Automata and Formal Languages – Homework 11

Due 19.1.2012.

Exercise 11.1

Implement the intersection of Büchi automata with a simple procedure using NGAtoNBA. Further, can you make use of this procedure when intersecting more than two automata?

Exercise 11.2

For this exercise, let $\Sigma := \{a, b\}$. Consider the ω -regular expression

$$\phi_k := ((\Sigma^{k+1})^* \Sigma^k a)^\omega$$
 with $k \ge 1$.

- (a) Describe $\mathcal{L}(\phi_k)$ in words.
- (b) Construct a Büchi automaton \mathcal{B}_k s.t. $\mathcal{L}(\mathcal{B}_k) = \mathcal{L}(\phi_k)$.
- (c) Apply the intersection construction to \mathcal{B}_1 and \mathcal{B}_2 .
- (d) Can you come up with a Büchi automaton for $\mathcal{L}(\phi_1) \cap \mathcal{L}(\phi_2)$ which has less states then the one obtained in (c)?

Exercise 11.3

Construct a generalized Büchi and a Büchi automaton accepting $L_1 \cap L_2 \cap L_3 \subseteq \{a, b\}^{\omega}$, where

- $L_1 = \{ \alpha \mid \text{infinitely many } a \text{'s occur in } \alpha \}$
- $L_2 = \{ \alpha \mid \text{finitely many } b \text{'s occur in } \alpha \}$
- $L_3 = \{ \alpha \mid \text{each } a \text{ in } \alpha \text{ is immediately followed by a } b \}$

Exercise 11.4

Consider the following Büchi \mathcal{B} automaton representing the ω -words over $\Sigma = \{a, b\}$ having only finitely many as:

$$start \longrightarrow \begin{array}{c} a, b & b \\ \hline Q & b & Q \\ \hline q & b & q \\ \hline \end{array}$$

(a) Sketch dag($abab^{\omega}$) and dag($(ab)^{\omega}$).

(b) Consider the ranking r defined by $r(\langle q_0, i \rangle) := 1$ and $r(\langle q_1, i \rangle) := 0$ for all $i \in \mathbb{N}$. Is r an odd ranking for dag $(abab^{\omega})$, resp. dag $((ab)^{\omega})$?

- (c) Show that the ranking r defined in (b) is odd for dag(w) iff $w \notin \mathcal{L}(\mathcal{B})$.
- (d) Apply now the complement construction for Büchi automata to \mathcal{B} as seen in the lecture. Hint: You may use the fact that it is sufficient to use $\{0, 1\}$ as ranks.