Automata and Formal Languages - Endterm

Please note: If not stated otherwise, all answers have to be justified.

Exercise 1

Question: Decide whether the following holds and write down why.
If L^{*} is a regular language, then L is regular.

Answer :

Question: Decide whether the following holds and write down why.
If R is a non-empty regular language and $L \cap R^{\omega}$ is ω-regular, then L is ω-regular.

Answer :

Question: Draw a finite automaton for $\left\{w \in\{a, b, c\}^{*} \mid\right.$ between every a and a later b there is $\left.c\right\}$.

Answer :

Question: Let L be a regular language and r the number of its residuals. Furter, let s be the minimal possible number of states of a non-determinstic automaton recognizing L. What is the relationship between r and s ?

Answer :

Question: Construct a transducer recognizing the relation $\left\{(w a, a w) \mid w \in\{a, b\}^{*}\right\}$.

Answer :

Question: Give a regular expression for the language $L \subseteq\{a, b\}^{*}$ of words, in which the number of $a b$'s is the same as the number of $b a$'s. (Examples: $a a b a \in L, a b b \notin L$.)

Answer :

Question: Write down an ω-regular expression equivalent to $\mathbf{G}(a \vee \mathbf{F} b)$ over $A p=\{a, b\}$.

Answer :

Question: Let $\Sigma=\{a, b\}$ be an alphabet. Is there a language $L \subseteq \Sigma^{\omega}$ with exactly two words such that $\Sigma^{\omega} \backslash L$ is ω-regular?

Answer :

Question: Construct a DFA recognizing the solution space of $2 x \leq y$ in the lsbf encoding.

Answer :

Question: Decide whether the formulae $\mathbf{G}(a \mathbf{U} b)$ and $\mathbf{G}(a \vee b)$ are equivalent. Why?

Answer:

Let $L \subseteq \Sigma^{*}$ and $M \subseteq \Gamma^{*}$ be languages. We define the shuffle of L and M as

$$
L \| M:=\left\{u_{1} v_{1} \cdots u_{n} v_{n} \mid n \in \mathbb{N}, u_{1} \cdots u_{n} \in L, v_{1} \cdots v_{n} \in M, \forall 1 \leq i \leq n u_{i} \in \Sigma^{*}, v_{i} \in \Gamma^{*}\right\}
$$

Example: Let $\Sigma=\{a, b\}, L=\{a b\}$ and $\Gamma=\{0,1\}, M=\{0,1\}$. Then $L \| M=\{a b 0, a 0 b, 0 a b, a b 1, a 1 b, 1 a b\}$.
Prove that the shuffle operation preserves regularity, i.e. if L and M are regular then so is $L \| M$.

Exercise 3

Give regular expressions for the complements of the following languages over $\Sigma=\{a, b\}$ and explain your answers:
(a) $(a a+b b)^{*}$
(b) $(a+b)^{*}(a a+b b)(a+b)^{*}$

Exercise 4

(a) Let $\Sigma=\{a, b\}$. Write down all residuals of $\left(a a^{*}+\varepsilon\right) b \Sigma^{*}$.
(b) Let $\Sigma=\{a\}$. Prove that $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ has infinitely many residuals.

Exercise 5

Consider the following program P with a binary variable x initialised to 0 :
P:

> loop
> $\quad x \leftarrow 1$
> $x \leftarrow 0$
(a) Construct a newtwork of automata for P and x and their asynchronous product.
(b) Construct a Büchi automaton for the negation of the property G $\mathbf{F} x=0$.
(c) Using the product construction, prove that the previous property holds for P.

Exercise 6

Order the following languages of infinite words over $\Sigma=\{a, b, c, d\}$ with respect to the set inclusion \subseteq.

- $L_{1}=\left\{w \in \Sigma^{\omega} \mid \inf (w)=\{b, c\}\right\}$
- $L_{2}=\left\{w \in \Sigma^{\omega} \mid\{b, c\} \subseteq \inf (w)\right\}$
- $L_{3}=\left\{w \in \Sigma^{\omega} \mid \inf (w) \subseteq\{a, b, c, d\}\right\}$
- $L_{4}=\left\{w \in \Sigma^{\omega} \mid d \notin \inf (w) \wedge\{b, c\} \subseteq \inf (w)\right\}$

Further, construct an $N G A$ recognizing one of those (and indicate which one).

Recall that NestedDFS and TwoStack are non-deterministic algorithms that stop after reporting the first accepting lasso found. Consider the following automaton:

(a) Which lassos can be reported by the NestedDFS algorithm? Why?
(b) Which lassos can be reported by the TwoStack algorithm? Why

Consider the language L of the regular expression $(a b)^{*}$.
(a) Give an MSO formula for L.
(b) Give an MSO formula for L with no second-order variables.

