

]
,

[
1
1

]

[
1
0

] [
1
1

]

[
0
1

]
[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
1
0

]

[
0
0

] [
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]

−2

0

−1
[
0
0

]
,

[
1
1

]

[
0
0

]
,

[
1
1

]
1

[
0
1

]
2

Figure 10.1: DFA for the formula 2x − y ≤ 2.

to the state b(−4 − (−1 − 1))/2c = −1. Taking the (0, 1) transition leads to b(−4 − (0 − 1))/2c = −2.
Notice that the DFA is not minimal. In particular, states 0 and 1 can be merged without changing
the language.

−4 0

−1

−2

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
1
1

][
0
0

]
,

[
0
1

]
,

[
1
0

]

[
1
1

]
[
0
0

]
,

[
0
1

]
,

[
1
0

]
,

[
1
1

]

[
0
0

]

1
[
0
1

]
,

[
1
0

]
[
1
1

]

[
0
0

]

Figure 10.2: DFA for the formula x + y ≥ 4.

The partial correctness of PAtoDFA follows from the considerations above. But we have not
yet shown that the algorithm always terminates: in principle it could keep generating new states
forever. We show that this is not the case.

Lemma 10.3 Let ϕ = a · x ≤ b and s =
∑k

i=1 |ai|. All states s j added to the worklist during the
execution of PAtoDFA(ϕ) satisfy

− |b| − s ≤ j ≤ |b| + s.

10.2. CONSTRUCTING AN NFA FOR THE SOLUTION SPACE. 183

Proof: The property holds for sb, the first state added to the worklist. We show that if all the
states added to the worklist so far satisfy the property, then so does the next one. Let s j be this next
state. Then there exists a state sk in the worklist and ζ ∈ {0, 1}n such that j = b 1

2 (k − a · ζ)c. Since
by assumption sk satisfies the property we have

− |b| − s ≤ k ≤ |b| + s

and so ⌊
− |b| − s − a · ζ

2

⌋
≤ j ≤

⌊
|b| + s − a · ζ

2

⌋
Now we observe

− |b| − s ≤
− |b| − 2s

2
≤

⌊
− |b| − s − a · ζ

2

⌋
⌊
|b| + s − a · ζ

2

⌋
≤

|b| + 2s
2

≤ |b| + s

which together with 10.2 yields
− |b| − s ≤ j ≤ |b| + s

and we are done.

Example 10.4 We compute all the solutions of the system of linear equations and inequations

2x − y ≤ 2
x + y ≥ 4

such that both x and y are multiples of 4. This corresponds to computing a DFA for the Presburger
formula

∃z x = 4z ∧ ∃w y = 4w ∧ 2x − y ≤ 2 ∧ x + y ≥ 4

The minimal DFA for the first two conjuncts can be computed using the algorithms of the chapter,
but the result is also easy to guess: it is the DFA of Figure 10.3 (a trap state has been omitted).

q2q1q0

[
0
0

] [
0
0

] [
0
0

] [
0
1

] [
1
0

] [
1
1

]

Figure 10.3: DFA for the formula ∃ zx = 4z ∧ ∃w y = 4w.

The solutions are then represented by the intersection of the DFAs of Figures 10.1, 10.2 (after
merging states 0 and 1), and 10.3. The resulting DFA is shown in Figure 10.4. (The intersection
operation actually produces some additional states from which no final state can be reached; these
states have been omitted.)

184 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

2,−4, q0 1,−2, q1 0,−1, q2

0, 0, q2

−1, 0, q2 −2, 0, q2

[
0
1

]

[
1
0

]
,

[
1
1

] [
0
0

]
,

[
0
1

]
[
1
0

]
,

[
1
1

][
0
0

]
,

[
1
1

]

[
1
0

][
0
1

]

[
0
0

]
,

[
0
1

]

[
1
0

]
,

[
1
1

]

[
0
0

] [
0
0

]
[
0
0

]

Figure 10.4: Intersection of the DFAs of Figures 10.1, 10.2, and 10.3. States from which no final
state is reachable have been omitted.

Exercises

Exercise 82 Let k1, k2 ∈ N0 be constants. Find a Presburger arithmetic formula, ϕ(x, y), with
free variables x and y such that I |= ϕ(x, y) iff I(x) ≥ I(y) and I(x) − I(y) ≡ k1 (mod k2). Find a
corresponding automaton for the case k1 = 0 and k2 = 2.

Exercise 83 Using the algorithms discussed in the lecture, construct a finite automaton for the
Presburger formula ∃y x = 3y .

Exercise 84 PAtoDFA returns a DFA recognizing all solutions of a given linear inequation

a1x1 + a2x2 + . . . + akxk ≤ b with a1, a2, . . . , ak, b ∈ Z (∗)

encoded using the lsbf encoding of INk. We may also use the most-significant-bit-first (msbf) en-
coding, e.g.,

msbf
([

2
3

])
= L

([
0
0

]∗ [1
1

] [
0
1

])
1. Construct a finite automaton for the inequation 2x − y ≤ 2 w.r.t. msbf encoding.

2. Adapt PAtoDFA to the msbf encoding.

3. Recall that integers can be encoded as binary strings using two’s complement: a binary string
s = b0b1b2 . . . bn is interpreted in msbf encoding as the integer

−b0 · 2n + b1 · 2n−1 + b2 · 2n−2 + . . . + bn · 20.

10.2. CONSTRUCTING AN NFA FOR THE SOLUTION SPACE. 185

In particular, s and (b0)∗s represent the same integer. This extends in the standard way to
tuples of integers, e.g., the pair (−3, 5) has the following encodings:[

1
0

]∗ [1
0

] [
1
1

] [
0
0

] [
1
1

]
• Construct an automaton accepting all (encodings of) integer solutions of the inequation

2x − y ≤ 2.

• Modify the algorithm from Exercise 84 so that it returns a DFA recognizing all two’s
complement encodings of all integer solutions of (∗).

186 CHAPTER 10. APPLICATIONS III: PRESBURGER ARITHMETIC

Part II

Automata on Infinite Words

187

Chapter 11

Classes of ω-Automata and Conversions

In Section 11.1 we introduce ω-regular expressions, a textual notation for defining languages of
infinite words. The other sections introduce different classes of automata on infinite words, most of
them with the same expressive power as ω-regular expressions, and conversion algorithms between
them.

11.1 ω-languages and ω-regular expressions

Let Σ be an alphabet. An infinite word, also called an ω-word, is an infinite sequence a0a1a2 . . . of
letters of Σ. The concatenation of a finite word w1 = a1 . . . an and an ω-word w2 = b1b2 . . . is the
ω-word w1w2 = a1 . . . anb1b2 . . ., sometimes also denoted by w1 · w2. We denote by Σω the set of
all ω-words over Σ. A set L ⊆ Σω of ω-words is an infinitary language or ω-language over Σ.

The concatenation of a language L1 and an ω-language L2 is L1 · L2 = {w1w2 ∈ Σω | w1 ∈

L1 and w2 ∈ L2}. The ω-iteration of a language L ⊆ Σ∗ is the ω-language Lω = {w1w2w3 . . . | wi ∈

L \ {ε}}. Observe that {∅}ω = ∅, in contrast to the case of finite words, where {∅}∗ = {ε}.
We extend regular expressions to ω-regular expressions, a formalism to define ω-languages.

Definition 11.1 Theω-regular expressions s over an alphabet Σ are defined by the following gram-
mar, where r ∈ RE(Σ) is a regular expression

s ::= rω | rs1 | s1 + s2

Sometimes we write r · s1 instead of rs1. The set of all ω-regular expressions over Σ is denoted by
REω(Σ). The language Lω(s) ⊆ Σ of an ω-regular expression s ∈ REω(Σ) is defined inductively as

• Lω(rω) = (L(r))ω;

• Lω(rs1) = L(r) · Lω(s1); and

• Lω(s1 + s2) = Lω(s1) ∪ Lω(s2).

189

190 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

A language L is ω-regular if there is an ω-regular expression s such that L = Lω(s).

Observe that the empty ω-language is ω-regular because Lω((∅)ω) = ∅.

11.2 Büchi automata

Büchi automata have the same syntax as NFAs, but a different definition of acceptance. Suppose
that an NFA A = (Q,Σ, δ, q0, F) is given as input an infinite word w = a0a1a2 . . . over Σ. Intuitively,
a run of A on w never terminates, and so we cannot define acceptance in terms of the state reached at
the end of the run. In fact, even the name “final state” is no longer appropriate for Büchi automata.
So from now on we speak of “accepting states”, although we still denote by F the set of accepting
states. We say that a run of a Büchi automaton is accepting if some accepting state is visited along
the run infinitely often. Since the set of accepting states is finite, “some accepting state is visited
infinitely often” is equivalent to “the set of accepting states is infinitely often”.

Definition 11.2 A nondeterministic Büchi automaton (NBA) is a tuple A = (Q,Σ, δ, q0, F), where
Q, Σ, δ, q0, and F are defined as for NFAs. A run of A on an ω-word a0a1a2 . . . is an infinite
sequence ρ = p0

a0
−−−→ p1

a1
−−−→ p2 . . ., such that pi ∈ Q for 0 ≤ i ≤ n and pi+1 ∈ δ(pi, ai) for every

0 ≤ i. Let inf(ρ) be the set {q ∈ Q | q = pi for infinitely many i’s}, i.e., the set of states that occur
in ρ infinitely often. A run ρ is accepting if inf(ρ) ∩ F , ∅. An NBA accepts an ω-word w ∈ Σω if it
has an accepting run on w. The language recognized by and NBA A is the set Lω(A) = {w ∈ Σω | w
is accepted by A}.

We refer to the condition inf(ρ) ∩ F , ∅ as the Büchi condition F.
A Büchi automaton is deterministic if it is deterministic when seen as an automaton on finite

words. One can also define NBAs with ε-transitions, but we will not need them.1

Example 11.3 Figure 11.1 shows two Büchi automata. The automaton on the left is deterministic,
and recognizes all ω-words over the alphabet {a, b} that contain infinitely many occurrences of a.
So, for instance, A accepts aω, baω, (ab)ω, or (ab100)ω, but not bω or a100bω. To prove that this
is indeed the language we show that every ω-word containing infinitely many as is accepted by
A, and that every word accepted by A contains infinitely many as. For the first part, observe that
immediately after reading any a the automaton A always visits its (only) accepting state (because
all transitions labeled by a lead to it); therefore, when A reads an ω-word containing infinitely
many as it visits its accepting state infinitely often, and so it accepts. For the second part, if w is
accepted by A, then there is a run of A on w that visits the accepting state infinitely often. Since all
transitions leading to the accepting state are labeled by a, the automaton must read infinitely many
as during the run, and so w contains infinitely many as.

1Notice that the definition of NBA-ε requires some care, because infinite runs containing only finitely many non-ε
transitions are never accepting, even if they visit some accepting state infinitely often.

11.2. BÜCHI AUTOMATA 191

b a

a

b

a, b b

b

Figure 11.1: Two Büchi automata

The automaton on the right of the figure is not deterministic, and recognizes all ω-words over the
alphabet {a, b} that contain finitely many occurrences of a. The proof is similar.

Example 11.4 Figure 11.2 shows three further Büchi automata over the alphabet {a, b, c}.

c, a

a

b

b, c

b, c

b

b

a, c

a, b, c

b, c

a

a

b, c

b

a

c

c

Figure 11.2: Three further Büchi automata

The top-left automaton recognizes the ω-words in which for every occurrence of a there is a later
occurrence of b. So, for instance, the automaton accepts (ab)ω, cω, or (bc)ω, but not acω or ab(ac)ω.
The top right automaton recognizes the ω-words that contain finitely many occurrences of a, or
infinitely many occurrences of a and infinitely many occurrences of b. Finally, the automaton at
the bottom recognizes theω-words in which between every occurrence of a and the next occurrence

192 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

of c there is at most one occurrence of b; more precisely, for every two numbers i < j, if the letter
at position i is an a and the first occurrence of c after i is at position j, then there is at most one
number i < k < j such that the letter at position k is a b.

11.2.1 From ω-regular expressions to NBAs and back

We present algorithms for converting an ω-regular expression into a NBA, and vice versa. This
provides a first “sanity check” for NBAs as data structure: they can represent exactly the ω-regular
languages.

From ω-regular expressions to NBAs. We proceed by induction on the structure of the ω-
regular expression. Recall that for every regular expression r we can construct an NFA-ε Ar with a
unique final state, no transition leading to the initial state, and no transition leaving the final state.
In fact, if ε < L(r) then Ar has exactly one ε-transition, otherwise none. An NBA for rω is obtained
by adding to the NFA-ε for r transitions leading from the final state to the targets of the transitions
leaving the initial state, as shown at the top of Figure ??; the ε-transition, if present, can be easily
removed. An NBA for r · s is obtained by merging states as shown in the middle of the figure.
Finally, an NBA for s1 + s2 is obtained by merging the initial states of the NBAs for s1 and s2
as shown at the bottom. Notice that we always obtain a NBA with no transitions leading into the
initial state.

From NBAs to ω-regular expressions. Let A = (Q,Σ, δ, q0, F) be a NBA. For every two states
q, q′ ∈ Q, let Aq′

q be the NFA (not the NBA!) obtained from A by changing the initial state to q
and the set of final states to {q′}. Using algorithm NFAtoRE we can construct a regular expression
sq′

q such that L(Aq′
q) = L(sq′

q). In fact, it is even better to construct a regular expression rq′
q whose

language contains the word accepted by L(Aq′
q) by means of runs that visit q′ exactly once (how to

use NFAtoRE for this is left as a little exercise). We use these expressions to compute an ω-regular
expression for Lω(A). For every accepting state q ∈ F, let Lq ⊆ Lω(A) be the set of ω-words w such
that some run of A on w visits the state q infinitely often. We have Lω(A) =

⋃
q∈F Lq.

Every word w ∈ Lq can be split into an infinite sequence w1w2w3 . . . of finite, nonempty words,
where w1 is the word read by A until it visits q for the first time, and for every i > 1 wi is the word
read by the automaton between the i-th and the (i + 1)-th visits to q. It follows w1 ∈ L(rq

q0), and
wi ∈ L(rq

q) for every i > 1. So we have Lq = Lω
(
rq

q0

(
rq

q

)ω)
, and therefore∑

q∈F

rq
q0

(
rq

q

)ω
is the ω-regular expression we are looking for.

Example 11.5 Consider the top right NBA of Figure 11.2, shown again in Figure 11.4.

11.2. BÜCHI AUTOMATA 193

. . .

an

a1

an

. . .

an

NBA for rω

{
a1 a1

NFA for r

NFA for r

NBA for s

· · · · · ·

· · · · · ·

{

NBA for r · s

· · · · · · · · · · · ·

· · ·

NBA for s1 + s2

· · ·· · ·

· · ·· · ·

NBA for s1

NBA for s2

· · ·

· · · · · ·

{

Figure 11.3: From ω-regular expressions to Büchi automata

194 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

b, c

b

b

a, c

a, b, c

b, c

0

1

2

Figure 11.4: An NBA

We have to compute r1
0

(
r1

1

)ω
+ r2

0

(
r2

2

)ω
. Using NFAtoRE and simplifying we get

r1
0 = (a + b + c)∗(b + c)

r2
0 = (a + b + c)∗b

r1
1 = (b + c)∗

r2
2 = b + (a + c)(a + b + c)∗b

and (after some simplifications) we obtain the ω-regular expression

(a + b + c)∗(b + c)ω + (a + b + c)∗b(b + (a + c)(a + b + c)∗b)ω

.

11.2.2 Non-equivalence of NBA and DBA

Unfortunately, DBAs do not recognize all ω-regular languages, and so they do not have the same
expressive power as NBAs. We show that the language of ω-words containing finitely many as is
not recognized by any DBA. Intuitively, the NBA for this language “guesses” the last occurrence
of a, and this guess cannot be determinized using only a finite number of states.

Proposition 11.6 The language L = (a+b)∗bω, (i.e., the language of allω-words in which a occurs
only finitely often) is not recognized by any DBA.

Proof: Assume that L = Lω(A), for some DBA A = ({a, b},Q, q0, δ, F), and extend δ to δ̂ : Q ×
{a, b}∗ → Q by δ̂(q, ε) = q and δ̂(q,wa) = δ(δ̂(q,w), a). Consider the ω-word w0 = bω. Since
w0 ∈ L, the automaton A has an accepting run on w0, and so δ̂(q0, u0) ∈ F for some finite prefix u0
of w0. Consider now w1 = u0 a bω. We have w1 ∈ L, and so A has an accepting run on w1, which

11.3. GENERALIZED BÜCHI AUTOMATA 195

implies δ̂(q0, u0 a u1) ∈ F for some finite prefix u0 a u1 of w1. In a similar fashion we continue
constructing finite words ui such that δ̂(q0, u0 a u1 a . . . a ui) ∈ F. Since Q is finite, there are indices
0 ≤ i < j such that δ̂(q0, u0 a u1, a . . . a ui) = δ̂(q0, u0 a u1 a . . . a ui a . . . a u j). It follows that A has
an accepting run on

u0 a u1 a . . . a ui (a ui+1 . . . u j−1 a u j)ω.

But this word has infinitely many occurrences of a, so it does not belong to L.

Note that the L = ((a + b)∗a)ω (the set of infinite words in which a occurs infinitely often) is
accepted by the DBA on the left of Figure 11.1.

11.3 Generalized Büchi automata

Generalized Büchi automata are an extension of Büchi automata that is convenient for some con-
structions (for instance, intersection). A generalized Büchi automaton (NGA) differs from a Büchi
automaton in its accepting condition. A NGA has a collection of sets of accepting states F =

{F0, . . . , Fm−1}, and a run ρ is accepting if for every set Fi ∈ F some state of Fi is visited by ρ

infinitely often. Formally, ρ is accepting if inf(ρ) ∩ Fi , ∅ for every i ∈ {0, . . . ,m − 1}. Abusing
language, we speak of the generalized Büchi condition F. Ordinary Büchi automata correspond to
the special case m = 1.

A NGA with n states and m sets of accepting states can be translated into an NBA with mn
states. The construction is based on the following observation: a run ρ visits each set of F infinitely
if and only if the following two conditions hold:

(1) ρ eventually visits F0; and

(2) for every i ∈ {0, . . . ,m − 1}, every visit of ρ to Fi is eventually followed by a later visit to
Fi⊕1, where ⊕ denotes addition modulo m. (Between the visits to Fi and Fi⊕1 there can be
arbitrarily many visits to other sets of F.)

whose proof is obvious. This suggests to take for the NBA m “copies” of the NGA, but with a
modification: the NBA moves from the i-th to the i ⊕ 1-th copy whenever it visits a state of Fi

(i.e., the transitions of the i-th copy that leave a state of Fi are redirected from the i-th copy to the
(i⊕1)-th copy). This way, visiting the accepting states of the first copy infinitely often is equivalent
to visiting the accepting states of each copy infinitely often.

More formally, the states of the NBA are pairs [q, i] where q is a state of the NGA and i ∈
{0, . . . ,m− 1}. Intuitively, [q, i] is the i-th copy of q. If q < Fi then the successors of [q, i] are states
of the i-th copy, and otherwise states of the (i ⊕ 1)-th copy.

196 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

NGAtoNBA(A)
Input: NGA A = (Q,Σ, q0, δ,F), where F = {F1, . . . , Fm}

Output: NBA A′ = (Q′,Σ, δ′, q′0, F
′)

1 Q′, δ′, F′ ← ∅; q′0 ← [q0, 0]
2 W ← {[q0, 0]}
3 while W , ∅ do
4 pick [q, i] from W
5 add [q, i] to Q′

6 if q ∈ F0 and i = 0 then add [q, i] to F′

7 for all a ∈ Σ, q′ ∈ δ(q, a) do
8 if q < Fi then
9 if [q′, i] < Q′ then add [q′, i] to W

10 add ([q, i], a, [q′, i]) to δ′

11 else /* q ∈ Fi */

12 if [q′, i ⊕ 1] < Q′ then add [q′, i ⊕ 1] to W
13 add ([q, i], a, [q′, i ⊕ 1]) to δ′

14 return (Q′,Σ, δ′, q′0, F
′)

Example 11.7 Figure 11.5 shows a NGA over the alphabet {a, b} on the left, and the NBA obtained
by applying NGAtoNBA to it on the right. The NGA has two sets of accepting states, F0 = {q} and
F1 = {r}, and so its accepting runs are those that visit both q and r infinitely often . It is easy to
see that the automaton recognizes the ω-words containing infinitely many occurrences of a and
infinitely many occurrences of b.

b a

a

b

b

a

b

b

a

a

b aq r

r, 0

r, 1q, 1

q, 0

F = { {q}, {r} }

Figure 11.5: A NGA and its corresponding NBA

The NBA on the right consists of two copies of the NGA: the 0-th copy (pink) and the 1-st
copy (blue). Transitions leaving [q, 0] are redirected to the blue copy, and transitins leaving [r, 1]
are redirected to the pink copy. The only accepting state is [q, 0].

11.4. OTHER CLASSES OF ω-AUTOMATA 197

11.4 Other classes of ω-automata

We have seen that not every NBA is equivalent to a DBA; i.e., there is determinization procedure for
Büchi automata. This raises the question whether there exists other classes of automata for which
a determinization procedure exists. As we shall see, the answer is yes, but the first determinizable
classes we find will have other problems, and so this section can be seen as a quest for automata
classes satisfying more and more properties.

11.4.1 Co-Büchi Automata

Like a Büchi automaton, a (nondeterministic) co-Büchi automaton (NCA) has a set F of accepting
states. However, a run ρ of a NCA is accepting if it only visits states of F finitely often. Formally,
ρ is accepting if inf(ρ) ∩ F = ∅. So a run of a NCA is accepting iff it is not accepting as run of a
NBA (this is the reason for the name “co-Büchi”).

We show that co-Büchi automata can be determinized. We fix an NCA A = (Q,Σ, δ, q0, F) with
n states, and use Figure 11.6 as running example. We construct a DCA B such that Lω(B)) = Lω(A)

a

b

a

q r

Figure 11.6: Running example for the determinization procedure

in three steps:

1. We define a mapping dag that assigns to each w ∈ Σω a directed acyclic graph dag(w).

2. We prove that w is rejected by A iff dag(w) contains only finitely many breakpoints.

3. We construct a DCA B which accepts w if and only if dag(w) contains finitely many break-
points.

Intuitively, dag(w) is the result of “bundling together” all the runs of A on the word w. Figure 11.7
shows the initial parts of dag(abaω) and dag((ab)ω). Formally, let w = σ1σ2 . . . be a word of Σω.
The directed acyclic graph dag(w) has nodes in Q × IN and edges labelled by letters of Σ, and is
inductively defined as follows:

• dag(w) contains a node 〈q, 0〉 for every initial state q ∈ Q0.

• If dag(w) contains a node 〈q, i〉 and q′ ∈ δ(σi+1, q), then dag(w) also contains a node
〈q′, i + 1〉 and an edge 〈q, i〉

σi+1
−−−−→〈q′, i + 1〉.

198 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

a a
q, 0 q, 1 q, 2 q, 3 q, 4

r, 1 r, 3

· · ·ba a b

a a a
q, 0 q, 1 q, 2 q, 3 q, 4

r, 1 r, 3 r, 4

· · ·ba a a

Figure 11.7: The (initial parts of) dag(abaω) and dag((ab)ω)

• dag(w) contains no other nodes or edges.

Clearly, q0
σ1
−−−→ q1

σ2
−−−→ q2 · · · is a run of A if and only if 〈q0, 0〉

σ1
−−−→〈q1, 1〉

σ2
−−−→〈q2, 2〉 · · · is a path

of dag(w). Moreover, A accepts w if and only if no path of dag(w) visits accepting states infinitely
often. We partition the nodes of dag(w) into levels: the i-th level contains all the nodes of dag(w)
of the form 〈q, i〉.

One could be tempted to think that the accepting condition “some path of dag(w) only visits
accepting states finitely often” is equivalent to “only finitely many levels of dag(w) contain
accepting states”, but dag(abaω) shows that this is not true: even though all its paths visit accepting
states only finitely often, infinitely many levels (in fact, all all levels i ≥ 3) contain accepting states.
For this reason we introduce the set of breakpoint levels of the graph dag(w), inductively defined
as follows:

• The 0-th level of dag(w) is a breakpoint.

• If level l is a breakpoint, then the next level l′ > l such that every path between nodes of l
and l′ visits an accepting state is also a breakpoint.

We claim that “some path of dag(w) only visits accepting states finitely often” is equivalent to
“the set of breakpoint levels of dag(w) is finite”. If the breakpoint set is infinite, then clearly
dag(w) contains at least an infinite path, and moreover all infinite paths visit accepting states in-
finitely often. If the breakpoint set is finite, let i be the largest breakpoint. If dag(w) is finite, we
are done. If dag(w) is infinite, then for every j > i there is a path π j from level i to level j that
does not visit any accepting state. The paths {π j} j>i build an acyclic graph of bounded degree,
which therefore must contain an infinite path π by Königs lemma. But obviously π never visits any
accepting state, and we are done.

Now, if we were able to tell that a level is a breakpoint just by examining it, we would be
done: we would take the set of all possible levels as states of the DCA (i.e., the powerset of Q, as

11.4. OTHER CLASSES OF ω-AUTOMATA 199

in the powerset construction for determinization of NFAs), the possible transitions between levels
as transitions, and the breakpoints as accepting states. The run of this automaton on w would
be nothing but an encoding of dag(w), and it would be accepting iff it contains only finitely many
breakpoints, as required by the co-Büchi acceptance condition. However, the level does not contain
enough information for that. The solution to this problem is to add information to the states: we take
for the states of the DCA pairs [P,O], where O ⊆ P ⊆ Q, with the following intended meaning: P
is the set of states of a level, and q ∈ O iff q is the endpoint of a path that starts at the last breakpoint
and has not yet visited any accepting state. We call O the set of owing states (states that “owe” a
visit to the accepting states). To guarantee that O indeed has this intended meaning, we define the
DCA B = (Q̃,Σ, δ̃, q̃0, F̃) as follows:

• The initial state is the pair [{q0}, ∅] if q0 ∈ F, and the pair [{q0}, {q0}] otherwise.

• The transition relation is given by δ̃([P,O], a) = [P′,O′], where P′ = δ(P, a), and :

– if O , ∅, i.e., if the current set of owing states is nonempty, then O′ = δ(O, a) \ F;

– if O = ∅, (i.e., if the current level is a breakpoint, and the automaton must start searching
for the next one) then O′ = δ(P, a) \ F, i.e., all non-final states of the next level become
owing.

• The accepting states are those at which a breakpoint is reached, i.e. [P,O] ∈ F̃ is accepting
iff O = ∅.

With this definition, a run is accepting iff it contains infinitely many breakpoints. The algorithm
for the construction is:

NCAtoDCA(A)
Input: NCA A = (Q,Σ, δ, q0, F)
Output: DCA B = (Q̃,Σ, δ̃, q̃0, F̃) with Lω(A) = B

1 Q̃, δ̃, F̃ ← ∅; if q0 ∈ F then q̃0 ← [q0, ∅] else q̃0 ← [{q0}, {q0}]
2 W ← { q̃0 }

3 while W , ∅ do
4 pick [P,O] from W; add [P,O] to Q̃
5 if P = ∅ then add [P,O] to F̃
6 for all a ∈ Σ do
7 P′ = δ(P, a)
8 if O , ∅ then O′ ← δ(O, a) \ F else O′ ← δ(P, a) \ F
9 add ([P,O], a, [P′,O′]) to δ̃

10 if [P′,O′] < Q̃ then add [P′,Q′] to W

Figure 11.8 shows the result of applying the algorithm to our running example. The NCA is at
the top, and the DCA below it on the left. On the right we show the DFA obtained by applying the

200 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

q

∅

b

a

b

a, b

{q, r}

a

b

a

q r

{q}, {q} {q, r}, {q}a

∅, ∅

{q}, ∅
b

a, b

a

bb

Figure 11.8: NCA of Figure 12.5 (top), DCA (lower left), and DFA (lower right)

powerset construction. Observe that it does not yield a correct result: the resulting NCA accepts for
instance the word bω, which is not accepted by the original NCA. For the complexity, observe that
the number of states of the DCA is bounded by the number of pairs [P,O] such that O ⊆ P ⊆ Q. For
every state q ∈ Q there are three mutually exclusive possibilities: q ∈ O, q ∈ P \ O, and q ∈ Q \ P.
So if A has n states then B has at most 3n states.

Unfortunately, co-Büchi automata do not recognize all ω-regular languages. In particular, we
claim that no NCA recognizes the language L of ω-words over {a, b} containing infinitely many
a’s. To see why, assume the contrary. Then there would also be a DCA for the same language.
Now we swap accepting and non-accepting states, and interpret the result as a DBA. It is easy to
see that this DBA accepts the complement of L. But the complement of L is (a + b)∗bω, which by
Proposition 11.6 is not accepted by any DBA, and we reach a contradiction, proving the claim. So
we now ask whether there is a class of ω-automata that (1) recognizes all ω-regular languages and
(2) has a determinization procedure.

11.4.2 Muller automata

A (nondeterministic) Muller automaton (NMA) has a collection {F0, . . . , Fm−1} of sets of accepting
states. A run ρ is accepting if the set of states ρ visits infinitely often is equal to one of the Fi’s.
Formally, ρ is accepting if inf(ρ) = Fi for some i ∈ {0, . . . ,m−1}. We speak of the Muller condition
{F0, . . . , Fm−1}.

11.4. OTHER CLASSES OF ω-AUTOMATA 201

NMAs have the nice feature that any boolean combination of predicates of the form “state
q is visited infinitely often” can be formulated as a Muller condition. It suffices to put in the
collection all sets of states for which the predicate holds. For instance, the condition (q ∈ inf(ρ)) ∧
¬(q′ ∈ inf(ρ)) corresponds to the Muller condition containing all sets of states F such that q ∈ F
and q′ < F. In particular, the Büchi and generalized Büchi conditions are special cases of the
Muller condition (as well as the Rabin and Street conditions introduced in the next sections). The
obvious disadvantage is that the translation of a Büchi condition into a Muller condition involves
an exponential blow-up: a Büchi automaton with states Q = {q0, . . . , qn} and Büchi condition
{qn} is transformed into an NMA with the same states and transitions, but with a Muller condition
{F ⊆ Q | qn ∈ F}, a collection containing 2n sets of states.

Deterministic Muller automata recognize all ω-regular languages. The proof of this result is
complicated, and we omit it here.

Theorem 11.8 (Safra) Any NBA with n states can be effectively transformed into a DMA of size
nO(n).

We can easily give a deterministic Muller automaton for the language L = (a + b)∗bω, which,
as shown in Proposition 11.6, is not recognized by any DBA. The automaton is

q0 q1

b

a

a b

with Muller condition { {q1} }. The accepting runs are the runs ρ such that inf(ρ) = {q1}, i.e., the
runs visiting state 1 infinitely often and state q0 finitely often. Those are the runs that initially move
between states q0 and q1, but eventually jump to q1 and never visit q0 again. It is easy to see that
these runs accept exactly the words containing finitely many occurrences of a.

We finally show that an NMA can be translated into a NBA, and so that Muller and Büchi
automata have the same expressive power. We start with a simple observation. In Chapter 4 we
have presented an algorithm that given NFAs A1 and A2 computes an NFA A1 ∪ A2 recognizing
L(A1) ∪ L(A2). The algorithm puts A1 and A2 “side by side”, and adds a new initial state and
transitions. It is graphically represented in Figure 11.9. It is easy to see that exactly the same
algorithm works for NBAs.

Equipped with this observation we proceed as follows. Given a Muller automaton A = (Q,Σ, q0, δ, {F0, . . . , Fm−1}),
it is easy to see that Lω(A) =

⋃m−1
i=0 Lω(Ai), where Ai = (Q,Σ, q0, δ, {Fi}). So we proceed in three

steps: first, we convert the NMA Ai into a NGA A′i ; then we convert A′i into a NBA A′′i using
NGAtoNBA() and, finally, we construct A′′ =

⋃m−1
i=0 A′′i using the algorithm for union of NFAs.

For the first step, we observe that, since an accepting run ρ of Ai satisfies inf(ρ) = Fi, from
some point on the run only visits states of Fi. In other words, ρ consists of an initial finite part, say
ρ0, that may visit all states, and an infinite part, say ρ1, that only visits states of Fi. The idea for

202 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

a

a

b

b
a a

b

a

b

aa

a

b

a

b

{

Figure 11.9: Union for NBAs

the construction for A′i is to take two copies of Ai. The first one is a “full” copy, while the second

one only contains copies of the states of Fi. For every transition [q, 0]
a
−−→[q′, 0] of the first copy

such that q′ ∈ Fi there is another transition [q, 0]
a
−−→[q′, 1] leading to the “twin brother” [q′, 1].

Intuitively, A′i simulates ρ by executing ρ0 in the first copy, and ρ1 in the second. The condition
that ρ1 must visit each state of Fi infinitely often is enforced as follows: if Fi = {q1, . . . , qk}, then
we take for Ai the generalized Büchi condition { {[q1, 1]}, . . . , {qk, 1]} }.

Example 11.9 Figure 11.10 shows a NMA A = (Q,Σ, δ, q0,F) where F = { {q}, {r} }. While A is
syntactically identical to the NGA of Figure 11.5, we now interpret F as a Muller condition: a run
ρ is accepting if inf(ρ) = {q} or inf(ρ) = {r}. In other words, an accepting run ρ eventually moves to
q and stays there forever, or eventually moves to r and stays there forever. It follows that A accepts
the ω-words that contain finitely many as or finitely many bs. The top-right part of the figure shows
the two NGAs A′0, A

′
1 defined above. Since in this particular case F′0 and F′1 only contain singleton

sets, A′0 and A′1 are in fact NBAs, i.e., we have A′′0 = A′0 and A′′1 = A′1. The bottom-right part shows
the final NBA A′′ = A′′0 ∪ A′′1 .

Formally, the algorithm carrying out the first step of the construction looks as follows:

11.4. OTHER CLASSES OF ω-AUTOMATA 203

NMA1toNGA(A)
Input: NMA A = (Q,Σ, q0, δ, {F}
Output: NGA A = (Q′,Σ, q′0, δ

′,F′)

1 Q′, δ′,F′ ← ∅
2 q′0 ← [q0, 0]
3 W ← {[q0, 0]}
4 while W , ∅ do
5 pick [q, i] from W; add [q, i] to Q′

6 if q ∈ F and i = 1 then add {[q, 1] } to F′

7 for all a ∈ Σ, q′ ∈ δ(q, a) do
8 if i = 0 then
9 add ([q, 0], a, [q′, 0]) to δ′

10 if [q′, 0] < Q′ then add [q′, 0] to W
11 if q′ ∈ F then
12 add ([q, 0], a, [q′, 1]) to δ′

13 if [q′, 1] < Q′ then add [q′, 1] to W
14 else /* i = 1 */

15 if q′ ∈ F then
16 add ([q, 1], a, [q′, 1]) to δ′

17 if [q′, 1] < Q′ then add [q′, 1] to W
18 return (Q′,Σ, q′0, δ

′,F′)

Complexity. Assume Q contains n states and F contains m accepting sets. Each of the NGAs
A′0, . . . , A

′
m−1 has at most 2n states, and an acceptance condition containing at most m acceptance

sets. So each of the NBAs A′0, . . . , A
′
m−1 has at most 2n2 states, and the final NBA has at most

2n2m + 1 states. Observe in particular that while the conversion from NBA to NMA involves a
possibly exponential blow-up, the conversion NMA to NBA does not.

It can be shown that the exponential blow-up in the conversion from NBA to NMA cannot be
avoided, which leads to the next step in our quest: is there a class of ω-automata that (1) recognizes
all ω-regular languages, (2) has a determinization procedure, and (3) has polynomial conversion
algorithms to and from NBA.

11.4.3 Rabin automata

The acceptance condition of a nondeterministic Rabin automaton (NRA) is a set of pairs F =

{〈F0,G0〉, . . . , 〈Fm,Gm〉}, where the Fi’s and Gi’s are sets of states. A run ρ is accepting if there is
a pair 〈Fi,Gi〉 such that ρ visits some state of Fi infinitely often and all states of Gi finitely often.
Formally, ρ is accepting if there is i ∈ {1, . . . ,m} such that inf(ρ) ∩ Fi , ∅ and inf(ρ) ∩Gi = ∅.

A Büchi automaton can be easily transformed into a Rabin automaton and vice versa, without
any exponential blow-up.

204 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

NBA→NRA. A Büchi condition {q1, . . . , qk} corresponds to the Rabin condition {({q1}, ∅), . . . , ({qn}, ∅)}.

NRA→NBA. Given a Rabin automaton A = (Q,Σ, q0, δ, {〈F0,G0〉, . . . , 〈Fm−1,Gm−1〉}), it is easy
to see that, as for Muller automata, we have Lω(A) =

⋃m−1
i=0 Lω(Ai), where Ai = (Q,Σ, q0, δ, {〈Fi,Gi〉}).

In this case we directly translate each Ai into an NBA. Since an accepting run ρ of Ai satisfies
inf(ρ) ∩Gi = ∅, from some point on the run only visits states of Qi \Gi. So ρ consists of an initial
finite part, say ρ0, that may visit all states, and an infinite part, say ρ1, that only visits states of
Q \ Gi. Again, we take two copies of Ai. Intuitively, A′i simulates ρ by executing ρ0 in the first
copy, and ρ1 in the second. The condition that ρ1 must visit some state of Fi infinitely often is
enforced by taking Fi as Büchi condition.

Example 11.10 Figure 11.10 can be reused to illustrate the conversion of a Rabin into a Büchi
automaton. Consider the automaton on the left, but this time with Rabin accepting condition
{〈F0,G0〉, 〈F1,G1〉}, where F0 = {q} = G1, and G0 = {r} = F1. Then the automaton accepts
the ω-words that contain finitely many as or finitely many bs. The Büchi automata A′0, A

′
1 are as

shown at the top-right part, but now instead of NGAs they are NBAs with accepting states [q, 1]
and [r, 1], respectively. The final NBA is exactly the same one.

For the complexity, observe that each of the A′i has at most 2n states, and so the final Büchi
automaton has at most 2nm + 1 states.

The proof that NRAs are as expressive as DRAs is complicated. Since NRAs and NBAs are
equally expressive by the conversions above, it suffices to show that DRAs are as expressive as
NBAs. We only present the result, without proof.

Theorem 11.11 (Safra) Any NBA with n states can be effectively transformed into a DRA of size
nO(n) and O(n) accepting pairs.

The accepting condition of Rabin automata is not “closed under negation”. Recall the condi-
tion:

there is i ∈ {1, . . . ,m} such that inf(ρ) ∩ Fi , ∅ and inf(ρ) ∩Gi = ∅

The negation is of the form

for every i ∈ {1, . . . ,m}: inf(ρ) ∩ Fi = ∅ or inf(ρ) ∩Gi , ∅

This is called the Streett condition. We finish the chapter with a short discussion of Street automata.

Streett automata

The final class of ω-automata we consider are Streett automata. In a Streett automaton, the accep-
tance condition is again a set of pairs {〈F1,G1〉, . . . , 〈Fm,Gm〉}, where Fi,Gi are sets of states. A
run ρ is accepting if for every pair 〈Fi,Gi〉, if ρ visits some state of Fi infinitely often, then it also

11.4. OTHER CLASSES OF ω-AUTOMATA 205

visits some state of Gi infinitely often. Formally, a run ρ is accepting if for every i ∈ {1, . . . ,m}
inf(ρ)∩ Fi , ∅ implies inf(ρ)∩Gi , ∅ (equivalently, if inf(ρ)∩ Fi = ∅ or inf(ρ)∩Gi , ∅ for every
i ∈ {1, . . . ,m}). The reader has probably observed that this is the dual of Rabin’s condition: a run
satisfies the Streett condition {〈F1,G1〉, . . . , 〈Fm,Gm〉} if and only if it does not satisfy the Rabin
condition {〈F1,G1〉, . . . , 〈Fm,Gm〉}.

A Büchi automaton can be easily transformed into a Streett automaton and vice versa. However,
the conversion from Streett to Büchi is exponential.

NBA→NSA. A Büchi condition {q1, . . . , qk} corresponds to the Streett condition {〈Q, {q1, . . . , qk}〉}.

NSA → NBA. We can transform into an NBA by following the path NSA → NMA → NBA.
This yields for a NSA with n states an NBA with 2n22n states. It can be shown that the exponential
blow-up is unavoidable; in other words, Streett automata can be exponentially more succinct than
Büchi automata.

Example 11.12 Let Σ = {0, 1, 2}. For n ≥ 1, we represent an infinite sequence x1, x2, . . . of vectors
of dimension n with components in Σ by the ω-word x1x2 . . . over Σn. Let Ln be the language in
which, for each component i ∈ {1, . . . , n}, x j(i) = 1 for infinitely many j’s if and only if xk(i) = 2
for infinitely many k’s. It is easy to see that Ln can be accepted by a NSA with 3n states and 2n
accepting pairs, but cannot be accepted by any NBA with less than 2n states.

Exercises

Exercise 85 A finite set of finite words is always a regular language, but a finite set of ω-words
is not always an ω-regular language: find an ω-word w ∈ {a, b}ω such that no Büchi automaton
recognizes the language {w}.

Exercise 86 Construct Büchi automata and ω-regular expressions recognizing the following lan-
guages over the alphabet {a, b, c}.

1. {w ∈ {a, b, c}ω | {a, b} ⊇ in f (w)}

2. {w ∈ {a, b, c}ω | {a, b} = in f (w)}

3. {w ∈ {a, b, c}ω | {a, b} ⊆ in f (w)}

4. {w ∈ {a, b, c}ω | {a, b, c} = in f (w)}

5. {w ∈ {a, b, c}ω | if a ∈ in f (w) then {b, c} ⊆ in f (w)}

Hint: It may be easier to construct a generalized Büchi automaton first and then transform it into a
Büchi automaton.

206 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

Exercise 87 Find algorithms for the following decision problems:

• Given finite words u, v, x, y ∈ Σ∗, decide whether the ω-words = u vω and x yω are equal.

• Given a Büchi automaton A and finite words u, v, decide whether A accepts the ω-word u vω.

Exercise 88 Find ω-regular expressions for the following languages:

1. {w ∈ {a, b}ω | k is even for each substring bakb of w}

2. {w ∈ {a, b}ω | w has no occurrence of bab}

Exercise 89 A Büchi automaton is deterministic in the limit if all its accepting states and their
descendants are deterministic states. Formally, A = (Σ,Q,Q0, δ, α) is deterministic in the limit if
|δ(q, σ)| ≤ 1 for every state q ∈ Q that is reachable from some state of α, and for every σ ∈ Σ.
Prove that every language recognized by nondeterministic Büchi automata is also accepted by
Büchi automata deterministic in the limit.

Exercise 90 The parity acceptance condition for ω-automata is defined as follows. Every state q
of the automaton is assigned a natural number nq. A run ρ is accepting if the number max{ns | s ∈
inf (ρ)} is even.

• Find a parity automaton accepting the language L = {w ∈ {a, b}ω | w has exactly two
occurrences of ab}.

• Show that each language accepted by a parity automaton is also accepted by a Rabin automa-
ton and vice versa.

11.4. OTHER CLASSES OF ω-AUTOMATA 207

F = {F0, F1}

F0 = {q}

F1 = {r}

b a

b

q r

a

a

r, 0

q, 1

q, 0

b

b

a

a

r, 0

r, 1

q, 0

b

b

a

F′1 = { [r, 1] }F′0 = { [q, 1] }

b

b

a

r, 0

q, 1

q, 0

b

b

b

a

a

A′0 A′1

A′′

b a

b a

b

b
a

r, 0

r, 1

q, 0

b

b

a

a
a

a

A

Figure 11.10: A Muller automaton and its conversion into a NBA

208 CHAPTER 11. CLASSES OF ω-AUTOMATA AND CONVERSIONS

Chapter 12

Boolean operations: Implementations

The list of operations of Chapter 4 can be split into two parts, with the the boolean operations union,
intersection, and complement in the first part, and the emptiness, inclusion, and equality tests in
the second. This chapter deals with the boolean operations, while the tests are discussed in the next
one. Observer that we now leave the membership test out. Observe that a test for arbitrary ω-words
does not make sense, because no description formalism can represent arbitrary ω-words. For ω-
words of the form w1(w2)ω, where w1,w2 are finite words, membership in an ω-regular language L
can be implemented by checking if the intersection of L and {w1(w2)ω} is empty.

We provide implementations for ω-languages represented by NBAs and NGAs. We do not
discuss implementations on DBAs, because they cannot represent all ω-regular languages.

In Section 12.1 we show that union and intersection can be easily implemented using con-
structions already presented in Chapter 2. The rest of the chapter is devoted to the complement
operation, which is more involved.

12.1 Union and intersection

As already observed in Chapter 2, the algorithm for union of regular languages represented as
NFAs also works for NBAs and for NGAs.

One might be tempted to think that, similarly, the intersection algorithm for NFAs also works
for NBAs. However, this is not the case. Consider the two Büchi automata A1 and A2 of Figure
12.1. The Büchi automaton A1 ∩ A2 obtained by applying algorithm IntersNFA(A1, A2) in page

a

a

q0 q1

a

a

r0 r1

Figure 12.1: Two Büchi automata accepting the language aω

209

210 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

64 (more precisely, by interpreting the output of the algorithm as a Büchi automaton) is shown in
Figure 12.2. It has no accepting states, and so Lω(A1) = Lω(A2) = {aω}, but Lω(A1 ∩ A2) = ∅.

q1, r1q0, r0

a

a

Figure 12.2: The automaton A1 ∩ A2

What happened? A run ρ of A1 ∩ A2 on an ω-word w is the result of pairing runs ρ1 and ρ2 of
A1 and A2 on w. Since the accepting set of A1 ∩ A2 is the cartesian product of the accepting sets
of A1 and A2, ρ is accepting if ρ1 and ρ2 simultaneously visit accepting states infinitely often. This
condition is too strong, and as a result Lω(A1 ∩ A2) can be a strict subset of Lω(A1) ∩ Lω(A2).

This problem is solved by means of the observation we already made when dealing with NGAs:
the run ρ visits states of F1 and F2 infinitely often if and only if the following two conditions hold:

(1) ρ eventually visits F1; and

(2) every visit of ρ to F1 is eventually followed by a visit to F2 (with possibly further visits to
F1 in-between), and every visit to F2 is eventually followed by a visit to F1 (with possibly
further visits to F1 in-between).

We proceed as in the translation NGA → NBA. Intuitively, we take two “copies” of the pairing
[A1, A2], and place them one of top of the other. The first and second copies of a state [q1, q2] are
called [q1, q2, 1] and [q1, q2, 2], respectively. The transitions leaving the states [q1, q2, 1] such that
q1 ∈ F1 are redirected to the corresponding states of the second copy, i.e., every transition of the
form [q1, q2, 1]

a
−−→[q′1, q

′
2, 1] is replaced by [q1, q2, 1]

a
−−→[q′1, q

′
2, 2]. Similarly, the transitions leav-

ing the states [q1, q2, 2] such that q2 ∈ F2 are redirected to the first copy. We choose [q01, q02, 1],
as initial state, and declare the states [q1, q2, 1] such that q1 ∈ F1 as accepting.

Example 12.1 Figure 12.3 shows the result of the construction for the NBAs A1 and A2 of Fig-
ure 12.1, after removing the states that are not reachable form the initial state. Since q0 is not an

q1, r1, 2

a

a
a

q1, r1, 1q0, r0, 1

Figure 12.3: The NBA A1 ∩ω A2 for the automata A1 and A2 of Figure 12.1

accepting state of A1, the transition [q0, r0, 1]
a
−−→[q1, r1, 1] is not redirected. However, since q1 is

12.1. UNION AND INTERSECTION 211

an accepting state, transitions leaving [q1, r1, 1] must jump to the second copy, and so we replace
[q1, r1, 1]

a
−−→[q0, r0, 1] by [q1, r1, 1]

a
−−→[q0, r0, 2]. Finally, since r0 is an accepting state of A2, tran-

sitions leaving [q0, r0, 2] must return to the first copy, and so we replace [q0, r0, 2]
a
−−→[q1, r1, 2] by

[q0, r0, 2]
a
−−→[q1, r1, 1]. The only accepting state is [q1, r1, 1], and the language accepted by the

NBA is aω.

To see that the construction works, observe first that a run ρ of this new NBA still corresponds
to the pairing of two runs ρ1 and ρ2 of A1 and A2, respectively. Since all transitions leaving the
accepting states jump to the second copy, ρ is accepting iff it visits both copies infinitely often,
which is the case iff ρ1 and ρ2 visit states of F1 and F2, infinitely often, respectively.

Algorithm IntersNBA(), shown below, returns an NBA A1 ∩ω A2. As usual, the algorithm only
constructs states reachable from the initial state.

IntersNBA(A1, A2)
Input: NBAs A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q2,Σ, δ2, q02, F2)
Output: NBA A1 ∩ω A2 = (Q,Σ, δ, q0, F) with Lω(A1 ∩ω A2) = Lω(A1) ∩ Lω(A2)

1 Q, δ, F ← ∅
2 q0 ← [q01, q02, 1]
3 W ← { [q01, q02, 1] }
4 while W , ∅ do
5 pick [q1, q2, i] from W
6 add [q1, q2, i] to Q′

7 if q1 ∈ F1 and i = 1 then add [q1, q2, 1] to F′

8 for all a ∈ Σ do
9 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ(q2, a) do

10 if i = 1 and q1 < F1 then
11 add ([q1, q2, 1], a, [q′1, q

′
2, 1]) to δ

12 if [q′1, q
′
2, 1] < Q′ then add [q′1, q

′
2, 1] to W

13 if i = 1 and q1 ∈ F1 then
14 add ([q1, q2, 1], a, [q′1, q

′
2, 2]) to δ

15 if [q′1, q
′
2, 2] < Q′ then add [q′1, q

′
2, 2] to W

16 if i = 2 and q2 < F2 then
17 add ([q1, q2, 2], a, [q′1, q

′
2, 2]) to δ

18 if [q′1, q
′
2, 2] < Q′ then add [q′1, q

′
2, 2] to W

19 if i = 2 and q2 ∈ F2 then
20 add ([q1, q2, 2], a, [q′1, q

′
2, 1]) to δ

21 if [q′1, q
′
2, 1] < Q′ then add [q′1, q

′
2, 1] to W

22 return (Q,Σ, δ, q0, F)

There is an important case in which the construction for NFAs can also be applied to NBAs,

212 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

namely when all the states of one of the two NBAs, say A1 are accepting. In this case, the condition
that two runs ρ1 and ρ2 on an ω-word w simultaneously visit accepting states infinitely often is
equivalent to the weaker condition that does not require simultaneity: any visit of ρ2 to an accepting
state is a simultaneous visit of ρ1 and ρ2 to accepting states.

It is also important to observe a difference with the intersection for NFAs. In the finite word
case, given NFAs A1, . . . , Ak with n1, . . . , nk states, we can compute an NFA for L(A1)∩ . . .∩L(An)
with at most

∏k
i=1 ni states by repeatedly applying the intersection operation, and this construction

is optimal (i.e., there is a family of instances of arbitrary size such that the smallest NFA for the
intersection of the languages has the same size). In the NBA case, however, the repeated application
of IntersNBA() is not optimal. Since IntersNBA() introduces an additional factor of 2 in the number
of states, for Lω(A1)∩ . . .∩Lω(Ak) it yields an NBA with 2k−1 ·n1 · . . . ·nk states. We obtain a better
construction proceeding as in the translation NGA→ NBA: we produce k copies of A1 × . . . × Ak,
and move from the i-th copy to the (i + 1)-th copy when we hit an accepting state of Ai. This
construction yields an NBA with k · n1 · . . . · nk states.

12.2 Complement

So far we have been able to adapt the constructions for NFAs to NBAs. The situation is consider-
ably more involved for complement.

12.2.1 The problems of complement

Recall that for NFAs a complement automaton is constructed by first converting the NFA into
a DFA, and then exchanging the final and non-final states of the DFA. For NBAs this approach
breaks down completely:

(a) The subset construction does not preserve ω-languages; i.e, a NBA and the result of applying
the subset construction to it do not necessarily accept the same ω-language.

The NBA on the left of Figure 12.4 accepts the empty language. However, the result of
applying the subset construction to it, shown on the right, accepts aω. Notice that both
automata accept the same finite words.

q0 q1

a

a {q0} {q0, q1}
a

a

Figure 12.4: The subset construction does not preserve ω-languages

12.2. COMPLEMENT 213

(b) The subset construction cannot be replaced by another determinization procedure, because
no such procedure exists: As we have seen in Proposition 11.6, some languages are accepted
by NBAs, but not by DBAs.

(c) The automaton obtained by exchanging accepting and non-accepting states in a given DBA
does not necessarily recognize the complement of the language.

In Figure 12.1, A2 is obtained by exchanging final and non-final states in A1. However, both
A1 and A2 accept the language aω. Observe that as automata for finite words they accept the
words over the letter a of even and odd length, respectively.

Despite these discouraging observations, NBAs turn out to be closed under complement. For
the rest of the chapter we fix an NBA A = (Q,Σ, δ, q0, F) with n states, and use Figure 12.5 as
running example. Further, we abbreviate “infinitely often” to “i.o.”. We wish to build an automaton

a

b

a

q r

Figure 12.5: Running example for the complementation procedure

A satisfying:

no path of dag(w) visits accepting states of A i.o.
if and only if

some run of w in A visits accepting states of A i.o.

We give a summary of the procedure. First, we define the notion of ranking. For the moment it
suffices to say that a ranking of w is the result of decorating the nodes of dag(w) with numbers.
This can be done in different ways, and so, while a word w has one single dag dag(w), it may have
many rankings. The essential property of rankings will be:

no path of dag(w) visits accepting states of A i.o.
if and only if for some ranking R(w)

every path of dag(w) visits nodes of odd rank i.o.

In the second step we profit from the determinization construction for co-Büchi automata. Recall
that the construction maps dag(w) to a run ρ of a new automatonsuch that: every path of dag(w)
visits accepting states of A i.o. if and only if ρ visits accepting states of the new automaton i.o. We
apply the same construction to map every ranking R(w) to a run ρ of a new automaton B such that

214 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

every path of dag(w) visits nodes of odd rank i.o. (in R(w))
if and only if

the run ρ visits states of B i.o.

This immediately implies Lω(B) = Lω(A). However, the automaton B may in principle have an
infinite number of states! In the final step, we show that a finite subautomaton A of B already
recognizes the same language as B, and we are done.

12.2.2 Rankings and ranking levels

Recall that, given w ∈ alω, the directly acyclic graph dag(w) is the result of bundling together the
runs of A on w. A ranking of dag(w) is a mapping R(w) that associates to each node of dag(w) a
natural number, called a rank, satisfying the following two properties:

(a) the rank of a node is greater than or equal to the rank of its children, and

(b) the rank of an accepting node is even.

a a a
q0, 0 q0, 1 q0, 2 q0, 3 q0, 4

q1, 1 q1, 3 q1, 4

· · ·ba a a

a a
q0, 0 q0, 1 q0, 2 q0, 3 q0, 4

q1, 1 q1, 3

· · ·ba a b

2 1 1 1 1

1 1 0 0 0

0 0

2 0 0

Figure 12.6: Rankings for dag(abaω) and dag((ab)ω)

The ranks of the nodes in an infinite path form a non-increasing sequence, and so there is a node
such that all its (infinitely many) successors have the same rank; we call this number the stable
rank of the path. Figure 12.6 shows rankings for dag(abaω) and dag((ab)ω). Both have one single
infinite path with stable rank 1 and 0, respectively. We now prove the fundamental property of rank
ings:

Proposition 12.2 No path of dag(w) visits accepting nodes of A i.o. if and only if for some ranking
R(w) every infinite path of dag(w) visits nodes of odd rank i.o.

12.2. COMPLEMENT 215

Proof: If all infinite paths of a ranking R have odd stable rank, then each of them contains only
finitely many nodes with even rank. Since accepting nodes have even ranks, no path visits accepting
nodes i.o.

For the other direction, assume that no path of dag(w) visits accepting nodes of A i.o. Give
each accepting node 〈q, l〉 the rank 2k, where k is the maximal number of accepting nodes in the
paths starting at 〈q, l〉, and give a non-accepting nodes rank 2k + 1, where 2k is the maximal rank of
its descendants with even rank. In the ranking so obtained every infinite path visits nodes of even
rank only finitely often, and therefore it visits nodes of odd rank i.o.

Recall that the i-th level of dag(w) is defined as the set of nodes of dag(w) of the form 〈q, i〉.
Let R be the set of all ranking levels. Any ranking r of dag(w) can be decomposed into an infinite
sequence lr1, lr2, . . . of level rankings by defining lri(q) = r(〈q, i〉) if 〈q, i〉 is a node of dag(w), and
lri(q) = ⊥ otherwise. For example, if we represent a level ranking lr of our running example by the
column vector [

lr(q0)
lr(q1)

]
,

then the rankings of Figure 12.6 correspond to the sequences[
2
⊥

] [
⊥

2

] [
1
⊥

] [
1
0

]ω
[

1
⊥

] [
1
0

] ([
0
⊥

] [
0
0

])ω
For two level rankings lr and lr′ and a letter a ∈ Σ, we write lr

a
7→ lr′ if for every q′ ∈ Q:

• lr′(q′) = ⊥ iff no q ∈ Q satisfies q
a
−−→ q′, and

• lr(q) ≥ lr′(q′) for every q ∈ Q satisfying q
a
−−→ q′.

12.2.3 A (possible infinite) complement automaton

We construct an NBA B an infinite number of states (and many initial states) whose runs on an
ω-word w are the rankings of dag(w). The automaton accepts a ranking R iff every infinite path of
R visits nodes of odd rank i.o.

We start with an automaton without any accepting condition:

• The states are all the possible ranking levels.

• The initial states are the levels rln defined by: rln(q0) = n, and lrn(q) = ⊥ for every q , q0.

• The transitions are the triples (rl, a, rl′), where rl and rl′ are ranking levels, a ∈ Σ, and
rl

a
7→ rl′ holds.

216 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

The runs of this automaton on w clearly correspond to the rankings of dag(w). Now we apply
the same construction we used for determinization of co-Büchi automata. We decorate the ranking
levels with a set of ‘owing’ states, namely those that owe a visit to a state of odd rank, and take
as accepting states the breakpoints i.e., the levels with an empty set of ‘owing’ states. We get the
Büchi automaton B:

• The states are all pairs [rl,O], where rl is a ranking level and O is a subset of the states q for
which rl(q) ∈ N.

• The initial states are all pairs of the form [lr, {q0}] where lr(q0) is an even number and lr0(q) =

⊥ for every q , q0, and of the form [lr, ∅], where lr(q0) is an odd number and lr0(q) = ⊥ for
every q , q0.

• The transitions are the triples [rl,O]δa[rl′,O′] if lr
a
7→ lr′ and

– O , ∅ and O′ = {q′ ∈ δ(O, a) | lr′(q′) is even }, or

– O = ∅ and O′ = {q′ ∈ Q | lr′(q′) is even }.

• The accepting states (breakpoints) are the pairs [rl, ∅].

B accepts a ranking iff it contains infinitely many breakpoints. As we saw in the construction
for co-Büchi automata, this is the case iff every infinite path of dag(w) visits nodes of odd rank i.o.,
and so iff A does not accept w.

The remaining problems with this automaton are that its number of states is infinite, and that it
has many initial states. Both can be solved by proving the following assertion: there exists a number
k such that for every word w, if dag(w) admits an odd ranking, then it admits an odd ranking whose
initial node 〈q0, 0〉 has rank k. (Notice that, since ranks cannot increase along paths, every node
has rank at most k.) If we are able to prove this, then we can eliminate all states corresponding
to ranking levels in which some node is mapped to a number larger than k: they are redundant.
Moreover, the initial state is now fixed: it is the level ranking that maps q0 to k and all other states
to ⊥.

Proposition 12.3 Let n be the number of states of A. For every word w ∈ Σω, if w is rejected by A
then dag(w) has a ranking such that

(a) every infinite path of dag(w) visits nodes of odd rank i.o., and

(b) the initial node 〈q0, 0〉 has rank 2n.

Proof: In the proof we call a ranking satisfying (a) an odd ranking. Assume w is rejected by A.
We construct an odd ranking in which 〈q0, 0〉 has rank at most 2n. Then we can just change the
rank of the initial node to 2n, since the change preserves the properties of a ranking.

In the sequel, given two s D,D′, we denote by D′ ⊆ D the fact that D′ can be obtained from
D through deletion of some nodes and their adjacent edges.

12.2. COMPLEMENT 217

Assume that A rejects w. We describe an odd ranking for dag(w). We say that a node 〈q, l〉
is red in a (possibly finite)  D ⊆ dag(w) iff only finitely many nodes of D are reachable from
〈q, l〉. The node 〈q, l〉 is yellow in D iff all the nodes reachable from 〈q, l〉 (including itself) are not
accepting. In particular, yellow nodes are not accepting. Observe also that the children of a red
node are red, and the children of a yellow node are red or yellow. We inductively define an infinite
sequence D0 ⊇ D1 ⊇ D2 ⊇ . . . of s as follows:

• D0 = dag(w);

• D2i+1 = D2i \ {〈q, l〉 | 〈q, l〉 is red in D2i};

• D2i+2 = D2i+1 \ {〈q, l〉 | 〈q, l〉 is yellow in D2i+1}.

Figure 12.7 shows D0, D1, and D2 for dag(abaω). D3 is the empty dag.

a a a
q0, 0 q0, 1 q0, 2 q0, 3 q0, 4

q1, 1 q1, 3 q1, 4

· · ·ba a a

a a
q0, 0 q0, 2 q0, 3 q0, 4

q1, 1

· · ·ba

q0, 0

q1, 1

a

D0

D1

D2

Figure 12.7: The s D0, D1, D2 for dag(abaω)

Consider the function f that assigns to each node of dag(w) a natural number as follows:

f (〈q, l〉) =

{
2i if 〈q, l〉 is red in D2i

2i + 1 if 〈q, l〉 is yellow in D2i+1

We prove that f is an odd ranking. The proof is divided into three parts:

(1) f assigns all nodes a number in the range [0 . . . 2n].

218 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

(2) If 〈q′, l′〉 is a child of 〈q, l〉, then f (〈q′, l′〉) ≤ f (〈q, l〉).

(3) If 〈q, l〉 is an accepting node, then f (〈q, l〉) is even.

Part (1). We show that for every i ≥ 0 there exists a number li such that for all l ≥ li, the  D2i

contains at most n − i nodes of the form 〈q, l〉. This implies that D2n is finite, and so that D2n+1 is
empty, which in turn implies that f assigns all nodes a number in the range [0 . . . 2n].

The proof is by an induction on i. The case where i = 0 follows from the definition of G0:
indeed, in dag(w) all levels l ≥ 0 have at most n nodes of the form 〈q, l〉. Assume now that the
hypothesis holds for i; we prove it for i + 1. Consider the  D2i. If D2i is finite, then D2i+1 is
empty; D2i+2 is empty as well, and we are done. So assume that D2i is infinite. We claim that D2i+1
contains some yellow node. Assume, by way of contradiction, that no node in D2i+1 is yellow.
Since D2i is infinite, D2i+1 is also infinite. Moreover, since D2i+1 is obtained by removing all red
nodes from D2i, every node of D2i+1 has at least one child. Let 〈q0, l0〉 be an arbitrary node of
D2i+1. Since, by the assumption, it is not yellow, there exists an accepting node 〈q′0, l

′
0〉 reachable

from 〈q0, l0〉. Let 〈q1, l1〉 be a child of 〈q′0, l
′
0〉. By the assumption, 〈q1, l1〉 is also not yellow, and

so there exists an accepting node 〈q′1, l
′
1〉 reachable from 〈q1, l1〉. We can thus construct an infinite

sequence of nodes 〈q j, l j〉, 〈q′j, l
′
j〉 such that for all i the node 〈q′j, l

′
j〉 is accepting, reachable from

〈q j, l j〉, and 〈q j+1, l j+1〉 is a child of 〈q′j, l
′
j〉. Such a sequence, however, corresponds to a path in

dag(w) visiting infinitely many accepting nodes, which contradicts the assumption that A rejects w,
and the claim is proved.

So, let 〈q, l〉 be a yellow node in D2i+1. We claim that we can take li+1 = l, that is, we claim that
for every j ≥ l the dag D2i+2 contains at most n − (i + 1) nodes of the form 〈q, j〉. Since 〈q, l〉 is in
D2i+1, it is not red in D2i. Thus, infinitely many nodes of D2i are reachable from 〈q, l〉. By König’s
Lemma, D2i contains an infinite path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, For all k ≥ 1, infinitely many
nodes of D2i are reachable from 〈qk, l + k〉, and so 〈qk, l + k〉 is not red in D2i. Therefore, the
path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, . . . exists also in D2i+1. Recall that 〈q, l〉 is yellow. Hence, being
reachable from 〈q, l〉, all the nodes 〈qk, l + k〉 in the path are yellow as well. Therefore, they are
not in D2i+2. It follows that for all j ≥ l the number of nodes of the form 〈q, j〉 in D2i+2 is strictly
smaller than their number in D2i, which, by the induction hypothesis, is n − i. So there are at most
n − (i + 1) nodes of the form 〈q, j〉 in D2i+2, and the claim is proved.

Part(2). Follows from the fact that the children of a red node in D2i are red, and the children of
a yellow node in D2i+1 are yellow. Therefore, if a node has rank i, all its successors have rank at
most i or lower.

Part(3). Nodes that get an odd rank are yellow at D2i+1 for some i, and so not accepting.

Example 12.4 We construct the complements A1 and A2 of the two possible NBAs over the alpha-
bet {a} having one state and one transition: B1 = ({q}, {a}, δ, {q}, {q}) and B2 = ({q}, {a}, δ, {q}, ∅),

12.2. COMPLEMENT 219

where δ(q, a) = {q}. The only difference between B1 and B2 is that the state q is accepting in B1,
but not in B2. We have Lω(A1) = aω and Lω(A2) = ∅.

We begin with B1. A state of B1 is a pair 〈lr,O〉, where lr is the rank of node q (since there is
only one state, we can identify lr and lr(q)). The initial state is 〈2, {q}〉, because q has even rank
and so it “owes” a visit to a node of odd rank. Let us compute the successors of 〈2, {q}〉 under the
letter a. Let 〈lr′,O′〉 be a successor. Since δ(q, a) = {q}, we have lr′ , ⊥, and since q is accepting,
we have lr′ , 1. So either lr′ = 0 or lr′ = 2. In both cases the visit to a node of odd rank is still
“owed’, which implies O′ = {q}. So the successors of 〈2, {q}〉 are 〈2, {q}〉 and 〈0, {q}〉. Consider now
the successors 〈lr′′,O′′〉 of 〈0, {q}〉. We have lr′′ , ⊥ and lr′′ , 1 as before, but now, since ranks
cannot increase a long a path, we also have lr′′ , 2. So lr′′ = 0, and, since the visit to the node of
odd rank is still ‘ owed”, the only successor of 〈0, {q}〉 is 〈0, {q}〉. Since the set of owing states is
never empty, B1 has no accepting states, and so it recognizes the empty language. B1 is shown on
the left of Figure 12.8. Let us now construct B2. The difference with B2 is that, since q is no longer

0, {q}

0, {q}

2, {q} a

a a
2, {q} a

a a

a a

a

1, ∅

Figure 12.8: The NBAs B1 and B2

accepting, it can also have odd rank 1. So [2, {q}] has three successors: [2, {q}], [1, ∅], and [0, {q}].
The successors of [1, ∅] are [1, ∅] and [0, {q}], and the only successor of [0, {q}] is [0, {q}]. The only
accepting state is [1, ∅], and B2 recognizes aω.

The pseudocode for the complementation algorithm is shown below. In the code, R denotes the
set of all level rankings, and lr0 denotes the level ranking given by lr(q0) = 2|Q| and lr(q) = ⊥ for
every q , q0. Recall also that lr

a
7→ lr′ holds if for every q′ ∈ Q: lr′(q′) = ⊥ iff no q ∈ Q satisfies

q
a
−−→ q′, and lr(q) ≥ lr′(q′) for every q ∈ Q satisfying q

a
−−→ q′.

220 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

CompNBA(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: NBA A = (Q,Σ, δ, q0, F) with Lω(A) = Lω(A)

1 Q, δ, F ← ∅
2 q0 ← [lr0, {q0}]
3 W ← { [lr0, {q0}] }
4 while W , ∅ do
5 pick [lr, P] from W; add [lr, P] to Q
6 if P = ∅ then add [lr, P] to F
7 for all a ∈ Σ, lr′ ∈ R such that lr

a
7→ lr′ do

8 if P , ∅ then P′ ← {q ∈ δ(P, a) | lr′(q) is even }
9 else P′ ← {q ∈ Q | lr′(q) is even }

10 add ([lr, P], a, [lr′, P′]) to δ
11 if [lr′, P′] < Q then add [lr′, P′] to W
12 return (Q,Σ, δ, q0, F)

Complexity. Let n be the number of states of A. Since a level ranking is a mapping lr : Q → {⊥} ∪ [0, 2n],
there are at most (2n + 2)n level rankings. So A has at most (2n + 2)n · 2n ∈ nO(n) states. Since
nO(n) = 2O(n·log n), we have introduced an extra log n factor in the exponent with respect to the subset
construction for automata on finite words. The next section shows that this factor is unavoidable.

12.2.4 The size of A

We exhibit a family {Ln}n≥1 of infinitary languages such that Ln is accepted by an automaton with
n + 2 states and any Büchi automaton accepting the complement of Ln has at least n! ∈ 2Θ(n log n)

states.
Let Σn = {1, . . . , n, #}. We associate to a word w ∈ Σωn the following directed graph G(w): the

nodes of G(w) are 1, . . . , n and there is an edge from i to j if w contains infinitely many occurrences
of the word i j. Define Ln as the language of infinite words w ∈ Aω for which G(w) has a cycle and
define Ln as the complement of Ln.

We first show that for all n ≥ 1, Ln is recognized by a Büchi automaton with n + 2 states. Let
An be the automaton shown in Figure 12.9. We show that An accepts Ln.
(1) If w ∈ Ln, then An accepts w.
Choose a cycle ai1ai2 . . . aik ai1 of G(w). We construct an accepting run of An by picking qi1 as initial
state and iteratively applying the following rule:

If the current state is qi j , stay there until the next occurrence of the word ai jai j+1 in w,
then use ai j to move to r, and use ai j+1 to move to qi j+1.

By the definition of G(w), r is visited infinitely often, and so w is accepted.
(2) If An accepts w, then w ∈ Ln.

12.2. COMPLEMENT 221

q1

q2

qn

r h

...

a1

a1

a2

a2

an

an

a1, a2, . . . , an, #

a1, a2, . . . , an, #

a1, a2, . . . , an, #

#

a1, a2, . . . , an, #

Figure 12.9: The automaton An

Let ρ be a run of An accepting w, and let Qρ = inf (ρ) ∩ {q, . . . , qn}. Since ρ is accepting, it cannot
stay in any of the qi forever, and so for each qi ∈ Qρ there is q j ∈ Qρ such that the sequence qirq j

appears infinitely often in ρ. Therefore, for every qi ∈ Qρ there is q j ∈ Qρ such that aia j appears
infinitely often in w, or, in other words, such that (ai, a j) ∈ G(w). Since Qρ is finite, G(w) contains
a cycle, and so w ∈ Ln.

Proposition 12.5 For all n ≥ 1, every NBA recognizing Ln, has at least n! states.

Proof: We need some preliminaries. Given a permutation τ = 〈τ(1), . . . , τ(n)〉 of 〈1, . . . , n〉, we
identify τ and the word τ(1) . . . τ(n). We make two observations:

(a) (τ#)ω ∈ Ln for every permutation τ.
The edges of G((τ#)ω) are 〈τ(1), τ(a2)〉, 〈τ(a2), τ(a3)〉, . . . , 〈τ(an−1), τ(an)〉, and so G((τ#)ω)
is acyclic.

(b) If a word w contains infinitely many occurrences of two different permutations τ and τ′ of
1 . . . n, then w ∈ Ln.
Since τ and τ′ are different, there are i and j in {1, . . . , n} such that i precedes j in τ and j
precedes i in τ′. Since w contains infinitely many occurrences of τ, G(w) has a path from i to
j. Since it contains infinitely many occurrences of τ′, G(w) has a path from j to i. So G(w)
contains a cycle, and so w ∈ Ln.

Now, let A be a Büchi automaton recognizing Ln, and let τ, τ′ be two arbitrary permutations of
(1, . . . , n). By (a), there exist runs ρ and ρ′ of A accepting (τ#)ω and (τ′#)ω, respectively. We prove
that the intersection of inf(ρ) and inf(ρ′) is empty. This implies that A contains at least as many
final states as permutations of (1, . . . , n), which proves the Proposition.

We proceed by contradiction. Assume q ∈ inf(ρ) ∩ inf(ρ′). We build an accepting run ρ′′ by
“combining” ρ and ρ′ as follows:

222 CHAPTER 12. BOOLEAN OPERATIONS: IMPLEMENTATIONS

(0) Starting from the initial state of ρ, go to q following the run ρ.

(1) Starting from q, follow ρ′ until having gone through a final state, and having read at least
once the word τ′; then go back to q (always following ρ′).

(2) Starting from q, follow ρ until having gone through a final state, and having read at least
once the word τ; then go back to q (always following ρ).

(3) Go to (1).

The word accepted by ρ′′ contains infinitely many occurrences of both τ and τ′. By (b), this word
belongs to Ln, contradicting the assumption that A recognizes Ln.

Exercises

Exercise 91 Show that for every DBA A with n states there is an NBA B with 2n states such that
Lω(B) = Lω(A).

Exercise 92 Give algorithms that directly complement deterministic Muller and parity automata,
without going through Büchi automata.

Exercise 93 Let A = (Q,Σ, q0, δ, {〈F0,G0〉, . . . , 〈Fm−1,Gm−1〉}) be deterministic. Which is the
relation between the languages recognized by A as a deterministic Rabin automaton and as a deter-
ministic Streett automaton?

Exercise 94 Consider Büchi automata with universal accepting condition (UBA): an ω-word w
is accepted if every run of the automaton on w is accepting, i.e., if every run of the automaton on w
visits final states infinitely often.

Recall that automata on finite words with existential and universal accepting conditions recog-
nize the same languages. Prove that is no longer the case for automata on ω-words by showing that
for every UBA there is a DBA automaton that recognizes the same language. (This implies that the
ω-languages recognized by UBAs are a proper subset of the ω-regular languages.)

Hint: On input w, the DBA checks that every path of dag(w) visits some final state infinitely
often. The states of the DBA are pairs (Q′,O) of sets of the UBA where O ⊆ Q′ is a set of “owing”
states (see below). Loosely speaking, the transition relation is defined to satisfy the following
property: after reading a prefix w′ of w, the DBA is at the state (Q′,O) given by:

• Q′ is the set of states reached by the runs of the UBA on w′.

• O is the subset of states of Q′ that “owe” a visit to a final state of the UBA. (See the con-
struction for the complement of a Büchi automaton.)

Chapter 13

Emptiness check: Implementations

We present efficient algorithms for the emptiness check. We fix an NBA A = (Q,Σ, δ, q0, F). Since
transition labels are irrelevant for checking emptiness, in this Chapter we redefine δ from a subset
of Q × Σ × Q into a subset of Q × Q as follows:

δ := {(q, q′) ∈ Q × Q | (q, a, q′) ∈ δ for some a ∈ Σ}

Since in many applications we have to deal with very large Büchi automata, we are interested
in on-the-fly algorithms that do not require to know the Büchi automaton in advance, but check
for emptiness while constructing it. More precisely, we assume the existence of an oracle that,
provided with a state q returns the set δ(q).

We need a few graph-theoretical notions. If (q, r) ∈ δ, then r is a successor of a and q is a
predecessor of r. A path is a sequence q0, q1, . . . , qn of states such that qi+1 is a successor of qi for
every i ∈ {0, . . . , n − 1}; we say that the path leads from q0 to qn. Notice that a path may consist of
only one state; in this case, the path is empty, and leads from a state to itself. A cycle is a path that
leads from a state to itself. We write q{ r to denote that there is a path from q to r.

Clearly, A is nonempty if it has an accepting lasso, i.e., a path q0q1 . . . qn−1qn such that qn = qi

for some i ∈ {0, . . . , n − 1}, and at least one of {qi, qi+1, . . . , qn−1} is accepting. The lasso consists
of a path q0 . . . qi, followed by a nonempty cycle qiqi+1 . . . qn−1qi. We are interested in emptiness
checks that on input A report EMPTY or NONEMPTY, and in the latter case return an accepting
lasso, as a witness of nonemptiness.

13.1 Algorithms based on depth-first search

We present two emptiness algorithms that explore A using depth-first search (DFS). We start with
a brief description of depth-first search and some of its properties.

A depth-first search (DFS) of A starts at the initial state q0. If the current state q still has
unexplored outgoing transitions, then one of them is selected. If the transition leads to a not yet
discovered state r, then r becomes the current state. If all of q’s outgoing transitions have been

223

224 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

explored, then the search “backtracks” to the state from which q was discovered, i.e., this state
becomes the current state. The process continues until q0 becomes the current state again and
all its outgoing transitions have been explored. Here is a pseudocode implementation (ignore the
algorithm DFS Tree for the moment).

DFS(A)
Input: NBA A = (Q,Σ, δ, q0, F)

1 S ← ∅
2 dfs(q0)

3 proc dfs(q)
4 add q to S
5 for all r ∈ δ(q) do
6 if r < S then dfs(r)
7 return

DFS Tree(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: Time-stamped tree (S ,T, d, f)

1 S ← ∅
2 T ← ∅; t ← 0
3 dfs(q0)

4 proc dfs(q)
5 t ← t + 1; d[q]← t
6 add q to S
7 for all r ∈ δ(q) do
8 if r < S then
9 add (q, r) to T ; dfs(r)

10 t ← t + 1; f [q]← t
11 return

Observe that DFS is nondeterministic, because we do not fix the order in which the states of δ(q)
are examined by the for-loop. Since, by hypothesis, every state of an automaton is reachable from
the initial state, we always have S = Q after termination. Moreover, after termination every state
q , q0 has a distinguished input transition, namely the one that, when explored by the search, led
to the discovery of q. It is well-known that the graph with states as nodes and these transitions as
edges is a tree with root q0, called a DFS-tree. If some path of the DFS-tree leads from q to r, then
we say that q is an ascendant of r, and r is a descendant of q (in the tree).

It is easy to modify DFS so that it returns a DFS-tree, together with timestamps for the states.
The algorithm, which we call DFS Tree is shown above. While timestamps are not necessary
for conducting a search itself, many algorithms based on depth-first search use them for other
purposes1. Each state q is assigned two timestamps. The first one, d[q], records when q is first dis-
covered, and the second, f [q], records when the search finishes examining the outgoing transitions
of q. Since we are only interested in the relative order in which states are discovered and finished,
we can assume that the timestamps are integers ranging between 1 and 2|Q|. Figure 13.1 shows an
example.

1In the rest of the chapter, and in order to present the algorithms is more compact form, we omit the instructions for
computing the timestamps, and just assume they are there.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 225

In our analyses we also assume that at every time point a state is white, grey, or black. A state
q is white during the interval [0, d[q]], grey during the interval (d[q], f [q]], and black during the
interval (f [q], 2|Q|]. So, loosely speaking, q is white, if it has not been yet discovered, grey if it
has already been discovered but still has unexplored outgoing edges, or black if all its outgoing
edges have been explored. It is easy to see that at all times the grey states form a path (the grey
path) starting at q0 and ending at the state being currently explored, i.e., at the state q such that
dfs(q) is being currently executed; moreover, this path is always part of the DFS-tree.

q0 q1 q2 q3 q4

q6

q0 q1 q2 q3 q4

q6

[1,12] [2,11] [4,9] [5,8] [6,7]

[3,10]

Figure 13.1: An NBA (the labels of the transitions have been omitted), and a possible run of
DFS Tree on it. The numeric intervals are the discovery and finishing times of the states, shown in
the format [d[q], f [q]].

We recall two important properties of depth-first search. Both follow easily from the fact that
a procedure call suspends the execution of the caller, which is only resumed after the execution of
the callee terminates.

Theorem 13.1 (Parenthesis Theorem) In a DFS-tree, for any two states q and r, exactly one of
the following four conditions holds, where I(q) denotes the interval (d[q], f [q]], and I(q) ≺ I(r)
denotes that f [q] < d[r] holds.

• I(q) ⊆ I(r) and q is a descendant of r, or

• I(r) ⊆ I(q) and r is a descendant of q, or

• I(q) ≺ I(r), and neither q is a descendant of r, nor r is a descendant of q, or

• I(r) ≺ I(q), and neither q is a descendant of r, nor r is a descendant of q.

226 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Theorem 13.2 (White-path Theorem) In a DFS-tree, r is a descendant of q (and so I(r) ⊆ I(q))
if and only if at time d[q] state r can be reached from q in A along a path of white states.

13.1.1 The nested-DFS algorithm

To determine if A is empty we can search for the accepting states of A, and check if at least one of
them belongs to a cycle. A naı̈ve implementation proceeds in two phases, searching for accepting
states in the first, and for cycles in the second. The runtime is quadratic: since an automaton with
n states and m transitions has O(n) accepting states, and since searching for a cycle containing a
given state takes O(n + m) time, we obtain a O(n2 + nm) bound.

The nested-DFS algorithm runs in time O(n+m) by using the first phase not only to discover the
reachable accepting states, but also to sort them. The searches of the second phase are conducted
according to the order determined by the sorting. As we shall see, conducting the search in this
order avoids repeated visits to the same state.

The first phase is carried out by a DFS, and the accepting states are sorted by increasing fin-
ishing (not discovery!) time. This is known as the postorder induced by the DFS. Assume that in
the second phase we have already performed a search starting from the state q that has failed, i.e.,
no cycle of A contains q. Suppose we proceed with a search from another state r (which implies
f [q] < f [r]), and this search discovers some state s that had already been discovered by the search
starting at q. We claim that it is not necessary to explore the successors of s again. More precisely,
we claim that s 6{ r, and so it is useless to explore the successors of s, because the exploration
cannot return any cycle containing r. The proof of the claim is based on the following lemma:

Lemma 13.3 If q{ r and f [q] < f [r] in some DFS-tree, then some cycle of A contains q.

Proof: Let π be a path leading from q to r, and let s be the first node of π that is discovered by
the DFS. By definition we have d[s] ≤ d[q]. We prove that s , q, q { s and s { q hold, which
implies that some cycle of A contains q.

• q , s. If s = q, then at time d[q] the path π is white, and so I(r) ⊆ I(q), contradicting
f [q] < f [r].

• q{ s. Obvious, because s belongs to π.

• s { q. By the definition of s, and since s , q, we have d[s] ≤ d[q]. So either I(q) ⊆ I(s)
or I(s) ≺ I(q). We claim that I(s) ≺ I(q) is not possible. Since at time d[s] the subpath of π
leading from s to r is white, we have I(r) ⊆ I(s). But I(r) ⊆ I(s) and I(s) ≺ I(q) contradict
f [q] < f [r], which proves the claim. Since I(s) ≺ I(q) is not possible, we have I(q) ⊆ I(s),
and hence q is a descendant of s, which implies s{ q.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 227

Example 13.4 The NBA of Figure 13.1 contains a path from q1 to q0, and the DFS-tree displayed
satisfied f [q1] = 11 < 12 = f [q0]. As guaranteed by lemma 13.3, some cycle contains q1, namely
the cycle q1q6q0.

To prove the claim, we assume that s{ r holds and derive a contradiction. Since s was already
discovered by the search starting at q, we have q{ s, and so q{ r. Since f [q] < f [r], by Lemma
13.3 some cycle of A contains q, contradicting the assumption that the search from q failed.

Hence, during the second phase we only need to explore a transition at most once, namely when
its source state is discovered for the first time. This guarantees the correctness of the following
algorithm:

• Perform a DFS on A from q0, and output the accepting states of A in postorder2. Let
q1, . . . , qk be the output of the search, i.e., f [q1] < . . . < f [qk].

• For i = 1 to k, perform a DFS from the state qi, with the following changes:

– If the search visits a state q that was already discovered by any of the searches starting
at q1, . . . , qi−1, then the search backtracks.

– If the search visits qi, it stops and returns NONEMPTY.

• If none of the searches from q1, . . . , qk returns NONEMPTY, return EMPTY.

Example 13.5 We apply the algorithm to the example of Figure 13.1. Assume that the first DFS
runs as in Figure 13.1. The search outputs the accepting states in postorder, i.e., in the order
q2, q1, q0. Figure 13.2 shows the transitions explored during the searches of the second phase. The
search from q2 explores the transitions labelled by 2.1, 2.2, 2.3. The search from q1 explores the
transitions 1.1, . . . , 1.5. Notice that the search backtracks after exploring 1.1, because the state q2
was already visited by the previous search. This search is successful, because transition 1.5 reaches
state q1, and so a cycle containing q1 has been found.

The running time of the algorithm can be easily determined. The first DFS requires O(|Q|+ |δ|)
time. During the searches of the second phase each transition is explored at most once, and so they
can be executed together in O(|Q| + |δ|) time.

Nesting the two searches

Recall that we are looking for algorithms that return an accepting lasso when A is nonempty. The
algorithm we have described is not good for this purpose. Define the DFS-path of a state as the
unique path of the DFS-tree leading from the initial state to it. When the second phase answers
NONEMPTY, the DFS-path of the state being currently explored, say q, is an accepting cycle, but

2Notice that this does not require to apply any sorting algorithm, it suffices to output an accepting state immediately
after blackening it.

228 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

q0 q1 q2 q3 q4

q6

1.5 1.1 2.1 2.2

2.3

1.4 1.2 1.3

Figure 13.2: The transitions explored during the search starting at qi are labelled by the index i.
The search starting at q1 stops with NONEMPTY.

usually not an accepting lasso. For an accepting lasso we can prefix this path with the DFS-path of
q obtained during the first phase. However, since the first phase cannot foresee the future, it does
not know which accepting state, if any, will be identified by the second phase as belonging to an
accepting lasso. So either the first search must store the DFS-paths of all the accepting states it
discovers, or a third phase is necessary, in which a new DFS-path is recomputed.

This problem can be solved by nesting the first and the second phases: Whenever the first DFS
blackens an accepting state q, we immediately launch a second DFS to check if q is reachable from
itself. We obtain the nested-DFS algorithm, due to Courcoubetis, Vardi, Wolper, and Yannakakis:

• Perform a DFS from q0.

• Whenever the search blackens an accepting state q, launch a new DFS from q. If this second
DFS visits q again (i.e., if it explores some transition leading to q), stop with NONEMPTY.
Otherwise, when the second DFS terminates, continue with the first DFS.

• If the first DFS terminates, output EMPTY.

A pseudocode implementation is shown below; for clarity, the program on the left does not include
the instructions for returning an accepting lasso. A variable seed is used to store the state from
which the second DFS is launched. The instruction report X produces the output X and stops
the execution. The set S is usually implemented by means of a hash-table. Notice that it is not
necessary to store states [q, 1] and [q, 2] separately. Instead, when a state q is discovered, either
during the first or the second searches, then it is stored at the hash address, and two extra bits are
used to store which of the following three possibilities hold: only [q, 1] has ben discovered so far,
only [q, 2], or both. So, if a state is encoded by a bitstring of length c, then the algorithm needs
c + 2 bits of memory per state.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 229

NestedDFS(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ← ∅
2 dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r ∈ δ(q) do
7 if [r, 1] < S then dfs1(r)
8 if q ∈ F then { seed ← q;

dfs2(q) }
9 return

10 proc dfs2(q)
11 add [q, 2] to S
12 for all r ∈ δ(q) do
13 if r = seed then report
NEMP
14 if [r, 2] < S then dfs2(r)
15 return

NestedDFSwithWitness(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ← ∅; succ← false
2 dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r ∈ δ(q) do
7 if [r, 1] < S then dfs1(r)
8 if succ = true then return

[q, 1]
9 if q ∈ F then

10 seed ← q; dfs2(q)
11 if succ = true then return
[q, 1]
12 return

13 proc dfs2(q)
14 add [q, 2] to S
15 for all r ∈ δ(q) do
16 if [r, 2] < S then dfs2(r)
17 if succ = true then return
[q, 2]
18 if r = seed then
19 report NEMP; succ ←

true
20 return

The algorithm on the right shows how to modify NestedDFS so that it returns an accepting lasso.
It uses a global boolean variable succ (for success), initially set to false. If at line 11 the algorithm
finds that r = seed holds, it sets success to true. This causes procedure calls in dfs1(q) and dfs2(q)
to be replaced by return[q, 1] and return[q, 2], respectively. The lasso is produced in reverse order,
i.e., with the initial state at the end.

A small improvement

We show that dfs2(q) can already return NONEMPTY if it discovers a state that belongs to the DFS-
path of q in dfs1. Let qk be an accepting state. Asssume that dfs1(q0) discovers qk, and that the

230 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

DFS-path of qk in dfs1 is q0q1 . . . qk−1qk. Assume further that dfs2(qk) discovers qi for some 0 ≤ i ≤
k−1, and that the DFS-path of qi in dfs2 is qkqk+1 . . . qk+lqi. Then the path q0q1 . . . qk−1qk . . . qk+lqi

is a lasso, and, since qk is accepting, it is an accepting lasso. So stopping with NONEMPTY
is correct. Implementing this modification requires to keep track during dfs1 of the states that
belong to the DFS-path of the state being currently explored. Notice, however, that we do not need
information about their order. So we can use a set P to store the states of the path, and implement
P as e.g. a hash table. We do not need the variable seed anymore, because the case r = seed is
subsumed by the more general r ∈ P.

ImprovedNestedDFS(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅, NEMP other-
wise

1 S ← ∅; P← ∅
2 dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S ; add q to P
6 for all r ∈ δ(q) do
7 if [r, 1] < S then dfs1(r)
8 if q ∈ F then dfs2(q)
9 remove q from P

10 return

11 proc dfs2(q)
12 add [q, 2] to S
13 for all r ∈ δ(q) do
14 if r ∈ P then report NEMP
15 if [r, 2] < S then dfs2(r)
16 return

Evaluation

The strong point of the the nested-DFS algorithm are its very modest space requirements. Apart
from the space needed to store the stack of calls to the recursive dfs procedure, the algorithm just
needs two extra bits for each state of A. In many practical applications, A can easily have millions
or tens of millions of states, and each state may require many bytes of storage. In these cases, the
two extra bits per state are negligible.

The algorithm, however, also has two important weak points: It cannot be extended to NGAs,
and it is not optimal, in a formal sense defined below. We discuss these two points separately.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 231

The nested-DFS algorithm works by identifying the accepting states first, and then checking
if they belong to some cycle. This principle no longer works for the acceptance condition of
NGAs, where we look for cycles containing at least one state of each family of accepting states.
No better procedure than translating the NGA into an NBA has been described so far. For NGAs
having a large number of accepting families, the translation may involve a substantial penalty in
performance.

A search-based algorithm for emptiness checking explores the automaton A starting from the
initial state. At each point t in time, the algorithm has explored a subset of the states and the
transitions of the algorithm, which form a sub-NBA At = (Qt,Σ, δt, q0, Ft) of A (i.e., Qt ⊆ Q,
δt ⊆ δ, and Ft ⊆ F)). Clearly, a search-based algorithm can have only reported NONEMPTY at a
time t if At contains an accepting lasso. A search-based algorithm is optimal if the converse holds,
i.e., if it reports NONEMPTY at the earliest time t such that At contains an accepting lasso. It is
easy to see that NestedDFS is not optimal. Consider the automaton on top of Figure 13.5. Initially,

q0

q1

q2 qn−1 qn• • •

q0

q1

q2 qn−1 qn

qn+1

• • •

Figure 13.3: Two bad examples for NestedDFS

the algorithm chooses between the transitions (q0, q1) and (q0, q2). Assume it chooses (q0, q1) (the
algorithm does not know that there is a long tail behind q2). The algorithm explores (q0, q1) and
then (q1, q0) at some time t. The automaton At already contains an accepting lasso, but, since q0
has not been blackened yet, dfs1 continues its execution with (q0, q2), and explores all transitions
before dfs2 is called for the first time, and reports NONEMPTY. So the time elapsed between the
first moment at which the algoritm has enough information to report NONEMPTY, and the moment
at which the report occurs, can be arbitrarily large.

The automaton at the bottom of Figure 13.5 shows another problem of NestedDFS related to
non-optimality. If it selects (q0, q1) as first transition, then, since qn precedes q0 in postorder,
dfs2(qn) is executed before dfs2(q0), and it succeeds, reporting the lasso q0q2 . . . qnqn+1qn, instead
of the much shorter lasso q0q1q0.

232 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

In the next section we describe an optimal algorithm that can be easily extended to NGAs. The
price to pay is a higher memory consumption. As we shall see, the new algorithm needs to assign
a number to each state, and store it (apart from maintaining other data structures).

13.1.2 The two-stack algorithm

Recall that the nested-DFS algorithm searches for accepting states of A, and then checks if they
belong to some cycle. The two-stack algorithm proceeds the other way round: It searches for states
that belong to some cycle of A by means of a single DFS, and checks whether they are accepting.

A first observation is that by the time the DFS blackens a state, it already has explored enough
to decide whether it belongs to a cycle:

Lemma 13.6 Let At be the sub-NBA of A containing the states and transitions explored by the DFS
up to (and including) time t. If a state q belongs to some cycle of A, then it already belongs to some
cycle of A f [q].

Proof: Let π be a cycle containing q, and consider the snapshot of the DFS at time f [q]. Let
r be the last state of π after q such that all sttaes in the subpath from q to r are black. We have
f [r] ≤ f [q]. If r = q, then π is a cycle of A f [q], and we are done. If r , q, let s be the successor
of r in π (see Figure 13.4). We have f [r] < f [q] < f [s]. Moreover, since all successors of r have

����
����
����
����
����
����
����

����
����
����
����
����
����
����

π

π′

q

r

s

Figure 13.4: Illustration of the proof of Lemma 13.6

necessarily been discovered at time f [r], we have d[s] < f [r] < f [q] < f [s]. By the Parenthesis
theorem, s is a DFS-ascendant of q. Let π′ be the cycle obtained by concatenating the DFS-path
from s to q, the prefix of π from q to r, and the transition (r, s). By the Parenthesis Theorem, all the
transitions in this path have been explored at time f [q], and so the cycle belongs to A f [q]

This lemma suggests to maintain during the DFS a set C of candidates, containing the states for
which it is not yet known whether they belong to some cycle or not. A state is added to C when it
is discovered. While the state is grey, the algorithm tries to find a cycle containing it. If it succeeds,
then the state is removed from C. If not, then the state is removed from C when it is blackened. At
any time t, the candidates are the currently grey states that do not belong to any cycle of At.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 233

Assume that at time t the set C indeed contains the current set of candidates, and that the DFS
explores a new transition (q, r). We need to update C. If r has not been discovered yet (i.e., if it
does not belong to At), the addition of r and (q, r) to At does not create any new cycle, and the
update just adds r to C. If r belongs to At but no path of At leads from r to q, again no new cycle is
created, and the set C does not change. But if r belongs to At, and r{ q then the addition of (q, r)
does create new cycles. Let us assume we can ask an oracle whether r { q holds, and the oracle
answers ‘yes’. Then we have already learnt that both q and r belong to some cycle of A, and so both
of them must be removed from C. However, we may have to remove other states as well. Consider
the DFS of Figure 13.5: after adding (q4, q1) to the set of explored transitions at time 5, all of
q1, q2, q3, q4 belong to a cycle. The fact that these are the states discovered by the DFS between the

q0 q1 q2

q3q4

[1,10] [2,9] [3,8]

[4,7][5,6]

Figure 13.5: A DFS on an automaton

discoveries of q1 and q4 suggests to implement C using a stack: By pushing states into C when they
are discovered, and removing when they are blackened or earlier (if some cycle contains them), the
update to C after exploring a transition (q, r) can be performed very easily: it suffices to pop from
C until r is hit (in Figure 13.5 we pop q4, q3, q2, and q1). Observe also that removing q from C
when it is blackened does not require to inspect the complete stack; since every state is removed at
the latest when it is blackened, if q has not been removed yet, then it is necessarily at the top of C.
(This is the case of state q0 in Figure 13.5). So it suffices to inspect the top of the stack: if q is at
the top, we pop it; otherwise q is not in the stack, and we do nothing.

This leads to our first attempt at an algorithm, shown on the top left corner of Figure 13.6. When
a state q is discovered it is pushed into C (line 5), and its successors explored (lines 6-12). When
exploring a successor r, if r has not been discovered yet then dfs(r) is called (line 7). Otherwise the
oracle is consulted (line 8), and if r { q holds at the time (i.e., in the part of A explored so far),
then states are popped from C until r is hit (lines 9-12). Then the algorithm checks if q has already
been removed by inspecting the top of the stack (line 13), and removes q if that is the case.

The NBA below FirstAttempt shows, however, that the algorithm needs to be patched. After
exploring (q4, q1) the states q4, q3, q2, q1 are popped from C, in that order, and C contains only q0.
Now the DFS backtracks to state q3, and explores (q3, q5), pushing q5 into the stack. Then the DFS
explores (q5, q1), and pops from C until it hits q1. But this leads to an incorrect result, because,
since q1 no longer belongs to C, the algorithm pops all states from C, and when it pops q0 it reports

234 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

FirstAttempt(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ,C ← ∅;
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add q to S ; push(q,C)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r{ q then
9 repeat

10 s← pop(C)
11 if s ∈ F then report
NEMP
12 until s = r
13 if top(C) = q then pop(C)

SecondAttempt(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅

NEMP otherwise
1 S ,C ← ∅;
2 dfs1(q0)
3 report EMP

4 proc dfs(q)
5 add q to S ; push(q,C)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r{ q then
9 repeat

10 s← pop(C)
11 if s ∈ F then report
NEMP
12 until s = r
13 push(r,C)
14 if top(C) = q then pop(C)

q0 q1 q2

q3q4

q5

[1,12] [2,11] [3,10]

[4,7][5,6]

[8,9]

q0 q1 q2

q3q4

q5

[1,12] [2,11] [3,10]

[4,9][5,6]

[7,8]

Figure 13.6: Two incorrect attempts at an emptiness checking algorithm

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 235

NONEMPTY.
This problem can be solved as follows: If the DFS explores (q, r) and r{ q holds, then it pops

from C until r is popped, and pushes r back into the stack. This second attempt is shown at the top
right of the figure. However, the NBA below SecondAttempt shows that it is again incorrect. After
exploring (q4, q1) (with stack content q4q3q2q1q0), the states q4, q3, q2, q1 are popped from C, in
that order, and q1 is pushed again. C contains now q1q0. The DFS explores (q3, q5) next, pushing
q5, followed by (q5, q4). Since q4 { q5 holds, the algorithm pops from C until q4 is found. But,
again, since q4 does not belong to C, the result is incorrect.

A patch for this problem is to change the condition of the repeat loop: If the DFS explores (q, r)
and r{ q holds, we cannot be sure that r is still in the stack. So we pop until either r or some state
discovered before r is hit, and then we push this state back again. In the example, after exploring
(q5, q4) with stack content q5q1q0, the algorithm pops q5 and q1, and then pushes q1 back again.
This new patch leads to the OneStack algorithm:

OneStack(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ,C ← ∅;
2 dfs(q0)
3 report EMP

4 dfs(q)
5 add q to S ; push(q,C)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r{ q then
9 repeat

10 s← pop(C); if s ∈ F then report NEMP
11 until d[s] ≤ d[r]
12 push(s,C)
13 if top(C) = q then pop(C)

Example 13.7 Figure 13.7 shows a run of OneStack on the NBA shown at the top. The NBA has
no accepting states, and so it is empty. However, during the run we will see how the algorithm
answers NONEMPTY (resp. EMPTY) when f (res. h) is the only accepting state. The discovery
and finishing times are shown at the top. Observe that the NBA has three sccs: {a, b, e, f , g}, {h},
and {c, d, i, j}, with roots a, h, and i, respectively.

Below the NBA at the top, the figure shows different snapshots of the run of OneStack. At
each snapshot, the current grey path is shown in red/pink. The dotted states and transitions have
not been discovered yet, while dark red states have already been blackened. The current content of
stack C is shown on the right (ignore stack L for the moment).

236 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

• The first snapshot is taken immediately before state j is blackened. The algorithm has just
explored the transition (j, i), has popped the states c, d, j, i from C, and has pushed state i
back. The states c, d, j, i have been identified as belonging to some cycle.

• The second snapshot is taken immediately after state i is blackened. State i has been popped
from C at line 13. Observe that after this the algorithm backtracks to dfs(h), and, since state
h is at the top of the stack, it pops h from C at line 13. So h is never popped by the repeat
loop, and so even if h is accepting the algorithm does not report NONEMPTY.

• The third snapshot is taken immediately before state f is blackened. The algorithm has just
explored the transition (f , a), has popped the states f , g, b, a from C, and has pushed state
a back. The states f , g, b, a have been identified as belonging to some cycle. If state f is
accepting, at this point the algorithm reports EMPTY and stops.

• The fourth snapshot is taken immediately after state e is discovered. The state has been
pushed into C.

• The final snapshot is taken immediately before a is blackened and the run terminates. State
a is going to be removed from C at line 13, and the run terminates.

Observe that when the algorithm explores transition (b, c) it calls the oracle, which answers
c 6{ b, and no states are popped from C.

The algorithm looks now plausible, but we still must prove it correct. We have two proof obliga-
tions:

• If A is nonempty, then OneStack reports NONEMPTY. This is equivalent to: every state that
belongs to some cycle is eventually popped during the repeat loop.

• If OneStack reports NONEMPTY, then A is nonempty. This is equivalent to: every state
popped during the repeat loop belongs to some cycle.

These properties are shown in Propositions 13.8 and 13.11 below.

Proposition 13.8 If q belongs to a cycle, then q is eventually popped by the repeat loop.

Proof: Let π be a cycle containing q, let q′ be the last successor of q along π such that at time d[q]
there is a white path from q to q′, and let r be the successor of q′ in π. Since r is grey or black at
time d[q], we have d[r] ≤ d[q] ≤ d[q′]. By the White-path Theorem, q′ is a descendant of q, and so
the transition (q′, r) is explored before q is blackened. So when (q′, r) is explored, q has not been
popped at line 13. Since r { q′, either q has already been popped by at some former execution of
the repeat loop, or it is popped now, because d[r] ≤ d[q′].

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 237

g h ia b j d c

g h ia b

[1,20] [7,10]

[4,13][3,18]

[6,11][2,19]

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c

i

b

j

d

h

a

f

e

g

c
[16,17]

b

C

V

g ha b

g ha b

C

V

a

C

g fa b

a

Ca

b g e

[8,9][5,12][14,15]

unexplored

grey path

black

d

jih

C

V

Vg f ea b

Vg f ea b

t = 15 − ε

t = 16

t = 20 − ε

t = 9 − ε

t = 12 + ε

Figure 13.7: A run of OneStack

238 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Actually, the proof of Proposition 13.8 proves not only that q is eventually popped by the
repeat loop, but also that for every cycle π containing q, the repeat loop pops q immediately after
all transitions of π have been explored, or earlier. But this is precisely the optimality property,
which leads to:

Corollary 13.9 OneStack is optimal.

The property that every state popped during the repeat loop belongs to some cycle has a more
involved proof. A strongly connected component (scc) of A is a maximal set of states S ⊆ Q such
that q { r for every q, r ∈ S .3 The first state of a reachable scc that is discovered by the DFS is
called the root of the scc (with respect to this DFS). In other words, if q is the root of an scc, then
d[q] ≤ d[r] for every state r of the scc. The following lemma states an important invariant of the
algorithm. If a root belongs to C at line 9, before the repeat loop is executed, then it still belongs to
C after the loop finishes and the last popped state is pushed back. So, loosely speaking, the repeat
loop cannot remove a root from the stack; more precisely, if the loop removes a root, then the push
instruction at line 12 reintroduces it again.

Lemma 13.10 Let ρ be a root. If ρ belongs to C before an execution of the repeat loop at lines 9-
11, then all states s popped during the execution of the loop satisfy d[ρ] ≤ d[s], and ρ still belongs
to C after the repeat loop has terminated and line 12 has been executed.

Proof: Let t be the time right before an execution of the repeat loop starts at line 9, and assume
ρ belongs to C at time t. Since states are removed from C when they are blackened or earlier, ρ is
still grey at time t. Since r ∈ δ(q) (line 6) and r { q (line 8), both q and r belong to the same scc.
Let ρ′ be the root of this scc. Since ρ′ is also grey at time t, and grey states always are a path of the
DFS-tree, either ρ is a DFS-ascendant of ρ′, or ρ′ , ρ and ρ′ is a DFS-ascendant of ρ. In the latter
case we have ρ′ { ρ { q, contradicting that ρ′ is the root of q’s scc. So ρ is a DFS-ascendant
of ρ′, and so in particular we have d[ρ] ≤ d[ρ′] ≤ d[r]. Since states are added to C when they are
discovered, the states of C are always ordered by decreasing discovery time, starting from the top,
and so every state s popped before ρ satisfies d[ρ] ≤ d[s]. If ρ is popped, then, since d[ρ] ≤ d[r],
the execution of the repeat loop terminates, and ρ is pushed again at line 12.

Proposition 13.11 Any state popped during the repeat loop (at line 10) belongs to some cycle.

Proof: Consider the time t right before a state s is about to be popped at line 10 while the for-loop
(lines 6-12) is exploring a transition (q, r). (Notice that the body of the for-loop may have already
been executed for other transitions (q, r′)). Since the algorithm has reached line 10, we have r{ q
(line 8), and so both q and r belong to the same scc of A. Let ρ be the root of this scc. We show
that s belongs to a cycle.

3Notice that a path consisting of just a state q and no transitions is a path leading from q to q.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 239

(1) s is a DFS-ascendant of q.
Since s belongs to C at time t, both s and q are grey at time t, and so they belong to the
current path of grey states. Moreover, since dfs(q) is being currently executed, q is the last
state in the path. So s is a DFS-ascendant of q.

(2) ρ is a DFS-ascendant of s.
Since ρ is a root of the scc of q, at time d[ρ] there is a white path from ρ to q. By the White-
path and Parenthesis Theorem, ρ is a DFS-ascendant of q. Together with (1), this implies
that either ρ is a DFS-ascendant of s or s is a DFS-ascendant of ρ. By Lemma 13.10 we have
d[ρ] ≤ d[s], and so by the Parenthesis Theorem ρ is a DFS-ascendant of s.

By (1), (2), and r{ q, we have ρ{ s{ q{ r{ ρ, and so s belongs to a cycle.

Implementing the oracle

Recall that OneStack calls an oracle to decide at time t if r { q holds. At first sight the oracle
seems difficult to implement. We show that this is not the case.

Assume that OneStack calls the oracle at line 8 at some time t. We look for a condition that
holds at time t if and only if r{ q, and is easy to check.

Lemma 13.12 Assume that OneStack(A) is currently exploring a transition (q, r), and the state r
has already been discovered. Let R be the scc of A satisfying r ∈ R. Then r{ q iff some state of R
is not black.

Proof: Assume r { q. Then r and q belong to R, and since q is not black because (q, r) is being
explored, R is not black.

Assume r 6{ q. We consider the colors of the states at the time (q, r) is explored, and show that
all the states of R are black. We proceed by contradiction. Assume some state of R is not black.
Not all states of R are white because r has already been discovered, and so at least one state s ∈ R is
grey. Since grey states form a path ending at the state whose output transitions are being currently
explored, the grey path contains s and ends at q. So s{ q, and, since s and r belong to R, we have
r{ q, contradicting the hypothesis.

By Lemma 13.12, checking if r { q holds amounts to checking if all states of R are black or
not. This can be done as follows: we maintain a set V of actiVe states, where a state is active if its
scc has not yet been completely explored, i.e., if some state of the scc is not black. Then, checking
r { q reduces to checking whether r is active. The set V can be maintained by adding a state
to it whenever it is discovered, and removing all the states of a scc right after the last of them is
blackened. The next lemma shows that the last of them is always the root:

Lemma 13.13 Let ρ be a root, and let q be a state such that ρ { q { ρ. Then I(q) ⊆ I(r). (In
words: The root is the first state of a scc to be grayed, and the last to be blackened)

240 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Proof: By the definition of a root, at time d[ρ] there is a white path from ρ to q. By the White-path
and the Parenthesis Theorems, I(q) ⊆ I(r).

By this lemma, in order to maintain V it suffices to remove all the states of an scc whenever
its root is blackened. So whenever the DFS blackens a state q, we have to perform two tasks: (1)
check if q is a root, and (2) if q is a root, remove all the states of q’s scc. Checking if q is a root is
surprisingly simple:

Lemma 13.14 When OneStack executes line 13, q is a root if and only if top(C) = q.

Proof: Assume q is a root. By Lemma 13.10, q still belongs to C after the for loop at lines 6-12
is executed, and so top(C) = q at line 13.

Assume now that q is not a root. Then there is a path from q to the root ρ of q’s scc. Let r be
the first state in the path satisfying d[r] < d[q], and let q′ be the predecessor of r in the path. By
the White-path theorem, q′ is a descendant of q, and so when transition (q, r) is explored, q is not
yet black. When OneStack explores (q′, r), it pops all states s from C satisfying d[s] > d[r], and
none of these states is pushed back at line 12. In particular, either OneStack has already removed q
from C, or it removes it now. Since q has not been blackened yet, when OneStack executes line 14
for dfs(q), the state q does not belong to C and in particular q , top(C)

Tasks (2) can be performed very elegantly by implementing V as a second stack, and maintain-
ing it as follows:

• when a state is discovered (greyed), it is pushed into the stack (so states are always ordered
in V by increasing discovery time); and

• when a root is blackened, all states of V above it (including the root itself) are popped.

Example 13.15 Figure 13.7 shows the content of L at different times when the policy above is
followed. Right before state j is blackened, L contains all states in the grey path. When the root i
is blackened, all states above it (including i itself), are popped; these are the states c, d, j, i, which
form a scc. State h is also a root, and it is also popped. Then, states f and e are discovered,
and pushed into V . Finally, when the root a is blackened, states c, f , g, b, a are popped, which
correspond to the third and last scc.

We show that the states popped when ρ is blackened are exactly those that belong to ρ’s scc.

Lemma 13.16 The states popped from V right after blackening a root ρ are exactly those belonging
to ρ’s scc.

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 241

Proof: Let q be a state of ρ’s scc. Since ρ is a root, we have d[ρ] ≤ d[q], and so q lies above ρ
in L. So q is popped when ρ is blackened, unless it has been popped before. We show that this
cannot be the case. Assume q is popped before ρ is blackened, i.e., when some other root ρ′ , ρ is
blackened at time f [ρ′]. We collect some facts: (a) d[ρ] ≤ d[q] ≤ d[q] ≤ f [ρ] by Lemma 13.13;
(b) d[ρ′] ≤ d[q] < f [ρ′], because q is in the stack at time f [ρ′] (implying d[q] < f [ρ′]), and it is
above ρ′ in the stack (implying d[ρ′] ≤ d[q]); (c) f [ρ′] < f [ρ], because q has not been popped yet
at time f [ρ′], and so ρ cannot have been blackened yet. From (a)-(c) and the Parenthesis Theorem
we get I(q) ⊆ I(ρ′) ⊆ I(ρ), and so in particular ρ { ρ′ { q. But then, since q { ρ, we get
ρ{ ρ′ { ρ, contradicting that ρ and ρ′ are different roots, and so belong to different sccs.

This finally leads to the two-stack algorithm

TwoStack(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ,C,V ← ∅;
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add q to S ; push(q,C); push(q,V)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r ∈ V then
9 repeat

10 s← pop(C); if s ∈ F then report NEMP
11 until d[s] ≤ d[r]
12 push(s,C)
13 if top(C) = q then
14 pop(C)
15 repeat s← pop(V) until s = q

The changes with respect to OneStack are shown in blue. The oracle r { q is replaced by r ∈ V
(line 8). When the algorithm blackens a root (line 13), it pops from V all elements above q, and q
itself (line 15).

Observe that V cannot be implemented only as a stack, because at line 8 we have to check
if a state belongs to the stack or not. The solution is to implement V both as a stack and use an
additional bit in the hash table for S to store whether the state belongs to V or not, which is possible
because V ⊆ S holds at all times. The check at line 8 is performed by checking the value of the bit.

242 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Extension to GBAs

We show that TwoStack can be easily transformed into an emptiness check for generalized Büchi
automata that does not require to construct an equivalent NBA. Recall that a NGA has in general
several sets {F0, . . . , Fk−1} of accepting states, and that a run ρ is accepting if inf ρ ∩ Fi , ∅

for every i ∈ {0, . . . , k − 1}. So we have the following characterization of nonemptiness, where
K = {0, . . . , k − 1}:

Fact 13.17 Let A be a NGA with accepting condition {F0, . . . , Fk−1}. A is nonempty iff some scc S
of A satisfies S ∩ Fi , ∅ for every i ∈ K.

Since every time the repeat loop at line 15 is executed, it pops from L one scc, we can easily check
this condition by modifying line 15 accordingly. However, the resulting algorithm would not be
optimal, because the condition is not checked until the scc has been completely explored. To solve
this problem, we have a closer look at Proposition 13.11. The proof shows that a state s popped
at line 10 belongs to the ssc of state r. So, in particular, all the states popped during an execution
of the repeat loop at lines 9-11 belong to the same scc. So we collect the set I of indices of the
sets of accepting states they belong to, and keep checking whether I = K. If so, then we report
NONEMPTY. Otherwise, we attach the set I to the state s that is pushed back into the C at line
12. This yields algorithm TwoStackNGA, where F(q) denotes the set of all indices i ∈ K such that
q ∈ Fi:

TwoStackNGA(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fk−1})
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ,C,V ← ∅;
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add [q, F(q)] to S ; push([q, F(q)],C); push(q,V)
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 else if r ∈ V then
9 I ← ∅

10 repeat
11 [s, J]← pop(C);
12 I ← I ∪ J; if I = K then report NEMP
13 until d[s] ≤ d[r]
14 push([s, I],C)
15 if top(C) = (q, I)for some I then
16 pop(C)
17 repeat s← pop(V) until s = q

13.1. ALGORITHMS BASED ON DEPTH-FIRST SEARCH 243

For the correctness of the algorithm, observe that, at every time t, the states of teh subautomaton At

can be partitioned into strongly connected components, and each of these components has a root.
The key invariant for the correctness proof is the following:

Lemma 13.18 At every time t, the stack C contains a pair [q, I] iff q is a root of At, and I is the
subset of indices i ∈ K such that some state of Fi belongs to q’s scc.

Proof: Initially the invariant holds because both At and C are empty. We show that whenever
a new transition (q, r) is explored, TwoStackNGA carries out the necessary changes to keep the
invariant. Let t be the time immediately after (q, r) is explored. If r is a new state, then it has no
successors in At, and so it builds an scc of At by itself, with root r. Moreover, all roots before the
exploration of (q, r) are alsoroots of At. So a new pair [r, F(r)] must be added to C, and that is what
dfs(r) does. If r < L, then r 6{ ρ, the addition of (q, r) has not changed the sccs of the automaton
explored so far, and nothing must be done. If r ∈ L, then the addition of (q, r) creates new cycles,
and some states stop being roots. More precisely, let NR be the set of states of At that belong to a
cycle containing both q and r, and let ρ be the state of NR with minimal discovery time. Then the
algorithm must remove from C all states of NR with the exception of ρ (and no others). We show
that this is exactly what the execution of lines 9-14 achieves. By Proposition 13.8 and Corollary
13.9, all the states of NR \ {ρ} have already been removed at some former execution of the loop, or
are removed now at lines 9-14, because they have discovery time smaller than or equal to d[r]. It
remains to show that all states popped at line 11 belong to NR (that ρ is not removed follows then
from the fact that the state with the lowest discovery time is pushed again at line 14, and that state
is ρ). For, this, we have a closer look at the proof of Proposition 13.11. The proposition shows not
only that the states popped by the repeat loop belong to some cycle, but also that they all belong to
cycles that containing q and r (see the last line of the proof), and we are done.

We can now easily prove:

Proposition 13.19 TwoStackNGA(A) reports NONEMPTY iff A is nonempty. Moreover, TwoStack-
NGA is optimal.

Proof: If TwoStackNGA(A) reports NONEMPTY, then the repeat loop at lines 10-13 pops some
pair [q,K]. By Lemma 13.18, q belongs to a cycle of A containing some state of Fi for every i ∈ K.

If A is nonempty, then some scc S of A satisfies S ∩ Fi , ∅ for every i ∈ K. So there is an
earliest time t such that At contains an scc S t ⊆ S satisfying the same property. By Lemma 13.18,
TwoStackNGA(A) reports NONEMPTY at time t or earlier, and so it is optimal.

Evaluation

Recall that the two weak points of the nested-DFS algorithm were that it cannot be directly ex-
tended to NGAs, and it is not optimal. Both are strong points of the two-stack algorithm.

244 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

The strong point of the the nested-DFS algorithm were its very modest space requirements:
just two extra bits for each state of A. Let us examine the space needed by the two-stack algorithm.
It is conveniet to compute it for empty automata, because in this case both the nested-DFS and the
two-stack algorithms must visit all states.

Because of the check d[s] ≤ d[r], the algorithm needs to store the discovery time of each state.
This is done by extending the hash table S . If a state q can be stored using c bits, then log n bits
are needed to store d[q]; however, in practice d[q] is stored using a word of memory, because if the
number states of A exceeds 2w, where w is the number of bits of a word, then A cannot be stored in
main memory anyway. So the hash table S requires c + w + 1 bits per state (the extra bit being the
one used to check membership in L at line 8).

The stacks C and L do not store the states themselves, but the memory addresses at which they
are stored. Ignoring hashing collisions, this requires 2w additional bits per state. For generalized
Büchi automata, we must also add the k bits needed to store the subset of K in the second com-
ponent of the elements of C. So the two-stack algorithm uses a total of c + 3w + 1 bits per state
(c + 3w + k + 1 in the version for NGA), compared to the c + 2 bits required by the nested-DFS
algorithm. In most cases w << c, and so the influence of the additional memory requirements on
the performance is small.

13.2 Algorithms based on breadth-first search

In this section we describe algorithms based on breadth-first search (BFS). No linear BFS-based
emptiness check is known, and so this section may look at first sight superfluous. However, BFS-
based algorithms can be suitably described using operations and checks on sets, which allows us
to implement them using automata as data structures. In many cases, the gain obtained by the use
of the data structure more than compensates for the quadratic worse-case behaviour, making the
algorithms competitive.

Breadth-first search (BFS) maintains the set of states that have been discovered but not yet
explored, often called the frontier or boundary. A BFS from a set Q0 of states (in this section we
consider searches from an arbitrary set of states of A) initializes both the set of discovered states and
its frontier to Q0, and then proceeds in rounds. In a forward search, a round explores the outgoing
transitions of the states in the current frontier; the new states found during the round are added to
the set of discovered states, and they become the next frontier. A backward BFS proceeds similarly,
but explores the incoming instead of the outgoing transitions. The pseudocode implementations of
both BFS variants shown below use two variables S and B to store the set of discovered states and
the boundary, respectively. We assume the existence of oracles that, given the current boundary B,
return either δ(B) =

⋃
q∈B δ(q) or δ−1(B) =

⋃
q∈B δ

−1(q).

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 245

ForwardBFS[A](Q0)
Input: NBA A = (Q,Σ, δ, q0, F),

Q0 ⊆ Q

1 S , B← Q0;
2 repeat
3 B← δ(B) \ S
4 S ← S ∪ B
5 until B = ∅

BackwardBFS[A](Q0)
Input: NBA A = (Q,Σ, δ, q0, F),

Q0 ⊆ Q

1 S , B← Q0;
2 repeat
3 B← δ−1(B) \ S
4 S ← S ∪ B
5 until B = ∅

Both BFS variants compute the successors or predecessors of a state exactly once, i.e., if in
the course of the algorithm the oracle is called twice with arguments Bi and B j, respectively, then
Bi∩B j = ∅. To prove this in the forward case (the backward case is analogous), observe that B ⊆ S
is an invariant of the repeat loop, and that the value of S never decreases. Now, let B1, S 1, B2, S 2, . . .

be the sequence of values of the variables B and S right before the i-th execution of line 3. We have
Bi ⊆ S i by the invariant, S i ⊆ S j for every j ≥ i, and and B j+1 ∩ S j = ∅ by line 3. So B j ∩ Bi = ∅

for every j > i.
As data structures for the sets S and B we can use a hash table and a queue, respectively.

But we can also take the set Q of states of A as finite universe, and use automata for fixed-length
languages to represent both S and B. Moreover, we can represent δ ⊆ Q × Q by a finite transducer
Tδ, and reduce the computation of δ(B) and δ−1(B) in line 3 to computing Post(B, δ) and Pre(B, δ),
respectively.

13.2.1 Emerson-Lei’s algorithm

A state q of A is live if some infinite path starting at q visits accepting states infinitely often. Clearly,
A is nonempty if and only if its initial state is live. We describe an algorithm due to Emerson and
Lei for computing the set of live states. For every n ≥ 0, the n-live states of A are inductively
defined as follows:

• every state is 0-live;

• a state q is (n + 1)-live if some path containing at least one transition leads from q to an
accepting n-live state.

Loosely speaking, a state is n-live if starting at it it is possible to visit accepting states n-times. Let
L[n] denote the set of n-live states of A. We have:

Lemma 13.20 (a) L[n] ⊇ L[n + 1] for every n ≥ 0.

(b) The sequence L[0] ⊇ L[1] ⊇ L[2] . . . reaches a fixpoint L[i] (i.e., there is a least index i ≥ 0
such that L[i + 1] = L[i]), and L[i] is the set of live states.

246 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Proof: We prove (a) by induction on n. The case n = 0 is trivial. Assume n > 0, and let
q ∈ L[n + 1]. There is a path containing at least one transition that leads from q to an accepting
state r ∈ L[n]. By induction hypothesis, r ∈ L[n − 1], and so q ∈ L[n].

To prove (b), first notice that, since Q is finite, the fixpoint L[i] exists. Let L be the set of live
states. Clearly, L ⊆ L[i] for every i ≥ 0. Moreover, since L[i] = L[i + 1], every state of L[i] has a
proper descendant that is accepting and belongs to L[i]. So L[i] ⊆ L.

Emerson-Lei’s algorithm computes the fixpoint L[i] of the sequence L[0] ⊇ L[1] ⊇ L[2] To
compute L[n + 1] given L[n] we observe that a state is n + 1-live if some nonempty path leads from
it to an n-live accepting state, and so

L[n + 1] = BackwardBFS(Pre(L[n] ∩ F))

The pseudocode for the algorithm is shown below on the left-hand-side; the variable L is used to
store the elements of the sequence L[0], L[1], L[2],

EmersonLei(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅,

NEMP otherwise

1 L← Q
2 repeat
3 OldL← L
4 L← Pre(OldL ∩ F)
5 L← BackwardBFS(L)
6 until L = OldL
7 if q0 ∈ L then report NEMP
8 else report NEMP

EmersonLei2(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅,

NEMP otherwise

1 L← Q
2 repeat
3 OldL← L
4 L← Pre(OldL ∩ F) \ OldL
5 L← BackwardBFS(L) ∪ OldL
6 until L = OldL
7 if q0 ∈ L then report NEMP
8 else report NEMP

The repeat loop is executed at most |Q| + 1-times, because each iteration but the last one removes
at least one state from L. Since each iteration takes O(|Q| + |δ|) time, the algorithm runs in O(|Q| ·
(|Q| + |δ|)) time.

The algorithm may compute the predecessors of a state twice. For instance, if q ∈ F and there
is a transition (q, q), then after line 4 is executed the state still belongs to L. The version on the
right avoids this problem.

Emerson-Lei’s algorithm can be easily generalized to NGAs (we give only the generalization
of the first version):

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 247

GenEmersonLei(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fm−1})
Output: EMP if Lω(A) = ∅,

NEMP otherwise

1 L← Q
2 repeat
3 OldL← L
4 for i=0 to m − 1
5 L← Pre(OldL ∩ Fi)
6 L← BackwardBFS(L)
7 until L = OldL
8 if q0 ∈ L then report NEMP
9 else report NEMP

Proposition 13.21 GenEmersonLei(A) reports NEMP iff A is nonempty.

Proof: For every k ≥ 0, redefine the n-live states of A as follows: every state is 0-live, and q is
(n + 1)-live if some path having at least one transition leads from q to a n-live state of F(n mod m).
Let L[n] denote the set of n-live states. Proceeding as in Lemma 13.20, we can easily show that
L[(n + 1) · m] ⊇ L[n · m] holds for every n ≥ 0.

We claim that the sequence L[0] ⊇ L[m] ⊇ L[2 · m] . . . reaches a fixpoint L[i · m] (i.e., there is
a least index i ≥ 0 such that L[(i + 1) · m] = L[i · m]), and L[i · m] is the set of live states. Since
Q is finite, the fixpoint L[i · m] exists. Let q be a live state. There is a path starting at q that visits
F j infinitely often for every j ∈ {0, . . . ,m − 1}. In this path, every occurrence of a state of F j is
always followed by some later occurrence of a state of F(j+1) mod m, for every i ∈ {0, . . . ,m− 1}. So
q ∈ L[i ·m]. We now show that every state of L[i ·m] is live. For every state q ∈ L[(i + 1) ·m] there
is a path π = πm−1πm−2π0 such that for every j ∈ {0, . . . ,m− 1} the segment π j contains at least one
transition and leads to a state of L[i ·m + j]∩ F j. In particular, π visits states of F0, . . . , Fm−1, and,
since L[(i + 1) ·m] = L[i ·m], it leads from a state of L[(i + 1) ·m] to another state of L[(i + 1) ·m].
So every state of L[(i + 1) · m] = L[i · m] is live, which proves the claim.

Since GenEmersonLei(A) computes the sequence L[0] ⊇ L[m] ⊇ L[2 · m] . . ., after termination
L contains the set of live states.

13.2.2 A Modified Emerson-Lei’s algorithm

There exist many variants of Emerson-Lei’s algorithm that have the same worst-case complexity,
but try to improve the efficiency, at least in some cases, by means of heuristics. We present here
one of these variants, which we call the Modified Emerson-Lei’s algorithm (MEL).

Given a set S ⊆ Q of states, let inf (S) denote the states q ∈ S such that some infinite path
starting at q contains only states of S . Instead of computing Pre(OldL ∩ F) at each iteration step,
MEL computes Pre(inf (OldL) ∩ Fi).

248 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

MEL(A)
Input: NGA A = (Q,Σ, δ, q0, {F0, . . . , Fk−1})
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 L← Q;
2 repeat
3 OldL← L
4 L← inf (OldL)
5 L← Pre(L ∩ F)
6 L← BackwardBFS(L)
7 until L = OldL
8 if q0 ∈ L then report NEMP
9 else report NEMP

10 function inf(S)
11 repeat
12 OldS← S
13 S ← S ∩ Pre(S)
14 until S = OldS
15 return S

In the following we show that MEL is correct, and then compare it with Emerson-Lei’s al-
gorithm. As we shall see, while MEL introduces the overhead of repeatedly computing inf -
operations, it still makes sense in many cases because it reduces the number of executions of the
repeat loop.

To prove correctness we claim that after termination L contains the set of live states. Recall that
the set of live states is the fixpoint L[i] of the sequence L[0] ⊇ L[1] ⊇ L[2] By the definition
of liveness we have inf (L[i]) = L[i]. Define now L′[0] = Q, and L′[n + 1] = inf (pre+(L′[i] ∩ α)).
Clearly, MEL computes the sequence L′[0] ⊇ L′[1] ⊇ L′[2] Since L[n] ⊇ L′[n] ⊇ L[i] for
every n > 0, we have that L[i] is also the fixpoint of the sequence L′[0] ⊇ L′[1] ⊇ L′[2] . . ., and so
MEL computes L[i]. Since inf (S) can be computed in time O(|Q| + |δ|) for any set S , MEL runs in
O(|Q| · (|Q| + |δ|)) time.

Interestingly, we have already met Emerson-Lei’s algorithm in Chapter ??. In the proof of
Proposition 12.3 we defined a sequence D0 ⊇ D1 ⊇ D2 ⊇ . . . of infinite acyclic graphs. In
the terminology of this chapter, D2i+1 was obtained from D2i by removing all nodes having only
finitely many descendants, and D2i+2 was obtained from D2i+1 by removing all nodes having only
non-accepting descendants. This corresponds to D2i+1 := inf(D2i) and D2i+2 := pre+(D2i+1 ∩ α).
So, in fact, we can look at this procedure as the computation of the live states of D0 using MEL.

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 249

13.2.3 Comparing the algorithms

We give two families of examples showing that MEL may outperform Emerson-lei’s algorithm, but
not always.

A good case for MEL. Consider the automaton of Figure 13.8. The i-th iteration of Emnerson-
Lei’s algorithm removes qn−i+1 The number of calls to BackwardBFS is (n + 1), although a simple
modification allowing the algorithm to stop if L = ∅ spares the (n + 1)-th operation. On the other
hand, the first inf-operation of MEL already sets the variable L to the empty set of states, and so,
with the same simple modification, the algorithm stops after on iteration.

q0 q1 qn−1 qn• • •

Figure 13.8: An example in which the MEL-algorithm outperforms the Emerson-Lei algorithm

A good case for Emerson-Lei’s algorithm. Consider the automaton of Figure 13.9. The i-th
iteration, of Emerson-Lei’s algorithm removes q(n−i+1),1 and q(n−i+1),2, and so the algorithm calls
BackwardBFS (n + 1) times The i-th iteration of MEL-algorithm removes no state as result of the
inf -operation, and states q(n−i+1),1 and q(n−i+1),2 as result of the call to BackwardBFS. So in this
case the inf -operations are all redundant.

q0,1 q0,2 q1,1 q1,2 qn,1 qn,2• • •

Figure 13.9: An example in which the EL-algorithm outperforms the MEL-algorithm

Exercises

Exercise 95 Which lassos of the following NBA can be found by a run of NestedDFS?
(Recall that NestedDFS is a nonderterministic algorithm, and so different runs on the same input
may return different lassos.)

250 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

0start 1

2 3

Exercise 96 A Büchi automaton is weak if no strongly connected component contains both ac-
cepting and non-accepting states. Show that the following algorithm correctly decides emptiness
of weak Büchi automata.
Hint. Consider the root of a scc containing only accepting states.

SingleDFS(A)
Input: weak NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅, NEMP otherwise

1 S ← ∅
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 add q to S
6 for all r ∈ δ(q) do
7 if r < S then dfs(r)
8 if r ∈ F then report NEMP
9 return

Exercise 97 Consider Muller automata whose accepting condition contains one single set of
states F, i.e., a run ρ is accepting if inf (ρ) = F. Transform TwoStack into a linear algorithm
for checking emptiness of these automata.
Hint: Consider the version of TwoStack for NGAs.

Exercise 98

(1) Given R, S ⊆ Q, define pre+(R, S) as the set of ascendants q of R such that there is a path
from q to R that contains only states of S . Give an algorithm to compute pre+(R, S).

13.2. ALGORITHMS BASED ON BREADTH-FIRST SEARCH 251

(2) Consider the following modification of Emerson-Lei’s algorithm:

MEL2(A)
Input: NBA A = (Q,Σ, δ, q0, F)
Output: EMP if Lω(A) = ∅, NEMP other-
wise

1 L← Q
2 repeat
3 OldL← L
4 L← pre+(L ∩ F, L)
5 until L = OldL
6 if q0 ∈ L then report NEMP
7 else report NEMP

Is MEL2 correct? What is the difference between the sequences of sets computed by MEL
and MEL2?

252 CHAPTER 13. EMPTINESS CHECK: IMPLEMENTATIONS

Chapter 14

Verification and Temporal Logic

Recall that, intuitively, liveness properties are those stating that the system will eventually do some-
thing good. More formally, they are properties that are only violated by infinite executions of the
systems, i.e., by examining only a finite prefix of an infinite execution it is not possible to determine
whether the infinite execution violates the property or not. In this chapter we apply the theory of
Büchi automata to the problem of automatically verifying liveness properties.

14.1 Automata-Based Verification of Liveness Properties

In Chapter 8 we introduced some basic concepts about systems: configuration, possible execution,
and execution. We extend these notions to the infinite case. An ω-execution of a system is an
infinite sequence c0c1c2 . . . of configurations where c0 is some initial configuration, and for every
i ≥ 1 the configuration ci is a legal successor according to the semantics of the system of the
configuration ci−1. Notice that according to this definition, if a configuration has no legal successors
then it does not belong to any ω-execution. Usually this is undesirable, and it is more convenient
to assume that such a configuration c has exactly one legal successor, namely c itself. In this
way, every reachable configuration of the system belongs to some ω-execution. The terminating
executions are then the ω-executions of the form c0 . . . cn−1cωn for some terminating configuration
cn. The set of terminating configurations can usually be identified syntactically. For instance, in
a program the terminating configurations are usually those in which control is at some particular
program line.

In Chapter 8 we showed how to construct a system NFA recognizing all the executions of
a given system. The same construction can be used to define a system NBA recognizing all the
ω-executions.

Example 14.1 Consider the little program of Chapter 8.

253

254 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

1, 0, 0 5, 0, 0

1, 1, 1 2, 1, 1

1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

4, 1, 0

3, 1, 1

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]

[5, 0, 1]

[3, 1, 1][2, 1, 1]

[1, 1, 0]
[1, 0, 1]

[1, 1, 1]

[1, 0, 0]

i

4, 0, 1

[1, 0, 1]

[4, 0, 1]

[5, 0, 0]

[5, 0, 1]

Figure 14.1: System NBA for the program

1 while x = 1 do
2 if y = 1 then
3 x← 0
4 y← 1 − x
5 end

Its system NFA is the automaton of 14.1, but without the red self-loops at states [5, 0, 0] and
[5, 0, 1]. The system NBA is the result of adding the self-loops

14.1.1 Checking Liveness Properties

In Chapter 8 we used Lamport’s algorithm to present examples of safety properties, and how they
can be automatically checked. We do the same now for liveness properties. Figure 14.2 shows
again the network of automata modelling the algorithm and its asynchronous product, from which
we can easily gain its system NBA. Observe that in this case every configuration has at least a
successor, and so no self-loops need to be added.

For i ∈ {0, 1}, let NCi,Ti,Ci be the sets of configurations in which process i is in the non-critical
section, is trying to access the critical section, and is in the critical section, respectively, and let Σ

stand for the set of all configurations. The finite waiting property for process i states that if process
i tries to access its critical section, it eventually will. The possible ω-executions that violate the
property for process i are represented by the ω-regular expression

vi = Σ∗ Ti (Σ \Ci)ω .

We can check this property using the same technique as in Chapter 8. We construct the sys-
tem NBA ωE recognizing the ω-executions of the algorithm (the NBA has just two states), and
transform the regular expression vi into an NBA Vi using the algorithm of Chapter 11. We then

14.1. AUTOMATA-BASED VERIFICATION OF LIVENESS PROPERTIES 255

bi ← 1

bi ← 0

0 1

b0 ← 1

b0 ← 0

0 1

b1 ← 1,
b1 = 1

b0 ← 1,
b0 = 1

b0 ← 0,
b0 = 0

b1 ← 0,
b1 = 0

nc0 t0 c0

b1 = 1

b0 ← 0

b0 ← 1 b1 = 0

nc1 t1 c1

q′1 q1

b0 = 0 b0 = 1

b1 ← 0

b1 ← 1 b0 = 0

b0 = 1

b1 ← 0

0, 0, nc0, nc1

1, 0, t0, nc1

0, 1, nc0, t1

1, 1, t0, t1

1, 1, c0, q1

0, 0, nc0, q′1

1, 0, c0, q′1

0, 1, nc0, q1

1, 1, t0, q1 1, 0, t0, q′1

b0 ← 1

b1 ← 1

b0 = 1
b1 = 1

1, 1, c0, t1

b0 ← 0

b1 ← 1 b0 ← 0

b1 ← 1

b1 ← 0

b1 = 1

b1 ← 0

b0 ← 0
b1 ← 0

b1 = 1

b1 = 1

b1 = 0

b0 ← 1

b0 ← 0

b1 = 0

b0 = 0

b0 = 1
b1 = 1

b1 = 1

b1 ← 0

b1 = 0
b1 ← 0

b1 = 0

b0 ← 1

b0 ← 0

b0 = 1

1, 0, c0, nc1

1, 1, t0, c1

0, 1, nc0, c1

Figure 14.2: Lamport’s algorithm and its asynchronous product.

256 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

construct an NBA for ωE ∩ Vi using intersNBA(), and check its emptiness using one of the algo-
rithms of Chapter 13.

Observe that, since all states of ωE are accepting, we do not need to use the special algorithm
for intersection of NBAs, and so we can apply the construction for NFAs.

The result of the check for process 0 yields that the property fails because for instance of the
ω-execution

[0, 0, nc0, nc1] [1, 0, t0, nc1] [1, 1, t0, t1]ω

In this execution both processes request access to the critical section, but from then on process
1 never makes any further step. Only process 0 continues, but all it does is continuously check
that the current value of b1 is 1. Intuitively, this corresponds to process 1 breaking down after
requesting access. But we do not expect the finite waiting property to hold if processes may break
down while waiting. So, in fact, our definition of the finite waiting property is wrong. We can repair
the definition by reformulating the property as follows: in any ω-execution in which both processes
execute infinitely many steps, if process 0 tries to access its critical section, then it eventually will.
The condition that both processes must move infinitely often is called a fairness assumption.

The simplest way to solve this problem is to enrich the alphabet of the system NBA. Instead of
labeling a transition only with the name of the target configuration, we also label it with the number
of the process responsible for the move leading to that configuration. For instance, the transition

[0, 0, nc0, nc1]
[1,0,t0,nc1]
−−−−−−−−−→[1, 0, t0, nc1] becomes

[0, 0, nc0, nc1]
([1,0,t0,nc1],0)
−−−−−−−−−−−→[1, 0, t0, nc1]

to reflect the fact that [1, 0, t0, nc1] is reached by a move of process 0. So the new alphabet of the
NBA is Σ × {0, 1}. If we denote M0 = Σ × {0} and M1 = Σ × {1} for the ‘moves” of process 0 and
process 1, respectively, then the regular expression

inf =
(

(M0 + M1)∗M0M1
)ω

represents allω-executions in which both processes move infinitely often, and L(vi) ∩ L(inf) (where
vi is suitably rewritten to account for the larger alphabet) is the set of violations of the reformulated
finite waiting property. To check if some ω-execution is a violation, we can construct NBAs for
vi and inf, and compute their intersection. For process 0 the check yields that the properly indeed
holds. For process 1 the property still fails because of, for instance, the sequence

([0, 0, nc0, nc1] [0, 1, nc0, t1] [1, 1, t0, t1] [1, 1, t0, q1]
[1, 0, t0, q′1] [1, 0, c0, q′1] [0, 0, nc0, q′1])ω

in which process 1 repeatedly tries to access its critical section, but always lets process 0 access
first.

14.2. LINEAR TEMPORAL LOGIC 257

14.2 Linear Temporal Logic

In Chapter 8 and in the previous section we have formalized properties of systems using regular, or
ω-regular expressions, NFAs, or NBAs. This becomes rather difficult for all but the easiest prop-
erties. For instance, the NBA or the ω-regular expression for the modified finite waiting property
are already quite involved, and it is difficult to be convinced that they correspond to the intended
property. In this section we introduce a new language for specifying safety and liveness proper-
ties, called Linear Temporal Logic (LTL). LTL is close to natural language, but still has a formal
semantics.

Formulas of LTL are constructed from a set AP of atomic propositions. Intuitively, atomic
propositions are abstract names for basic properties of configurations, whose meaning is fixed only
after a concrete system is considered. Formally, given a system with a set C of configurations, the
meaning of the atomic propositions is fixed by a valuation function V : AP → 2C that assigns to
each abstract name the set of configurations at which it holds.

Atomic propositions are combined by means of the usual Boolean operators and the temporal
operators X (“next”) and U (“until”). Formally:

Definition 14.2 Let AP be a finite set of atomic propositions. The set of LTL formulas over AP,
denoted by LTL(AP), is the set of expressions generated by the grammar

ϕ := true | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1 U ϕ2 .

Formulas are interpreted on sequences σ = σ0σ1σ2 . . ., where σi ⊆ AP for every i ≥ 0. We call
these sequences computations. The set of all computations over AP is denoted by C(AP). The
executable computations of a system are the computations σ for which there exists an ω-execution
c0c1c2 . . . such that for every i ≥ 0 the set of basic properties satisfied by ci is exactly σi.

Definition 14.3 Given a computation σ ∈ C(AP), letσ j denote the suffix σ jσ j+1 σ j+2 . . . of σ. The
satisfaction relation σ |= ϕ (read “σ satisfies ϕ”) is inductively defined as follows:

• σ |= true.

• σ |= p iff p ∈ σ(0).

• σ |= ¬ϕ iff σ 6|= ϕ.

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2.

• σ |= Xϕ iff σ1 |= ϕ.

• σ |= ϕ1 U ϕ2 iff there exists k ≥ 0 such that σk |= ϕ2 and σi |= ϕ1 for every 0 ≤ i < k.

We use the following abbreviations:

• false,∨,→ and↔, interpreted in the usual way.

258 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

• Fϕ = true U ϕ (“eventually ϕ”). According to the semantics above, σ |= Fϕ iff there exists
k ≥ 0 such that σk |= ϕ,.

• Gϕ = ¬F¬ϕ (“always ϕ” or “globally ϕ”). According to the semantics above, σ |= Gϕ iff
σk |= ϕ for every k ≥ 0.

The set of computations that satisfy a formula ϕ is denoted by L(ϕ). A system satisfies ϕ if all
its executable computations satisfy ϕ.

Example 14.4 Consider the little program at the beginning of the chapter. We write some formulas
expressing properties of the possible ω-executions of the program. Observe that the system NBA
of Figure 14.1has exactly four ω-executions:

e1 = [1, 0, 0] [5, 0, 0]ω

e2 = ([1, 1, 0] [2, 1, 0] [4, 1, 0])ω

e3 = [1, 0, 1] [5, 0, 1]ω

e4 = [1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]ω

Let C be the set of configurations of the program. We choose

AP = {at 1, at 2, . . . , at 5, x=0, x=1, y=0, y=1}

and define the valuation function V : AP→ 2C as follows:

• V(at i) = {[`, x, y] ∈ C | ` = i} for every i ∈ {1, . . . , 5}.

• V(x=0) = {[`, x, y] ∈ C | x = 0}, and similarly for x = 1, y = 0, y = 1.

Under this valuation, at i expresses that the program is at line i, and x=j expresses that the current
value of x is j. The executable computations corresponding to the four ω-executions above are

σ1 = {at 1, x=0, y=0} {at 5, x=0, y=0}ω

σ2 = ({at 1, x=1, y=0} {at 2, x=1, y=0} {at 4, x=1, y=0})ω

σ3 = {at 1, x=0, y=1} {at 5, x=0, y=1}ω

σ4 = {at 1, x=1, y=1} {at 2, x=1, y=1} {at 3, x=1, y=1} {at 4, x=0, y=1}

{at 1, x=0, y=1} {at 5, x=0, y=1}ω

We give some examples of properties:

• φ0 = x=1 ∧ Xy=0 ∧ XXat 4. In natural language: the value of x in the first configura-
tion of the execution is 1, the value of y in the second configuration is 0, and in the third
configuration the program is at location 4. We have σ2 |= φ0, and σ1, σ3, σ4 6|= φ0.

• φ1 = Fx=0. In natural language: x eventually gets the value 0. We have σ1, σ2, σ4 |= φ1, but
σ3 6|= φ1.

14.2. LINEAR TEMPORAL LOGIC 259

• φ2 = x=0 U at 5. In natural language: x stays equal to 0 until the execution reaches location
5. Notice however that the natural language description is ambiguous: Do executions that
never reach location 5 satisfy the property? Do executions that set x to 1 immediately before
reaching location 5 satisfy the property? The formal definition removes the ambiguities:
the answer to the first question is ‘no’, to the second ‘yes’. We have σ1, σ3 |= φ2 and
σ2, σ4 6|= φ2.

• φ3 = y=1∧F(y=0 ∧ at 5) ∧ ¬(F(y=0 ∧ Xy=1)). In natural language: the first configuration
satisfies y = 1, the execution terminates in a configuration with y = 0, and y never decreases
during the execution. This is one of the properties we analyzed in Chapter 8, and it is not
satisfied by any ω-execution.

Example 14.5 We express several properties of the Lamport-Bruns algorithm (see Chapter 8) us-
ing LTL formulas. As system NBA we use the one in which transitions are labeled with the name
of the target configuration, and with the number of the process responsible for the move leading to
that configuration. We take AP = {NC0,T0,C0,NC1,T1,C1,M0,M1}, with the obvious valuation.

• The mutual exclusion property is expressed by the formula

G(¬C0 ∨ ¬C1)

The algorithm satisfies the formula.

• The property that process i cannot access the critical section without having requested it first
is expressed by

¬(¬Ti U Ci)

Both processes satisfy this property.

• The naı̈ve finite waiting property for process i is expressed by

G(Ti → FCi)

The modified version in which both processes must execute infinitely many moves is ex-
pressed

(GFM0 ∧GFM1)→ G(Ti → FCi)

Observe how fairness assumptions can be very elegantly expressed in LTL. The assumption
itself is expressed as a formula ψ, and the property that ω-executions satisfying the fairness
assumption also satisfy φ is expressed by ψ → φ.

None of the processes satisfies the naı̈ve version of the finite waiting property. Process 0
satisfies the modified version, but process 1 does not.

260 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

• The bounded overtaking property for process 0 is expressed by

G(T0 → (¬C1 U (C1 U (¬C1 U C0))))

The formula states that whenever T0 holds, the computation continues with a (possibly
empty!) interval at which we see ¬C1 holds, followed by a (possibly empty!) interval at
which C1 holds, followed by a point at which C0 holds. The property holds.

14.3 From LTL formulas to generalized Büchi automata

We present an algorithm that, given a formula ϕ ∈ LTL(AP) returns a NGA Aϕ over the alphabet
2AP recognizing L(ϕ), and then derive a fully automatic procedure that, given a system and an LTL
formula, decides whether the executable computations of the system satisfy the formula.

14.3.1 Satisfaction sequences and Hintikka sequences

We introduce the notion of satisfaction sequence and Hintikka sequence for a computation σ and a
formula φ.

Definition 14.6 Given a formula φ, the negation of φ is the formula ψ if φ = ¬ψ, and the formula
¬φ otherwise. The closure cl(φ) of a formula φ is the set containing all subformulas of φ and their
negations. A nonempty set α ⊆ cl(φ) is an atom of cl(φ) if it satisfies the following properties:

(a0) If true ∈ cl(φ), then true ∈ α.

(a1) For every φ1 ∧ φ2 ∈ cl(φ): φ1 ∧ φ2 ∈ α if and only if φ1 ∈ α and φ2 ∈ α.

(a2) For every ¬φ1 ∈ cl(φ): ¬φ1 ∈ α if and only if φ1 < α.

The set containing all atoms of cl(φ) is denoted by at(φ).

Observe that if α is the set of all formulas of cl(φ) satisfied by a computationσ, then α is necessarily
an atom. For instance, condition (a1) holds because σ satisfies a conjunction if and only if it
satisfies its conjuncts.

Example 14.7 The closure of the formula p ∧ (p U q) is

{ p, ¬p, q,¬q, p U q ,¬p U q, p ∧ (p U q),¬(p ∧ (p U q))} .

The only two atoms containing p ∧ (p U q) are

{p, q, p p U q, p ∧ (p U q)} and {p, ¬q, p U q, p ∧ (p U q)} .

14.3. FROM LTL FORMULAS TO GENERALIZED BÜCHI AUTOMATA 261

Let us see why. By (a1), every atom α containing p ∧ (p U q) must contain p and p U q; by (a2),
an atom always contains either a subformula or its negation, but not both, and so α contains neither
¬p nor ¬(p U q), and exactly one of q and ¬q.

Definition 14.8 The satisfaction sequence for a computation σ and a formula φ is the infinite
sequence of atoms

sats(σ, φ) = sats(σ, φ, 0) sats(σ, φ, 1) sats(σ, φ, 2) . . .

where sats(σ, φ, i) is the atom containing the formulas of cl(φ) satisfied by σi.

Intuitively, the satisfaction sequence of a computation σ is obtained by “completing” σ: while
σ only indicates which atomic propositions hold at each point in time, the satisfaction sequence
also indicates which atom holds.

Example 14.9 Let φ = p U q, σ1 = {p}ω, and σ2 = ({p}{q})ω. We have

sats(σ1, φ) = {p,¬q,¬(p U q)}ω

sats(σ2, φ) = ({p,¬q, p U q}{¬p, q, p U q})ω

Observe that σ satisfies φ if and only if and only if φ ∈ sats(σ, φ, 0), i.e., if and only if φ belongs to
the first atom of σ.

Satisfaction sequences have a semantic definition: in order to know which atom holds at a point
one must know the semantics of LTL. Hintikka sequences provide a syntactic characterization of
satisfaction sequences. The definition of a Hintikka sequence does not involve the semantics of
LTL, i.e., someone who ignores the semantics can still decide whether a sequence is a Hintikka
sequence or not. We prove that a sequence is a satisfaction sequence if and only if it is a Hintikka
sequence.

Definition 14.10 A pre-Hintikka sequence for φ is an infinite sequence α = α0α1α2 . . . of atoms
satisfying the following conditions for every i ≥ 0:

(l1) For every Xφ ∈ cl(φ): Xφ ∈ αi if and only if φ ∈ αi+1.

(l2) For every φ1 U φ2 ∈ cl(φ): φ1 U φ2 ∈ αi if and only if φ2 ∈ αi or φ1 ∈ α and φ1 U φ2 ∈ αi+1.

A pre-Hintikka sequence is a Hintikka sequence if it also satisfies

(g) For every φ1 U φ2 ∈ αi, there exists j ≥ i such that φ2 ∈ α j.

A pre-Hintikka or Hintikka sequence α matches a computation σ if for every atomic proposition
p ∈ AP, p ∈ αi if and only if p ∈ σi.1

1Loosely speaking, α0α1α2 . . . matches σ if it extends σ with new formulas.

262 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

Observe that conditions (l1) and (l2) are local: in order to know if α satisfies them we only need to
inspect every pair αi, αi+1 of consecutive atoms. On the contrary, condition (g) is global, since the
the distance between the indices i and j can be arbitrarily large.

It follows immediately from the definition above that if α = α0α1α2 . . . is a satisfaction se-
quence, then every pair αi, αi+1 satisfies (l1) and (l2), and the sequence α itself satisfies (g). So
every satisfaction sequence is a Hintikka sequence. The following theorem shows that the converse
also holds: Every Hintikka sequence if a satisfaction sequence.

Theorem 14.11 Let σ be a computation and let φ be a formula. The unique Hintikka sequence for
φ matching σ is the satisfaction sequence sats(σ, φ).

Proof: It follows immediately from the definitions that sats(σ, φ) is a Hintikka sequence for φ
matching σ. For the other direction, let α = α0α1α2 . . . be a Hintikka sequence for φ matching σ,
and let ψ be an arbitrary formula of cl(φ). We prove that for every i ≥ 0: ψ ∈ αi if and only if
ψ ∈ sats(σ, φ, i). The proof is by induction on the structure of ψ.

• ψ = true. Then true ∈ sats(σ, φ, i) and, since αi is an atom, true ∈ αi.

• ψ = p for an atomic proposition p. Since α matches σ, we have p ∈ αi if and only if p ∈ σi.
By the definition of satisfaction sequence, p ∈ σi if and only if p ∈ sats(σ, φ, i).

• ψ = φ1 ∧ φ2. We have

φ1 ∧ φ2 ∈ αi

⇔ φ1 ∈ αi and φ2 ∈ αi (condition (a1))
⇔ φ1 ∈ sats(σ, φ, i) and φ2 ∈ sats(σ, φ, i) (induction hypothesis)
⇔ φ1 ∧ φ2 ∈ sats(σ, φ, i) (definition of sats(σ, φ))

• ψ , φ1 or ψ = Xφ1. The proofs are very similar to the last one.

• ψ = φ1 U φ2. The proof is divided into two parts.
(a) If φ1 U φ2 ∈ αi, then φ1 U φ2 ∈ sats(σ, φ, i). By condition (l2) of the definition of Hintikka
sequence, we have to consider two cases:

– φ2 ∈ αi. By induction hypothesis, φ2 ∈ sats(σ, φ), and so φ1 U φ2 ∈ sats(σ, φ, i).

– φ1 ∈ αi and φ1 U φ2 ∈ αi+1. By condition (g), there is at least one index j ≥ i such
that φ2 ∈ α j. Let jm be the smallest of these indices. We prove the result by induction
on jm − i. If i = jm, then φ2 ∈ α j, and we proceed as in the case φ2 ∈ αi. If i < jm,
then since φ1 ∈ αi, we have φ1 ∈ sats(σ, φ, i) (induction on ψ). Since φ1 U φ2 ∈ αi+1,
we have either φ2 ∈ αi+1 or φ1 ∈ αi+1. In the first case we have φ2 ∈ sats(σ, φ, i + 1),
and so φ1 U φ2 ∈ sats(σ, φ, i). In the second case, by induction hypothesis (induction
on jm − i), we have φ1 U φ2 ∈ sats(σ, φ, i + 1), and so φ1 U φ2 ∈ sats(σ, φ, i).

(b) If φ1 U φ2 ∈ sats(σ, φ, i), then φ1 U φ2 ∈ αi. We consider again two cases.

14.3. FROM LTL FORMULAS TO GENERALIZED BÜCHI AUTOMATA 263

– φ2 ∈ sats(σ, φ, i). By induction hypothesis, φ2 ∈ αi, and so φ1 U φ2 ∈ αi.

– φ1 ∈ sats(σ, φ, i) and φ1 U φ2 ∈ sats(σ, φ, i + 1). By the definition of a satisfaction
sequence, there is at least one index j ≥ i such that φ2 ∈ sats(σ, φ, j). Proceed now as
in case (a).

14.3.2 Constructing the NGA

Given a formula φ, we construct a generalized Büchi automaton Aφ recognizing L(φ). By the
definition of a satisfaction sequence, a computation σ satisfies φ if and only if φ ∈ sats(σ, φ, 0)
and, by Theorem 14.11, sats(σ, φ) is the (unique) Hintikka sequence for φ matching σ. So Aφ must
recognize the computations σ such that the first atom of the Hintikka sequence for φ matching σ
contains φ.

To achieve this goal, we construct Aφ so that its runs are all the sequences

q0
σ0
−−−→α0

σ1
−−−→α1

σ2
−−−→ . . .

such thatσ = σ0σ1 . . . is a computation, and α = α0α1 . . . is a pre-Hintikka sequence of φmatching
σ. Moreover, the sets of accepting states (recall that Aφ is a NGA) are chosen so that a run is
accepting if and only if the pre-Hintikka sequence is also a Hintikka sequence.

The condition that runs must be pre-Hintikka sequences determines the alphabet, states, transi-
tions, and initial state of Aφ:

- The alphabet of Aφ is 2AP.

- The states of Aφ (apart from the distinguished initial state q0) are atoms of φ.

- The output transitions of the initial state q0 are the triples q0
σ0
−−−→α such that σ0 matches α

(i.e., for every atomic proposition p ∈ AP, p ∈ σ0 if and only if p ∈ α0), and φ ∈ α.

- The output transitions of any other state α (where α is an atom) are the triples α
σ
−−→ β such

that σ matches β, and the pair α, β satisfies conditions (l1) and (l2) (where α and β play the
roles of αi resp. αi+1).

The sets of accepting states of Aφ are determined by the condition that accepting runs must
exactly correspond to the Hintikka sequences. By the definition of a Hintikka sequence, we must
guarantee that in every run q0

σ0
−−−→α0

σ1
−−−→α1

σ2
−−−→ . . . , for every i ≥ 0 such that αi contains a

subformula φ1 U φ2, there exists j ≥ i such that φ2 ∈ α j. By condition (l2), this amounts to
guaranteeing that every run contains infinitely many indices i such that φ2 ∈ αi, or infinitely many
indices j such that ¬(φ1 U φ2) ∈ α j. So we choose the sets of accepting states as follows:

- The accepting condition contains a set Fφ1 U φ2 of accepting states for each subformula
φ1 U φ2 of φ. An atom belongs to Fφ1 U φ2 if it does not contain φ1 U φ2 or if it contains φ2.

264 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

The pseudocode for the translation algorithm is shown below.

LTLtoNGA(φ)
Input: LTL-Formula φ over AP
Output: NGA Aφ = (Q, 2AP, q0, δ,F) with L(Aφ) = L(φ)

1 Q = {q0}; δ← ∅;
2 for all α ∈ at(φ) such that φ ∈ α do
3 add (q0, α ∩ AP, α) to δ; add α to W
4 while W , ∅ do
5 pick α from W
6 add α to Q
7 for all φ1 U φ2 ∈ cl(φ) do
8 if φ1 U φ2 < α or φ2 ∈ α then add α to Fφ1 U φ2

9 for all P ⊆ AP do
10 for all β ∈ at(φ) matching P do
11 if α, β satisfies (l1) and (l2) then
12 add (α, P, β) to δ
13 if β < Q then add β to W
14 F ← ∅

15 for all φ1 U φ2 ∈ cl(φ) do F ← F ∪ {Fφ1 U φ2}

16 return (Q, 2AP, q0, δ,F)

Example 14.12 We construct the automaton Aφ for the formula φ = p U q. The closure cl(φ) has
eight atoms, corresponding to all the possible ways of choosing between p and ¬p, q and ¬q, p U q
and ¬(p U q). However, we can easily see that the atoms {p, q,¬(p U q)}, {¬p, q,¬(p U q)}, and
{¬p,¬q, p U q} have no output transitions, because they would violate condition (l2). So these
states can be eliminated, and we are left with the five atoms shown in Figure 14.3, plus the initial
state q0. Figure 14.3 uses some conventions to simplify the graphical representation. Observe that
every transition of Aφ leading to an atom α is labeled by α ∩ AP. Therefore, since the label of a
transition can be deduced from its target state, they are omitted in the figure. Moreover, since φ
only has one subformula of the form φ1 U φ2, the NGA is in fact a NBA, and we can represent the
accepting states as for NBAs.

Let α = {¬p,¬q,¬(p U q)} and β = {p,¬q, p U q}. Aφ contains a transition α
{p}
−−−→ β because

{p} matches β, and α, β satisfy conditions (l1) and (l2). Condition (l1) holds vacuously, because φ
contains no subformulas of the form X ψ; condition (l2) holds because p U q < α and q < β and
p < α. There is no transition from β to α because it would violate condition (l2): p U q ∈ β, but
neither q ∈ β nor p U q ∈ α.

It is worth noticing that the NGAs obtained from conversions of LTL formulas satisfy the
following property: every word accepted by the NGA has one single accepting run. This follows

14.3. FROM LTL FORMULAS TO GENERALIZED BÜCHI AUTOMATA 265

q0 p, q, p U q

p,¬q,¬(p U q)

¬p,¬q,¬(p U q)

p,¬q, p U q

¬p, q, p U q

Figure 14.3: NGA (NBA) for the formula p U q.

from the fact that, loosely speaking, an accepting run is the satisfaction sequence of the computation
it accepts, and the satisfaction sequence of a given computation is by definition unique.

14.3.3 Reducing the NGA

The reduction algorithm for NFAs shown in Chapter 3 can be adapted to NBAs and to NGAs.
Recall that given an NFA A = (Q,Σ, δ, q0, F) the algorithm computes the relation CSR, the coarsest
stable refinement of the equivalence relation {F,Q \ F}, and returns the quotient A/CSR. The
relation CSR partitions the set of states into blocks, and the states of a block are either all final or
all nonfinal (because every equivalence class of CSR is included in F or Q \ F). Moreover, since
CSR s stable, for every two states q, r of a block of CSR and for every (q, a, q′) ∈ δ, there is a
transition (r, a, r′) such that q′, r′ belong to the same block. This implies L(q) = L(r), because
every run q

a1
−−−→ q1

a2
−−−→ q2 · · · qn−1

an
−−−→ qn can be “matched” by a run r

a1
−−−→ r1

a2
−−−→ r2 · · · rn−1

an
−−−→ rn

in such a way that for every i ≥ 1 the states qi, ri belong to the same block, and so, in particular, qn

is final if and only if rn is final, which implies a1 . . . an ∈ L(q) if and only if a1 . . . an ∈ L(r).
Observe that we not only have that qn and rn are both final or nonfinal: the same holds for every

pair qi, ri. Moreover, the property also for ω-words: every infinite run q
a1
−−−→ q1

a2
−−−→ q2

a3
−−−→ q3 · · ·

is “matched” by a run r
a1
−−−→ r1

a2
−−−→ r2

a3
−−−→ r3 · · · so that for every i ≥ 1 the states qi, ri are both

accepting or non-accepting. This immediately proves Lω(A) = Lω(A/CSR), and so the reduction
algorithm also works for NBAs.

For the extension to NGA, let A = (Q,Σ, δ, q0, {F1, . . . , Fn}) ba a NGA. Consider the partition
of Q into blocks given by: two states q, r belong to the same block if for every i ∈ {1, . . . , n} either
q, r ∈ Fi or q, r < Fi. Define CSR′ as the coarsest stable refinement of this new partition. For
every two states q, r belonging to the same block of CSR′, we now have that every infinite run
q

a1
−−−→ q1

a2
−−−→ q2

a3
−−−→ q3 · · · is “matched” by a run r

a1
−−−→ r1

a2
−−−→ r2

a3
−−−→ r3 · · · so that for every i ≥ 1

266 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

and for every j ∈ {1, . . . , n} either qi, ri ∈ F j or qi, ri < F j. So we get Lω(A) = Lω(A/CSR′).
The algorithm can be applied to the NBA of Figure 14.3. The relation CSR′ has three equiva-

lence classes:

Q0 = { q0, {p,¬q, p U q} }
Q1 = { {p, q, p U q}, {¬p, q, p U q}, {¬p,¬q,¬(p U q)} }
Q2 = { {p,¬q,¬(p U q)} }

which leads to the reduced NBA of Figure 14.4.

{p}

{p}

∅, {q}, {p, q}

∅

{p}, {q}, {p, q}

{p}{q}, {p, q}

Figure 14.4: Reduced NBA for the formula p U q.

14.3.4 Size of the NGA

Let n be the length of the formula φ. It is easy to see that the set cl(φ) has size O(n). Therefore, the
NGA Aφ has at most O(2n) states. Since φ contains at most n subformulas of the form φ1 U φ2, Aφ
has at most n sets of final states.

We now prove a matching lower bound on the number of states. We exhibit a family of formulas
{φn}n≥1 such that φn has length O(n), and every NGA recognizing Lω(φn) has at least 2n states.

Consider the family of ω-languages {Dn}n≥1 over the alphabet {0, 1, #} given by Dn = {ww#ω |
w ∈ {0, 1}n}. We first show that every NGA recognizing Dn has at least 2n states. Assume A =

(Q, {0, 1, #}, δ, q0, {F1, . . . , Fk}) recognizes Dn and |Q| < 2n. Then for every word w ∈ {0, 1}n

there is a state qw such that A accepts w#ω from qw. By the pigeon hole principle, qw1 = qw2 for
two distinct words w1,w2 ∈ {0, 1}n. But then A accepts w1w2#ω, which does not belong to Dn,
contradicting the hypothesis.

It now suffices to construct a family of formulas {φn}n≥1 of size O(n) such that Lω(φn) = Dn.
For this, we take AP = {0, 1, #} with the obvious valuation, and construct the following formulas:

• φn1 = G((0 ∨ 1 ∨ #) ∧ ¬(0 ∧ 1) ∧ ¬(0 ∧ #) ∧ ¬(1 ∧ #)).
This formula expresses that at every position exactly one proposition of AP holds.

• φn2 = ¬# ∧

2n−1∧
i=1

X i¬#

 ∧ X 2n G #.

This formula expresses that # does not hold at any of the first 2n positions, and it holds at at
all later positions.

14.4. AUTOMATIC VERIFICATION OF LTL FORMULAS 267

• φn3 = G((0→ X n(0 ∨ #)) ∧ (1→ X n(1 ∨ #))).
This formula expresses that if the atomic proposition holding at a position is 0 or 1, then n
positions later the atomic proposition holding is the same one, or #.

Clearly, φn = φn1 ∧ φn2 ∧ φn3 is the formula we are looking for. Observe that φn contains O(n)
characters.

14.4 Automatic Verification of LTL Formulas

We can now sketch the procedure for the automatic verification of properties expressed by LTL
formulas. The input to the procedure is

• a system NBA As obtained either directly from the system, or by computing the asyn-
chronous product of a network of automata;

• a formula φ of LTL over a set of atomic propositions AP; and

• a valuation ν : AP → 2C , where C is the set of configurations of As, describing for each
atomic proposition the set of configurations at which the proposition holds.

The procedure follows these steps:

(1) Compute a NGA Av for the negation of the formula φ. Av recognizes all the computations
that violate φ.

(2) Compute a NGA Av ∩ As recognizing the executable computations of the system that violate
the formula.

(3) Check emptiness of Av ∩ As.

Steps (1) can be carried out by applying LTLtoNGA, and Step (3) by, say, the two-stack algorithm.
For Step (2), observe first that the alphabets of Av and As are different: the alphabet of Av is 2AP,
while the alphabet of As is the set C of configurations. By applying the valuation ν we transform
Av into an automaton with C as alphabet. Since all the states of system NBAs are accepting, the
automaton Av ∩ As can be computed by interNFA.

It is important to observe that the three steps can be carried out simultaneously. The states of
Av∩As are pairs [α, c], where α is an atom of φ, and c is a configuration. The following routine takes
a pair [α, c] as input and returns its successors in the NGA Av ∩ As. The routine first computes the
successors of c in As. Then for each successor c′, it computes first the set P of atomic propositions
satisfying c′ according to the valuation, and then the set of atoms β such that (a) β matches P and
(b) the pair α, β satisfies conditions (l1) and (l2). The successors of [α, c] are the pairs [β, c′].

268 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

Succ([α, c])

1 S ← ∅
2 for all c′ ∈ δs(c) do
3 P← ∅
4 for all p ∈ AP do
5 if c′ ∈ ν(p) then add p to P
6 for all β ∈ at(φ) matching P do
7 if α, β satisfies (l1) and (l2) then add c′ to S
8 return S

This routine can be inserted in the algorithm for the emptiness check. For instance, if we use
TwoStack, then we just replace line 6

6 for all r ∈ δ(q) do

by a call to the routine:

6 for all [β, c′] ∈ Succ([α, c]) do

Exercises

Exercise 99 Let AP = {p, q} and let Σ = 2AP. Give LTL formulas defining the following lan-
guages:

{p, q} ∅ Σω Σ∗ {q}ω

Σ∗ {p} Σ∗ {q} Σω {p}∗ {q}∗ ∅∗ Σω

Exercise 100 Let AP = {p, q}. Give NBAs accepting the languages defined by the LTL formulas
XG¬p, (GFp)⇒ (Fq), and p ∧ ¬XFp.

Exercise 101 Two formulas φ, ψ of LTL are equivalent, denoted by φ ≡ ψ, if they are satisfied by
the same computations. Which of the following equivalences hold?

Xϕ ∧ Xψ ≡ Xϕ ∧ ψ Xϕ ∨ Xψ ≡ Xϕ ∨ ψ
Fϕ ∧ Fψ ≡ Fϕ ∧ ψ Fϕ ∨ Fψ ≡ Fϕ ∨ ψ

Gϕ ∧Gψ ≡ Gϕ ∧ ψ Gϕ ∨Gψ ≡ Gϕ ∨ ψ
FXϕ ≡ XFϕ GXϕ ≡ XGϕ

(ψ1 U ϕ) ∧ (ψ2 U ϕ) ≡ (ψ1 ∧ ψ2) U ϕ (ψ1 U ϕ) ∨ (ψ2 U ϕ) ≡ (ψ1 ∨ ψ2) U ϕ

(ϕ U ψ1) ∧ (ϕ U ψ2) ≡ ϕ U (ψ1 ∧ ψ2) (ϕ U ψ1) ∨ (ϕ U ψ2) ≡ ϕ U (ψ1 ∨ ψ2)
ψ U Fϕ ≡ Fϕ ψ U Gϕ ≡ Gϕ

ψ U GFϕ ≡ GFϕ ψ U FGϕ ≡ GFϕ

14.4. AUTOMATIC VERIFICATION OF LTL FORMULAS 269

Exercise 102 Prove FGp ≡ VFGp and GFp ≡ VGFp for every sequence V ∈ {F,G}∗ of the
temporal operators F and G .
Hint: Observe that, since FFp ≡ Fp and GGp ≡ Gp, it suffices to prove FGp ≡ GFGp and
GFp ≡ FGFp.

Exercise 103 (Santos Laboratory). The weak until operator W has the following semantics:

• σ |= φ1 W φ2 iff there exists k ≥ 0 such that σk |= φ2 and σi |= φ1 for all 0 ≤ i < k, or
σk |= φ2 for every k ≥ 0.

Prove: p W q ≡ Gp ∨ (p U q) ≡ F¬p→ (p U q) ≡ p U (q ∨Gp).

Exercise 104 (Santos Laboratory). Let AP = {p, q, r}. Give formulas that hold for the computa-
tions satisfying the following properties. If in doubt about what the property really means, choose
an interpretation, and explicitely indicate your choice. Here are two solved examples:

• p is false before q: F(q)→ (¬p U q).

• p becomes true before q: ¬q W (p ∧ ¬q).

Now it is your turn:

• p is false between q and r.

• p precedes q before r.

• p precedes q after r.

• after p and q eventually r.

Exercise 105 (Schwoon). Which of the following formulas of LTL are tautologies ? (A formula
is a tautology if all computations satisfy it.) If the formula is not a tautology, give a computation
that does not satisfy it.

• Gp→ Fp

• G(p→ q)→ (Gp→ Gq)

• F(p ∧ q)↔ (Fp ∧ Fq)

• ¬Fp→ F¬Fp

• (Gp→ Fq)↔ (p U (¬p ∨ q))

• (FGp→ GFq)↔ G(p U (¬p ∨ q))

• G(p→ Xp)→ (p→ Gp).

270 CHAPTER 14. VERIFICATION AND TEMPORAL LOGIC

Part III

Pushdown Automata

271

	Introduction and Preliminaries
	I Automata on Finite Words
	Automata Classes and Conversions
	Languages and regular expressions
	Automata classes
	Conversion Algorithms between Finite Automata
	From NFA to DFA.
	From NFA- to NFA.

	Conversion algorithms between regular expressions and automata
	From regular expressions to NFA-'s
	From NFA-'s to regular expressions

	 A Tour of Conversions

	Minimization and Reduction
	Minimal DFAs
	Minimizing DFAs
	Computing the language partition
	Quotienting

	Reducing NFAs
	The reduction algorithm

	A Characterization of the Regular Languages

	Operations on Sets: Implementations
	Implementation on DFAs
	Membership.
	Complement.
	Binary Boolean Operations
	Emptiness.
	Universality.
	Inclusion.
	Equality.

	Implementation on NFAs
	Membership.
	Complement.
	Union and intersection.
	Emptiness and Universality.
	Inclusion and Equality.

	Operations on Relations: Implementations
	Encodings
	Transducers and Regular Relations
	Implementing Operations on Relations
	Projection
	Join, Post, and Pre

	Relations of Higher Arity

	Finite Universes
	The Master Automaton
	A Data Structure for Fixed-length Languages
	Operations on fixed-length languages
	Determinization and Minimization
	Operations on Fixed-length Relations
	Decision Diagrams
	Z-automata and Kernels
	The Master Z-automaton
	A Data Structure
	Operations on Kernels

	Applications I: Pattern matching
	The general case
	The word case
	Lazy DFAs
	Constructing the lazy DFA in O(m) time

	Applications II: Verification
	The Automata-Theoretic Approach to Verification
	Networks of Automata.
	Checking Properties

	The State-Explosion Problem
	Symbolic State-space Exploration

	Safety and Liveness Properties

	Automata and Logic
	First-Order Logic on Words
	Expressive power of FO()

	Monadic Second-Order Logic on Words
	Expressibility of MSO()

	Applications III: Presburger Arithmetic
	Syntax and Semantics
	Constructing an NFA for the Solution Space.

	II Automata on Infinite Words
	Classes of -Automata and Conversions
	-languages and -regular expressions
	Büchi automata
	From -regular expressions to NBAs and back
	Non-equivalence of NBA and DBA

	Generalized Büchi automata
	Other classes of -automata
	Co-Büchi Automata
	Muller automata
	Rabin automata

	Boolean operations: Implementations
	Union and intersection
	Complement
	The problems of complement
	Rankings and ranking levels
	A (possible infinite) complement automaton
	The size of A

	Emptiness check: Implementations
	Algorithms based on depth-first search
	The nested-DFS algorithm
	The two-stack algorithm

	Algorithms based on breadth-first search
	Emerson-Lei's algorithm
	A Modified Emerson-Lei's algorithm
	Comparing the algorithms

	Verification and Temporal Logic
	Automata-Based Verification of Liveness Properties
	Checking Liveness Properties

	Linear Temporal Logic
	From LTL formulas to generalized Büchi automata
	Satisfaction sequences and Hintikka sequences
	Constructing the NGA
	Reducing the NGA
	Size of the NGA

	Automatic Verification of LTL Formulas

	III Pushdown Automata

