Automata and Formal Languages - Homework 6

Due 24.11.2010.

Exercise 6.1

Transducers can be also seen as devices transforming input into output. Thus, they can capture the behaviour of simple programs.
Let P be the following program. The domain of the variables is assumed to be $\{0,1\}$, and the initial value is assumed to be 0 . Let $[i, x, y]$ denote the state of P that corresponds to the i th instruction, the value x in x , and the value y in y .

```
\(\mathrm{x} \leftarrow\) ?
write x
do
    do
        read y
    until \(\mathrm{x}=\mathrm{y}\)
    if eof then
        write y
        end
    do
        \(\mathrm{x} \leftarrow \mathrm{x}-1\)
        or
        \(\mathrm{y} \leftarrow \mathrm{y}+1\)
    until \(\mathrm{x} \neq \mathrm{y}\)
until false
end
```

The initial state of the program P is $[1,0,0]$. By executing the first instruction, the program can move from state $[1,0,0]$ and either enter the state $[2,0,0]$ or the state $[2,1,0]$. In both cases, no input symbol is read and no output symbol is written during the transition between the states. Hence, the transition relation δ for P contains the transition rules $([1,0,0],(\varepsilon, \varepsilon),[2,0,0])$ and $([1,0,0],(\varepsilon, \varepsilon),[2,1,0])$. Similarly, by executing its second instruction, the program P must move from state $[2,1,0]$ and enter state $[3,1,0]$ while reading nothing and writing 1 . Hence, δ contains also the transition rule $([2,1,0],(\varepsilon, 1)[3,1,0])$.
(a) Draw the ε-transducer that characterizes the program P.
(b) Can an overflow error occur?
(c) What are the possible values of x and y upon termination, i.e. reaching end?
(d) Can a pair of input 101 and output 01 occur?
(e) Let us have a regular set I of inputs and a regular set O of outputs. We may consider O to be the dangerous outputs that we want to avoid and we want to prove that using only I is safe, i.e. none of the dangerous outputs can occur. Describe an algorithm deciding given I and O whether there are $i \in I$ and $o \in O$ such that (i, o) is accepted.

Exercise 6.2

With transducers defined to be finite automata whose transitions are labeled by pairs of symbols $(a, b) \in \Sigma \times \Sigma$ only pairs of words $\left(a_{0} a_{1} \ldots a_{l}, b_{0} b_{1} \ldots b_{l}\right)$ of same length can be accepted. Consider therefore finite automata whose transitions are labeled by elements of $(\Sigma \cup\{\varepsilon\}) \times(\Sigma \cup\{\varepsilon\})$ instead, and call this class ε-transducers. As in the case of transducers, we say that an ε-transducer \mathcal{A} accepts a word pair $\left(w, w^{\prime}\right)$ if there is a run

$$
q_{0} \xrightarrow{\left(a_{0}, b_{0}\right)} q_{1} \xrightarrow{\left(a_{1}, b_{1}\right)} \ldots \xrightarrow{\left(a_{n}, b_{n}\right)} q_{n} \text { with } a_{i}, b_{i} \in \Sigma \cup\{\varepsilon\}
$$

such that $w=a_{0} a_{1} \ldots a_{n}$ and $w^{\prime}=b_{0} b_{1} \ldots b_{n}$. Note that $|w| \leq n$ and $\left|w^{\prime}\right| \leq n$. As usual, we write $\mathcal{L}(\mathcal{A})$ for the language of word pairs accepted by the ε-transducer \mathcal{A}.
(a) Construct ε-transducers \mathcal{A}_{1} and \mathcal{A}_{2} such that $\mathcal{L}\left(\mathcal{A}_{1}\right)=\left\{\left(a^{n} b^{m}, c^{2 n}\right) \mid n, m \geq 0\right\}$, and $\mathcal{L}\left(\mathcal{A}_{2}\right)=$ $\left\{\left(a^{n} b^{m}, c^{2 m}\right) \mid n, m \geq 0\right\}$.
(b) Apply the construction for the intersection of two finite automata to \mathcal{A}_{1} and \mathcal{A}_{2}. Which language does the resulting ε-transducer accept?
(c) Show that there is no ε-transducer which accepts the language $\mathcal{L}\left(\mathcal{A}_{1}\right) \cap \mathcal{L}\left(\mathcal{A}_{2}\right)$.

Exercise 6.3

Let $\Sigma=\{0,1\}$ and for $a, b \in \Sigma$ we define $a \cdot b$ to be the usual multiplication (also an analog of Boolean and) and $a \oplus b$ to be 0 if $a=b=0$, and 1 otherwise (an analog of Boolean or).
Consider the following function $f: \Sigma^{6} \rightarrow \Sigma$ defined by

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1} \cdot x_{2}\right) \oplus\left(x_{3} \cdot x_{4}\right) \oplus\left(x_{5} \cdot x_{6}\right)
$$

(a) Construct the minimal DFA recognizing $L_{1}=\left\{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$.
(b) Construct the minimal DFA recognizing $L_{2}=\left\{x_{1} x_{3} x_{5} x_{2} x_{4} x_{6} \mid f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=1\right\}$.

Note the difference in the ordering! Give an example of $w \in L_{1} \backslash L_{2}$.
Note the diffrence in the size of the automata. More generally, consider

$$
f\left(x_{1}, \ldots, x_{2 n}\right)=\bigoplus_{1 \leq k \leq n}\left(x_{2 k-1} \cdot x_{2 k}\right)
$$

and languages according to orderings $x_{1} x_{2} \ldots x_{2 n-1} x_{2 n}$ and $x_{1} x_{3} \ldots x_{2 n-1} x_{2} x_{4} \ldots x_{2 n}$. Although both languages encode "equivalent" information, their minimal automata differ vastly in the size: for the former ordering the size is linear in n, wheareas for the latter it is exponential.

Exercise 6.4

(a) Given two minimal DFAs accepting bounded languages L_{1} and L_{2} with words of length k, construct a minimal DFA accepting $L_{1} \cup L_{2}$.
(b) For any language $L \subseteq\{0,1\}^{k}$ of binary numbers of length k, we define $L+1$ to be the language $\{w+1$ $\left.\bmod 2^{k} \mid w \in L\right\}$. Construct a minimal DFA accepting $L+1$ from a minimal DFA accepting L.
(c) Let $A=\left(Q,\{0,1\}, \delta, q_{0}, F\right)$ be a minimal DFA such that $\mathcal{L}(A)$ is a bounded language of binary numbers. What language is accepted by the automaton $A^{\prime}=\left(Q,\{0,1\}, \delta^{\prime}, q_{0}, F\right)$, where $\delta^{\prime}(q, b)=\delta(q, 1-b)$?

