Automata and Formal Languages – Homework 6

Due 24.11.2010.

Exercise 6.1

Transducers can be also seen as devices transforming input into output. Thus, they can capture the behaviour of simple programs.

Let P be the following program. The domain of the variables is assumed to be $\{0, 1\}$, and the initial value is assumed to be 0. Let [i, x, y] denote the state of P that corresponds to the *i*th instruction, the value x in x, and the value y in y.

1 $\mathbf{x} \leftarrow ?$ $\mathbf{2}$ write x 3 do 4 do 5read y $\mathbf{6}$ until x = y7 if eof then 8 write y 9 \mathbf{end} 10 do 11 $\mathtt{x} \leftarrow \mathtt{x} - 1$ or 12 $\mathbf{y} \leftarrow \mathbf{y} + 1$ until $x \neq y$ 13 14 until false 15end

The initial state of the program P is [1,0,0]. By executing the first instruction, the program can move from state [1,0,0] and either enter the state [2,0,0] or the state [2,1,0]. In both cases, no input symbol is read and no output symbol is written during the transition between the states. Hence, the transition relation δ for P contains the transition rules ($[1,0,0], (\varepsilon, \varepsilon), [2,0,0]$) and ($[1,0,0], (\varepsilon, \varepsilon), [2,1,0]$). Similarly, by executing its second instruction, the program P must move from state [2,1,0] and enter state [3,1,0] while reading nothing and writing 1. Hence, δ contains also the transition rule ($[2,1,0], (\varepsilon, 1)[3,1,0]$).

- (a) Draw the ε -transducer that characterizes the program P.
- (b) Can an overflow error occur?
- (c) What are the possible values of x and y upon termination, i.e. reaching end?
- (d) Can a pair of input 101 and output 01 occur?
- (e) Let us have a regular set I of inputs and a regular set O of outputs. We may consider O to be the dangerous outputs that we want to avoid and we want to prove that using only I is safe, i.e. none of the dangerous outputs can occur. Describe an algorithm deciding given I and O whether there are $i \in I$ and $o \in O$ such that (i, o) is accepted.

Exercise 6.2

With transducers defined to be finite automata whose transitions are labeled by pairs of symbols $(a, b) \in \Sigma \times \Sigma$ only pairs of words $(a_0a_1 \dots a_l, b_0b_1 \dots b_l)$ of same length can be accepted. Consider therefore finite automata whose transitions are labeled by elements of $(\Sigma \cup \{\varepsilon\}) \times (\Sigma \cup \{\varepsilon\})$ instead, and call this class ε -transducers. As in the case of transducers, we say that an ε -transducer \mathcal{A} accepts a word pair (w, w') if there is a run

$$q_0 \xrightarrow{(a_0,b_0)} q_1 \xrightarrow{(a_1,b_1)} \dots \xrightarrow{(a_n,b_n)} q_n \text{ with } a_i, b_i \in \Sigma \cup \{\varepsilon\}$$

such that $w = a_0 a_1 \dots a_n$ and $w' = b_0 b_1 \dots b_n$. Note that $|w| \leq n$ and $|w'| \leq n$. As usual, we write $\mathcal{L}(\mathcal{A})$ for the language of word pairs accepted by the ε -transducer \mathcal{A} .

- (a) Construct ε -transducers \mathcal{A}_1 and \mathcal{A}_2 such that $\mathcal{L}(\mathcal{A}_1) = \{(a^n b^m, c^{2n}) \mid n, m \geq 0\}$, and $\mathcal{L}(\mathcal{A}_2) = \{(a^n b^m, c^{2m}) \mid n, m \geq 0\}$.
- (b) Apply the construction for the intersection of two finite automata to A_1 and A_2 . Which language does the resulting ε -transducer accept?
- (c) Show that there is no ε -transducer which accepts the language $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$.

Exercise 6.3

Let $\Sigma = \{0, 1\}$ and for $a, b \in \Sigma$ we define $a \cdot b$ to be the usual multiplication (also an analog of Boolean *and*) and $a \oplus b$ to be 0 if a = b = 0, and 1 otherwise (an analog of Boolean *or*).

Consider the following function $f: \Sigma^6 \to \Sigma$ defined by

$$f(x_1, x_2, x_3, x_4, x_5, x_6) = (x_1 \cdot x_2) \oplus (x_3 \cdot x_4) \oplus (x_5 \cdot x_6)$$

- (a) Construct the minimal DFA recognizing $L_1 = \{x_1 x_2 x_3 x_4 x_5 x_6 \mid f(x_1, x_2, x_3, x_4, x_5, x_6) = 1\}$.
- (b) Construct the minimal DFA recognizing $L_2 = \{x_1x_3x_5x_2x_4x_6 \mid f(x_1, x_2, x_3, x_4, x_5, x_6) = 1\}$.

Note the difference in the ordering! Give an example of $w \in L_1 \setminus L_2$.

Note the diffrence in the size of the automata. More generally, consider

$$f(x_1,\ldots,x_{2n}) = \bigoplus_{1 \le k \le n} (x_{2k-1} \cdot x_{2k})$$

and languages according to orderings $x_1x_2 \ldots x_{2n-1}x_{2n}$ and $x_1x_3 \ldots x_{2n-1}x_2x_4 \ldots x_{2n}$. Although both languages encode "equivalent" information, their minimal automata differ vastly in the size: for the former ordering the size is linear in n, wheareas for the latter it is exponential.

Exercise 6.4

- (a) Given two minimal DFAs accepting bounded languages L_1 and L_2 with words of length k, construct a minimal DFA accepting $L_1 \cup L_2$.
- (b) For any language $L \subseteq \{0,1\}^k$ of binary numbers of length k, we define L + 1 to be the language $\{w + 1 \mod 2^k \mid w \in L\}$. Construct a minimal DFA accepting L + 1 from a minimal DFA accepting L.
- (c) Let $A = (Q, \{0, 1\}, \delta, q_0, F)$ be a minimal DFA such that $\mathcal{L}(A)$ is a bounded language of binary numbers. What language is accepted by the automaton $A' = (Q, \{0, 1\}, \delta', q_0, F)$, where $\delta'(q, b) = \delta(q, 1 - b)$?