Name:

Matrikelnummer:

Automata and Formal Languages – Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1	$10 imes1.5~\mathrm{P}=15~\mathrm{F}$
$\mathbf{Question}$:	Decide whether the following holds and write down why. If L^* is a regular language, then L is regular.
Answer:	
$\mathbf{Question}$:	Decide whether the following holds and write down why. If R is a non-empty regular language and $L \cap R^{\omega}$ is ω -regular, then L is ω -regular.
Answer:	
$\mathbf{Question}$:	Draw a finite automaton for $\{w \in \{a, b, c\}^* \mid between every a and a later b there is c\}$.

Answer:

Question: Let L be a regular language and r the number of its residuals. Furter, let s be the minimal possible number of states of a *non-deterministic* automaton recognizing L. What is the relationship between r and s?

Answer:

Question: Construct a transducer recognizing the relation $\{(wa, aw) \mid w \in \{a, b\}^*\}$.

Answer:	
Question :	Give a regular expression for the language $L \subseteq \{a, b\}^*$ of words, in which the number of ab 's is the same as the number of ba 's. (Examples: $aaba \in L$, $abb \notin L$.)
Answer:	
Question:	Write down an ω -regular expression equivalent to $\mathbf{G}(a \vee \mathbf{F}b)$ over $Ap = \{a, b\}$.
Answer:	
Question :	Let $\Sigma = \{a, b\}$ be an alphabet. Is there a language $L \subseteq \Sigma^{\omega}$ with exactly two words such that $\Sigma^{\omega} \setminus L$ is ω -regular?
Answer:	
$\mathbf{Question}:$	Construct a DFA recognizing the solution space of $2x \leq y$ in the lsbf encoding.
A	
Answer	
Question:	Decide whether the formulae $\mathbf{G}(a\mathbf{U}b)$ and $\mathbf{G}(a\vee b)$ are equivalent. Why?
Answer:	

Exercise 2

Let $L \subseteq \Sigma^*$ and $M \subseteq \Gamma^*$ be languages. We define the *shuffle* of L and M as

$$L||M := \{u_1v_1 \cdots u_nv_n \mid n \in \mathbb{N}, u_1 \cdots u_n \in L, v_1 \cdots v_n \in M, \forall 1 \le i \le n \ u_i \in \Sigma^*, v_i \in \Gamma^*\}$$

Example: Let $\Sigma = \{a, b\}$, $L = \{ab\}$ and $\Gamma = \{0, 1\}$, $M = \{0, 1\}$. Then $L||M = \{ab0, a0b, 0ab, ab1, a1b, 1ab\}$. Prove that the shuffle operation preserves regularity, i.e. if L and M are regular then so is L||M.

Exercise 3

Give regular expressions for the *complements* of the following languages over $\Sigma = \{a, b\}$ and explain your answers:

- (a) $(aa + bb)^*$
- (b) $(a+b)^*(aa+bb)(a+b)^*$

Exercise 4

(a) Let $\Sigma = \{a, b\}$. Write down all residuals of $(aa^* + \varepsilon)b\Sigma^*$.

(b) Let $\Sigma = \{a\}$. Prove that $\{a^{2^n} \mid n \in \mathbb{N}\}$ has infinitely many residuals.

Exercise 5

Consider the following program P with a binary variable x initialised to 0:

- \mathbf{P} :
- loop
- (a) Construct a newtwork of automata for P and x and their asynchronous product.
- (b) Construct a Büchi automaton for the *negation* of the property $\mathbf{G} \mathbf{F} x = 0$.
- (c) Using the product construction, prove that the previous property holds for P.

Exercise 6

Order the following languages of infinite words over $\Sigma = \{a, b, c, d\}$ with respect to the set inclusion \subseteq .

- $L_1 = \{ w \in \Sigma^{\omega} \mid \inf(w) = \{ b, c \} \}$
- $L_2 = \{ w \in \Sigma^{\omega} \mid \{b, c\} \subseteq \inf(w) \}$
- $L_3 = \{ w \in \Sigma^{\omega} \mid \inf(w) \subseteq \{a, b, c, d\} \}$
- $L_4 = \{ w \in \Sigma^{\omega} \mid d \notin \inf(w) \land \{b, c\} \subseteq \inf(w) \}$

Further, construct an NGA recognizing one of those (and *indicate* which one).

2 P

2 P

3 P

4 P

Exercise 7

Recall that NestedDFS and TwoStack are non-deterministic algorithms that stop after reporting the first accepting lasso found. Consider the following automaton:

- (a) Which lassos can be reported by the *NestedDFS* algorithm? Why?
- (b) Which lassos can be reported by the *TwoStack* algorithm? Why

Exercise 8

Consider the language L of the regular expression $(ab)^*$.

- (a) Give an MSO formula for L.
- (b) Give an MSO formula for L with no second-order variables.

2 P